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Abstract 
New chi-squared type invariant and consistent goodness-of-fit tests for multivariate 
normality are introduced. The tests are based on the Karhunen-Loève transformation of a 
multi-dimensional sample from a population. This transformation diagonalizes the 
sample covariance matrix. Then a modification of Moore and Stubblebine technique for 
construction Wald’s type chi-squared tests was used. A comparison of simulated powers 
of these tests and some other well known tests with respect to seven different 
symmetrical multivariate alternatives is given. The simulation study demonstrates that the 
power of the proposed McCull test almost does not depend on the number of grouping 
cells. The test shows an advantage over other chi-squared type tests and is more powerful 
than several known tests against some alternatives. 
 

Key Words: Chi-squared goodness-of-fit tests, invariant and consistent tests, 
multivariate normality, symmetric alternatives, power of tests 

Introduction 

The assumption of multivariate normality (MVN) is of great importance for applied 
multivariate statistics, e.g., for multivariate analysis of variance, discriminant analysis, 
canonical correlation and factor analysis, analysis of regression residuals, residuals in 
time-series models, etc. To check that assumption only most powerful tests should be 
used, because tests with low power cannot discriminate for sure between null hypothesis 
of MVN and supposed alternatives. Several examples of such a situation in the univariate 
case were, e.g., given in Voinov et al (2013), Sec. 3.10.1, and Sec. 3.9. Henze (2002), 
p.468 stated that those tests of MVN must be invariant (with respect to affine 
transformations of sample data) and consistent (probability to fall into rejection region 
under alternative must tend to 1 if sample size n →∞ ). 

Two recent surveys of the state of art are known: Henze (2002), and Mecklin and 
Mundfrom (2004). Those surveys list tenth of publications devoted to testing of MVN. It 
is almost impossible to find out and site all existing papers on tests of MVN. We would 
like to mention here papers that have not been listed in those surveys (Small (1978), 
Follmann (1996), Bartozynski et al (1997), Royston (1992), Hwu et al (2002)), and 
several recent publications: Keselman (2005), Mecklin and Mundfrom (2005), Székely 
and Rizzo (2005), von Eye (2005), Farrell et al (2007), Doornik and Hansen (2008)),  
Sürücü (2006), Villasenor Alva and Estrada (2009), Cardoso De Oliveira and Ferreira 
________________________________ 
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(2010), Hanusz and Tarasińska (2012), Joenssen and Vogel (2012), Batsidis and Zografos 
(2013),  and Batsidis et al (2013).   

In this article we introduce new invariant and consistent chi-squared goodness-of-fit tests 
for MVN. Section 1 is devoted to theoretical background of our proposal. In Section 2 we 
derive closed form expressions for our tests. In Section 3 a Monte-Carlo power 
comparison study of different MVN tests is described. A conclusion and 
recommendations are given in Section 4. 

1. Preliminaries 
 

The main goal of this research is a construction of a Wald's type chi-squared goodness-
of-fit tests for the composite hypothesis that a set 1,..., nX X  of n independent identically 
distributed (iid) p - dimensional random vectors does not contradict the following joint 
probability density function  

/2 1/2 11( | ) (2 ) | | exp ( ) ( )
2

p Tf π − − − = − − −  
x x xθ µ µΣ Σ , 

where µ  is the p - vector of means and Σ  is a nonsingular p p×  covariance matrix. Let 
a given vector  of unknown parameters be 

1 11 12 22 1 2( ,..., , , , ,..., , ,..., ,..., ) ,T
p j j jj ppµ µ σ σ σ σ σ σ σ=θ  

where the elements of the matrix  Σ  are arranged column-wise by taking the elements of 
the upper-triangular submatrix of Σ . Since parameter θ  is considered to be unknown, 
we shall estimate it by the maximum likelihood method. The maximum likelihood 
estimator (MLE) n̂θ  of θ  is the vector ( , )TX S , where X  is the vector of sample 

means, and S  is the sample covariance matrix. Given n̂θ , and constants 

00 rc c≤ < < = ∞ , the r  grouping cells can be defined as (Moore and Stubblebine 
(1981)) 

{ }1
1

ˆ( ) : ( ) ( ) ,  1,..., .p T
in n i iE c c i r−

−= ∈ ≤ − − < =X R X X S X Xθ  
The estimated probability to fall into each cell is 

ˆ( )

ˆ ˆ( ) ( | ) , 1,..., .
in n

in n n
E

p f d i r= =∫ x x
θ

θ θ  

If ic  are the /i r  points, 1,..., ,i r=  of 2 ( )pχ  distribution that is the limit distribution of 
1( ) ( )T −− −X X S X X , then the cells are equiprobable and ˆ( ) 1/ ,  1,..., .in np r i r= =θ  

Denote ˆ( )n nV θ  a vector of standardized cell frequencies with components 
( / )ˆ( ) ,  1,..., ,

/
in

i in n
N n rV V i r

n r
−

= = =θ  

where observed frequency inN  is the number of random vectors 1,..., nX X  falling into  
ˆ( ),  1,..., .in nE i r=θ  Moore and Stubblebine (1981) showed that in this case, the limiting 

covariance matrix  of standardized frequencies ˆ( )n nV θ  is 1 ,T T
l

−− −= I qq BJ BΣ  
where  B is the r m×  matrix with elements 
 

( )1 ,  =1,..., , =1,..., ,
( )

i
ij

ji

pB i r j m
p θ

∂
=

∂
θ

θ
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q  is a r-vector with its entries as 1/ r ,  ( )=J J θ  is the Fisher information matrix for 
one observation, and ( 1) / 2m p p p= + +  is the number of unknown parameters. The 
m m×  Fisher information matrix can be evaluated as (Moore and Stubblebine (1981)) 

1

1

  
( )

    

−

−

 
=  
 

0
J

0 Q
θ

Σ , 

where Q is the ( 1) / 2 ( 1) / 2p p p p+ × +  covariance matrix of  w  (a vector of the 

entries of nS  arranged column-wise by taking the upper triangular elements) 

11 12 22 13 23 33( , , ,  ,  , ,..., )w = T
pps s s s s s s . 

The elements of Q can be written precisely as (Press (1972)) 
2Var( ) ,  , 1,..., ,  ,ij ij ii jjs i j p i jσ σ σ= + = ≤  

Cov( , ) ,  , , , 1,..., ,  ,  ,ij kl ik jl il jks s i j k l p i j k lσ σ σ σ= + = ≤ ≤  

where ,  , 1,..., ,ij i j pσ = are elements of  Σ . Based on the above Moore and Stubblebine 
(1981) suggested to use the Nikulin-Rao-Robson (NRR) statistic 
                                2 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )T T T T

n n n n n n n n n n n n n nY −= + −V V V B J B B B Vθ θ θ θ ,                    (1)   

where nB  and nJ  are MLEs of B and J . 
  
The two-dimensional case of (1) has been thoroughly considered in Voinov (2013a),  and 
Voinov (2013b). It was shown that the limiting covariance matrix 

1T T
l

−− −= I qq BJ BΣ  of standardized frequencies ˆ( )n nV θ  in this case depends on 
unknown parameters (on elements of Σ  in particular) and, hence, in accordance with 
Lemma 9 of Khatri (1968), 2

nY  in (1) cannot be distributed as chi-squared. Moreover, the 

statistic 2
nY  is not distribution-free and  cannot be used for testing bivariate normality in 

principle. 
 
Producing a simulation study of the statistic (1) we observed that the limit distribution of 
(1) will follow the chi-squared distribution with 1r −  degrees of freedom if  and only if 
Σ  is a diagonal matrix. 

Consider briefly a two-dimensional case when p = 2  for a diagonal 11

22

   0
 0    
σ

σ
 

=  
 

Σ  . 

The Fisher's information matrix ( )J θ  for one observation, and Q  are  

11

22
2
11

2
22

  1/     0             0               0   
    0     1/           0               0   

    0          0       1/(2 )        0 

    0          0            0         1/(2 )    

σ
σ

σ

σ

 
 
 =  
  
 

J
, 

2
11

2
22

2      0   

  0      2

σ

σ

 
=   
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In the blocked form the matrix ( )=B 0 : B , where 

1 11 1 22

2 11 2 22

11 22

/    /
/    /  

,

/   /r r

d d
d d

d d

σ σ
σ σ

σ σ

 
 
 
 
 
 

B =


 then 

2
11 11 222

2
11 22 22

   1/      1/( )

1/( )      1/  
T

ir d
σ σ σ

σ σ σ

 
=   

 
∑B B 

 
 , where ,  =1,..., ,id i r  are defined by  Moore 

and Stubblebine (1981), p.720.  In the blocked form the matrix 
1

2

  0
 0    

T
− 

− =  
 

J B B
D

Σ , 

where  
2 2

2
11 11 22

2 2 2

2
11 22 22

1 2
  

2
.

1 2
   

2

i i

i i

r d r d

r d r d
σ σ σ

σ σ σ

 −
− 

 =  − − 
 

∑ ∑

∑ ∑
D  

 Evidently that 1
1

2

   0
0  

T −
−

 
− =  

 
(J B B)

D
Σ

 and 1 1
2( )T T T− −− =B J B B B BD B  . 

           

2 2
11 2

11 22
1

2 2 2 2
222

11 22

(1 2 )
     4 2

1 4 (1 2 )
         

2

i
i

i i
i

r d
r d

r d r d
r d

σ
σ σ

σ
σ σ

−

 −
 
 =
 − −
 
 

∑ ∑
∑ ∑∑

D ,                                     (2) 

and the NRR statistic in (1) becomes  
           2 1

2
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T T

n n n n n n n n n n n nY −= +V V V B D B V θ θ θ θ ,                                                 (3) 

where nB  and 1
2n
−D  are MLEs of B  and 1

2
−D  respectively. Since  

1 11 1 22

2 11 2 221
2 2

11 22

  
  2

1 4
  

i

r r

d d
d dr

r d
d d

σ σ
σ σ

σ σ

−

 
 
 =
 −
 
 

∑
BD



, then  

2
1 1 2 1

1
2 2

2
1 2

          
4

1 4
        

r
T

i
r r r

d d d d d
r

r d
d d d d d

−

 
 

=  −  
 

∑
BD B



 





. 

From all these it follows that 

( )2

1
2 2

4
1 4

i iT T

i

r V d
r d

− =
−
∑
∑

V BD B V  , and  the closed form of the  NRR statistic in (3) is      

                                         
( )2

2 2
2

4
.

1 4
i i

n i
i

r V d
Y V

r d
= +

−
∑∑ ∑

                                                   (4) 

 
2.  Proposed chi-squared goodness-of-fit tests for MVN 

 
Consider the case of any symmetrical Σ

 
with the dimensionality p > 2.  

Proposition 1. For any parameter 1 2 11 22( , ,..., , , ,..., )T
p ppµ µ µ σ σ σ=θ   
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2 2

2 211

11 22 11

2 2

2 222
1 11 22 22

2

(1 2( 1) )
                                

2

(1 2( 1) )
4                               

2
1 2

                                    

i
i i pp

i
i i pp

p

i

p r d
r d r d

p r d
r d r d

pr d

σ
σ σ σ σ

σ
σ σ σ σ−

− −

− −

=
−

∑ ∑ ∑

∑∑ ∑
∑

D







2 2

2 2

11 22

                                                          

(1 2( 1) )
                                   

2
i pp

i pp i pp

p r d
r d r d

σ
σ σ σ σ

− −

 
 
 
 
 
 
 
 
 
 

∑∑ ∑

  



.    (5) 

The proof of this is given in Appendix 1. Since in this case  
1 11 1 22 1

2 11 2 22 2

11 22

/   /      /

/   /     /
,

/   /   /

pp

pp

r r r pp

d d d
d d d

r

d d d

σ σ σ

σ σ σ

σ σ σ

 
 
 =  
 
 
 

B











 

we  have  
1 11 1 22 1

2 11 2 22 21
2

11 22

    

    2 ,
1 2

    

pp

pp
p

i

r r r pp

d d d
d d dr

pr d
d d d

σ σ σ

σ σ σ

σ σ σ

−

 
 
 =  −
 
 
 

∑
BD











 

2
1 1 2 1

2
1 1 2 2 2

2

2
1 2

        

        2 ,
1 2

      

r

T r
p

i

r r r

d d d d d
d d d d dpr

pr d

d d d d d

−

 
 
 =  −
 
 
 

∑
BD B





 





 ( )2

1
2

2
.

1 2
i iT T

p
i

pr V d
pr d

− =
−
∑
∑

V BD B V 

 

Finally  the NRR statistic in (1) for any diagonal covariance matrix of any dimensionality 
p is 

                                   

( )2

2 2
2

2
.

1 2
i i

n i
i

pr V d
Y V

pr d
= +

−
∑∑ ∑

                                                     (6) 

The second term of 2
nY  in (6) recovers information lost due to data grouping. Another 

useful decomposition of 2 2 2 ,n n nY U S= +  where the  Dzhaparidze-Nikulin (DN)  statistic 
2
nU  is 

  2 1ˆ ˆ( )[ ( ) ] ( ),T T T
n n n n n n n n nU −= −V I B B B B Vθ θ  and                                    (7) 

 2 2 2 1 1ˆ ˆ( ) [( ) ( ) ] ( )T T T T
n n n n n n n n n n n n n nS Y U − −= − = − +V B J B B B B B Vθ θ                  (8) 

has been proposed by McCulloch in 1985.  McCulloch (1985), Theorem 4.2,  proved that 
if rank of  B is s , then 2 2 and n nU S are asymptotically independent and distributed in the 

limit as 2
1r sχ − − and 2

sχ respectively. In the sequel, after a very good idea of McCulloch,  

we shall call the 2
nS  as the McCulloch's (McCull) statistic. Since in our case the first p

columns of the matrix B  are columns of zeros and the rest are linearly dependent, the 
matrix nB  has rank 1. From the above it follows that 1( )T

n n
−B B does not exist, but, using 

the well known facts from the theory of multivariate normal distribution (see e.g., Moore 
(1977), p.132), we may replace 1 1( )T

n n
− −=A B B by ( )T

n n
− −=A B B , where −A  is any 
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generalized matrix inverse of A . So, for testing multivariate normality with random cells 
ˆ( )in nE θ we may use: the NRR statistic 2

nY defined by (6), the DN statistic 

      ( )22 2
2

1ˆ ˆ( )[ ( ) ] ( ) ,T T T
n n n n n n n n n i i i

i

U V V d
d

−= − = −∑ ∑∑
V I B B B B Vθ θ and           (9) 

( )
( )

2

2 2 2 1
2 2

ˆ ˆ( ) [( ) ( ) ] ( )
1 2

i iT T T T
n n n n n n n n n n n n n n

i i

V d
S Y U

pr d d
− −= − = − + =

−
∑
∑ ∑

V B J B B B B B Vθ θ      (10) 

that have asymptotically 2 2 2
1 2 1,  ,  and r rχ χ χ− − distributions correspondingly. 

 
Proposition 2. In our multivariate case statistics 2

nU  in (9) and 2
nS  in (10) are 

asymptotically independent, and, hence,  2
nU  and 2

nS  can be used as test statistics 
independently from each other (for a proof see Appendix 2). 
 
Proposition 3. The right-hand-side rejection region tests of multivariate normality based 
on 2

nY  and 2
nS are consistent against all alternatives that approximately satisfy the 

condition 
2( ) /iP X c i r≤ ≠  for at least one { }1,..., 1i r∈ − . 

This proposition can be easily proved using arguments of Henze (2002), p. 484. 
 

The above results for testing the MVN null hypothesis with a symmetrical covariance 
matrix Σ  suggest the following procedure: 1) produce the Karhunen-Loéve 
transformation of a sample data that will diagonalize a sample covariance matrix, and 2) 
use the statistics 2 2,  ,n nY U  and 2

nS as defined in formulas (6), (9), and (10). Let 

1 2 ]p= [e  e eΦ  be a matrix whose columns 1 2, ,..., pe e e  are orthogonal normalized 
eigen-vectors of S , then the Karhunen-Loéve transformation will be 

,  1,..., .T
i i i n= =Y XΦ  From this it follows that tests in (6), (9), and (10) with 

frequencies ( ) ,  1,..., ,n
iN i n=  defined by the number of vectors 1,..., nY Y  that will fall 

into intervals ( ) ( ) ( ){ }2 1
1

ˆ  in R :  ,  ,
T

in n i y iE c c i = 1,...,r−
−= ≤ − − <Y Y Y S Y Y θ  

where yS  is the sample covariance matrix of 1,..., nY Y ,  can be used. In the sequel we 
shall analyze tests (6), (9), and (10) based on the  Karhunen-Loéve transformation of the 
original data. 

3. Simulation study 
 

A simulation study was conducted to compare the power of the Doornik and Hansen 
(2008), Henze and Zirkler (1990),  Royston (1992) tests (DH, HZ, and R92 as in Farrell 
et al (2007)), Nikulin-Rao-Robson (NRR) test (6), McCulloch's (McCull) test (10), 
Anderson-Darling (AD) and Cramer -von Mises (CM) tests as they were defined in 
Henze (2002), p. 483. Throughout this study only simulated critical values for the right-
tailed rejection region of size 0.05α =  for all test statistics were used. 
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In the sequel we shall not consider the Dzhaparidze-Nikulin (DN) and Chernoff-
Lehmann (ChLeh) (see  Moore and Stubblebine (1981), p. 718) tests  because of their 
low power (see, e.g., Figure 1). 
 

 

 
Figure 1: Simulated power of the NRR ( Y ^ 2), DN ( U ^ 2 ), McCull (S ^ 2 ), and 
ChLeh tests as the function of the number r of equiprobable cells. The alternative is the 
two-dimensional  Student t distribution with 10 degrees of freedom (d.f.)  with dependent 

components (formula (5) of Farrell et al  (2007) with 
2   1
1   5
 

=  
 

Σ   was used for simulation) ,  

p = 2,  n = 250, N = 5000. 
        
From this figure we see that the power of McCull test (S ^ 2 ) in this particular case is the 
highest. Another important feature of the McCull test is that its power almost does not 
depend on r. The same behavior was observed for all alternatives considered in this 
research. This very nice property of the McCull test distinguishes it from all other chi-
squared type tests, the power of which essentially depends on r (see e.g. Henze (2002), p. 
484). Since in all our simulations the power of McCull test attains the smooth maximum 
at r = 5, in the sequel we shall use  r = 5 as a universal recommended number of grouping 
cells for both McCull and NRR tests (at least for alternatives that are investigated in this 
research). 
 
Some results of our simulation study are presented in Figures 2-8 below.  
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  (b) n=50            (d) n=250   

Figure 2: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM  
test statistics for the Pearson Type II alternative distribution with shape parameter m = 
10. Based  on 20,000 samples of sizes n = 25, 50, 100, and 250, for dimensionalities  p = 
2,3,4,5, and 10. 

From Fig. 2 we see that w.r.t. the Pearson Type II distribution with shape parameter m = 
10 the power of AD and CM tests is the largest for all sample sizes and dimensionalities 
considered. McCull test 2S  possesses lower power that is still comparable with that of 
AD and CM statistics. The NRR test, we proposed, possesses almost the same power as 

2S  test for 50n ≥  and p = 2,3,4,5. One sees also that HZ, R92, and DH tests are not 
competitive with the rest four tests.  
 

 

  (a) n=25            (c) n=100   

 

  (b) n=50           (d) n=250   

Figure 3:  Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics w.r.t. the multivariate uniform distribution (Pearson Type II, m=0). Based  
on 20,000 samples of sizes n = 25, 50, 100, and 250, for p = 2,3,4,5, and 10. 
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From Fig. 3 we see that for samples of size n = 25 and n = 50 under short-tailed 
symmetrical alternatives the HZ, R92, NRR, and DH tests cannot be recommended for 
applications. For samples of size n = 100 and n = 250 only McCull, AD, CM, and HZ 
tests are the best.   
 

 

  (a) n=25       (c) n=100   

 

  (b) n=50      (d) n=250   

Figure 4: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics against the multivariate Student t distribution with 10 degrees of freedom. 
Based on 20,000 samples of sizes n =25, 50, 100, and 250  for p =2, 3, 4, 5, and 10. 
 
From Fig. 4 one sees that against long-tailed Student t distribution with 10 d.f. for n = 25 
and n = 50 only AD and CM tests can be recommended. For n = 100 and n = 250  all tests 
are approximately equivalent with the exception of HZ test that is more conservative for 
dimensionalities p = 2,3,4, and 5.   
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  (b) n=50      (d) n=250   

Figure 5: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics against the multivariate Student t distribution with 5 degrees of freedom. 
Based on 20,000 samples of sizes n = 25, 50, 100, and 250, for  p = 2, 3, 4, 5, and 10. 
 
From Fig. 5. we see that AD and CM tests are perfect for samples of size n = 25 and that 
all other tests under consideration are not good except, possibly, R92 for p = 10. For 
samples of size 25n >  all tests seem to be equivalent. 
 

 

  (a) n=25              (c) n=100   

 

       (b) n=50       (d) n=250   

Figure 6: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics against the alternative multivariate Khinchine (KHN) distribution with 
normal marginals . Based on 20,000 samples of sizes  n = 25, 50, 100, and 250  for  p = 2, 
3, 4, 5, and 10. 
 
From Fig. 6. we see that against KHN alternative the HZ test possesses an evident 
advantage for n = 25. For n = 50 and more the best are AD, CM, and HZ tests. The 
McCull test is comparable with them for 100n ≥ . It is of importance to note that for all 
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sample sizes considered the R92 and DH tests possess no power and are biased w.r.t. 
right-tailed rejection region. It is quite possible that these tests are powerful and unbiased 
for left-tailed rejection region, but this needs a separate thorough investigation.  
 

 

  (a) n=25       (c) n=100   

 

  (b) n=50      (d) n=250   

Figure 7: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics against the mixture of normal distributions 0.5N(0,B)+0.5N(0,I). B denotes 
a matrix with 1 on diagonal and 0.9 off diagonal, I is the identity matrix. Based on 20,000 
samples of sizes  n = 25, 50, 100, and 250  for  p = 2, 3, 4, 5, and 10. 
 
From Fig. 7 we see that for n = 25 only HZ and AD tests can be recommended. For 

50n >  HZ, AD, CM, and McCull tests perform well, and DH test is good only for p = 
10. It is clear that R92 test is not powerful and biased (see comment to Fig. 6).    
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  (b) n=50      (d) n=250   

Figure 8: Empirical powers for the DH, HZ, R92, NRR (Y2), McCull (S2), AD, and CM 
test statistics against the mixture of normal distributions 0.9N(0,B)+0.1N(0,I). Based on 
20,000 samples of sizes n = 25, 50, 100, and 250  for p = 2, 3, 4, 5, and 10. 
 
From Fig. 8 we see that for n = 25 the HZ tests is the best. For 50n ≥  all tests except 
R92 perform well.  Note also that again R92 test is biased and, hence does not work. 
 
From all the above one sees that no one test considered is a panacea when testing for 
multivariate normality against symmetrical alternatives. Much depends on a prior 
knowledge about a reasonable alternative.  

 
4.  Conclusion and recommendations 

 
To summarize we may to conclude that no one of tests considered can be recommended 
as a universal one.   All tests have a right to be used in practice, but, before selecting a 
proper test, it is highly desirable to have some imagination about possible alternatives.  If, 
on the contrary, one has no idea about an alternative, then the AD, CM, HZ, and McCull 
tests can be used. 
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Appendix 1 
 
A proof of the Proposition 1. 
Formula (5) holds when p = 2 (see formula (2)).  Let it hold for any p >2, then 
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can be presented as 
1  
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Let us show that (5) holds for p + 1. Due to Rao (1968), p.29, problem 2.7, the matrix 
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Substituting the above expressions into  (11)  we see that the expression (5) holds for  p + 
1, and, hence, by induction is valid for any 2p ≥ . 
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Appendix 2 
 
From the theory of quadratic forms it is known that if ( , )NY  µ Σ , where Σ  is a 
positive definite matrix, then the two quadratic forms TY AY  and TY BY are distributed 
independently if =A B 0Σ . Since asymptotically 1ˆ( ) ( , )T

n n Nθ −−V 0 I BJ B , then to 

prove that 2
nU  and 2

nS  are independent we have to show that 
      { }{ }{ }1 1( ) ( ) ( )T T T T T T− − − − − − − + = I B B B B I BJ B B J B B B B B 0 .                            (12) 

 Let ( )T −B B  be the Moore-Penrose matrix inverse for TB B  (it is well known that under 
normality quadratic forms do not depend on the way of inversion). From the properties of 
the Moore-Penrose matrix inverse we have ( ) ( ) ( )T T T T T− − − −= = =B B B B BB BB , so 

( ) ( ) ( )T T T T T T− − − − − − − −= = = =B B B B BB B B BB B B BB BB BB . 
Using matrix multiplication, from (12) we get 
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The factor of the last term of the above expression is simplified as 
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Substituting this result into expression (13) and opening brackets we obtain 
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