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Abstract 

Background  In the orthopaedic space, long-term implant survivorship is a critical 

measure to determine product performance.  Construction of a sound statistical model 

that will predict implant survival beyond the time window of available data is of strong 

interest and would allow manufacturers to conduct more proactive surveillance on 

product performance.   
Methods  An accelerated failure time model was fit to short-term survival data from a 

multi-center clinical trial for a total joint replacement product. The model was used to 

estimate the survival probability at all time points, including those outside the time 

window of available data.  The model building, model selection, and model diagnostics 

were demonstrated.  Model validation (both internal and external) was performed.   

Results  An Exponential model (intercept only) was found to be the best-fit model for the 

data, and satisfied the model assumptions and goodness-of-fit.  The internal validation 

confirmed that the estimates were relatively stable although censoring patterns appear to 

affect the estimates to some extent.  External validation confirmed that this model 

reliably estimates survivorship within the range of available follow-up time and for 

approximately 8 years past this interval. Model-predicted survivorship and associated 

95% confidence intervals were calculated within the time window of available data and 

for 8 years outside this interval.    

Conclusions  This methodology is a viable alternative to the traditional data acquisition 

methods, and may allow for faster attainment of long-term survivorship information and 

hence  more proactive surveillance on product performance. 

 

Key Words: Orthopaedic, total joint arthroplasty, survival, revision, exponential 

distribution, extrapolation, prediction 

 

 

1. Introduction 

 

1.1 Clinical Rationale 

 
In the orthopaedic medical device industry, there is an increasing demand for clinical data 

with specific focus on long-term implant survivorship data.  This data is needed to 

support product performance, fulfill post-market surveillance requirements, and gain 

market acceptance for products.  On the other hand, changes in patient population and 

resulting new demands require device manufacturers to be responsive and continue to 

advance technology and enhance product designs to address any unmet clinical needs. 

Often new products are developed largely based on design features and material 
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characteristics of previous generations of the product, and so in many cases it is 

reasonable to expect that the performance of the new generation of product is very similar 

to that of its predecessor.  

 

The combination of these two factors presents a challenge to new product development 

and launch as manufacturers need to obtain long-term data on  new products in a 

relatively short time frame.  Traditionally this is addressed by collecting clinical data on 

the new device and waiting until an appropriately-sized cohort of patients have been 

followed to long-term time points to see how the product is performing.  However, this 

takes significant time and resources, and more importantly prevents device manufacturers 

from taking the new products to the market and providing the best care to patients.   This 

paper explores the possibility of using a predictive model built using short term data to 

predict survival probabilities beyond the time window of available data.   

 

1.2  Statistical Rationale  

 
In general, survival analysis provides estimation of survival probability within the time 

window of available data.  Extrapolation of statistical models beyond available data must 

be done with caution, because models built using data within a certain time frame may 

not continue to follow the same trend.  However, predictive modeling has been 

successfully applied in several areas of clinical research [3,4,7], and when used 

appropriately can be very helpful.  For example, Jackson, et al. [3] described the 

validation and use a parametric model for predicting median survival times for Cystic 

Fibrosis birth cohorts.  In Chu, et al, a semi parametric method was proposed to 

extrapolate survival curve to estimate expected years of life lost for cancer patients, under 

high-censored rates [4].  Royston, et al described methods for external validation of a 

prognostic survival model, with practical examples using datasets in cancer [7]. 

 

In this analysis, a parametric model was used to estimate long-term survivorship for a 

total joint replacement product. Mid-term data on a cohort of patients followed to 7 years 

post-surgery was obtained from a multicenter clinical trial (“primary data set”) and was 

used to build this model.   Because extrapolation beyond the time of available follow-up 

can be somewhat tricky and unreliable, the model was carefully validated.  The validation 

taken here includes external validation using long-term data from an older, but 

fundamentally similar, device.  Internal validation was also performed [3,7].  

 

 

2. Process Overview 
 

The general process and methods described in this paper can be seen as a continuous 

cycle.  Although it begins with a certain amount of short-term data on a newer implant 

design and long-term data on an older, but fundamentally similar, design, as time goes 

on, more data will be acquired, and the model can be re-evaluated to see whether it still 

fits and predicts well with the updated data.  In addition, the short-term data on the newer 

design will eventually mature and become long-term data, and the newer design may 

eventually be improved upon, resulting in another new device with similar 

characteristics.  In this way, the cycle will repeat. 

 

The process can be summarized in this way: 

1) Obtain short or mid-term data on new device, denoted as “Primary Data” 
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2) Fit accelerated failure time model to the Primary survival data 

3) Perform internal validation of model using the same data used to fit model 

4) Obtain long-term results on older generation device, denoted as “Secondary 

Data”  

5) Perform external validation of model using long-term secondary data  

6) Use predictive model to obtain long-term predictions of product performance  

 

This paper will use a real-data example to describe and demonstrate each of these steps. 

 
 

Figure 1: Overview of Predictive Modeling Process  

 

3. Patient Populations – Primary and Secondary Data 
 

 

The patient population used in external validation (“secondary data”) should be similar to 

the one used for model building (“primary data”).  The relevant patient factors for both 

groups used in this data example are described in Table 1.  It can be seen that the primary 

and secondary populations are similar with regard to primary indication, gender, age, 

BMI, and percentage of censored values. 

 

 

 

 

Table 1: Patient Demographic Information for Primary and Secondary Data 
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 Primary Secondary 

Number of Cases 958 15207 

Female/Male 609/349 9151/6056 

Age at Surgery 69.1+/-9.48 68.4+/-9.28 

BMI at Surgery 31.8+/-6.10 37.1+/-8.46 

Percent Censoring  

 
98.2% 96.1% 

 

Primary Indication 
  

Osteoarthritis 96.7% 97.5% 

Rheumatoid arthritis 2.2% 2.1% 

Other 1.1% 0.36% 

 

 

The log rank test comparing the KM curves for primary and secondary datasets from 

surgery to Year 4 (the time of the last “event” for the primary data set) gives a p-value of 

0.1556.  This gives some evidence that the two generation devices are not statistically 

significantly different with respect to implant survivorship, which is also seen graphically 

in Figure 2. 

 
 

Figure 2: Kaplan Meier Plots for Primary and Secondary Data Censored at Latest Event 

Time for Primary Data (4 Years)  
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4. Statistical Model Building 

 

4.1 Model Building 
Parametric survival regression modeling using distributions such as Weibull, exponential, 

log-normal, and log-logistic, are often used for survival predictions [1,4,5].  In survival 

analysis, the parametric regression models have this form [1]: 

 

 

 

 

Where Y is either T (time to failure) or log(T), jx  are covariates,   is a random error, 

  and   are parameters to be estimated. When log(t) is used, the model is known as an 

accelerated failure time (AFT) model. In SAS, the LIFEREG procedure is used to 

calculate the maximum likelihood estimators of the parameters.  Akaike Information 

Criterion (AIC) and Schwarz’s Bayesian Criterion (SBC) are the criteria used for 

comparing model fit among the different types of AFT models. 

 

Using the primary dataset, ten survival distribution functions were fitted and compared 

using PROC LIFEREG in SAS.  Time is calculated as years from date of surgery to date 

of revision (uncensored) or date of last follow up (censored).  The exponential 

distribution gave the smallest AIC and SBC, suggesting that the exponential distribution 

is the best fit for the data among the ten survival distribution functions selected.  

 

Assuming the data follows an exponential distribution as suggested above, patient risk 

factors including gender, age at time of surgery, BMI at time of surgery, primary 

indication for surgery, and joint side were checked. A backward elimination model 

building process was utilized to select significant covariates for inclusion in the model. If 

more than one main effect remained in the model, interaction terms were added one at a 

time to check for significant interactions [6].  For this model, the order of removal for the 

selected covariates (based on the p-value > 0.05 for the Type III Analysis of Effects, 

Wald Chi-square test) was: primary indication, BMI, age at surgery, joint side, and 

gender (Table 2).  

 

Table 2: Type III Analysis of Effects based on Wald Chi-Square Test 

 

Predictor Primary Indication BMI Age at surgery Joint Side Gender 

DJD  OA 

P value 0.99 0.99 0.685 0.585 0.190 0.159 

 

None of the covariates were statistically significant predictors.  The exponential model, 

fit without any covariates, has 

 

                      λ=5.444 

 

The corresponding predicted survivorships can be calculated by: 

 

                        S(t) hat =exp(-t*exp(-5.444)) 

 

  
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Where t = time in years from surgery until revision, death, or date of most recent follow-

up. 

 

4.2 Model Diagnostics 

 
The Exponential distribution assumes a constant hazard rate. Based on a plot of log(-

log(S(t))) against log(t), it is reasonable to assume that there is constant hazard rate.  In 

addition, the Cox-Snell residuals were distributed as approximately unit exponential; 

therefore the exponential model without predictors appears to be adequate.  The plot of 

scaled score residuals against follow-up time in years was used to gauge the influence of 

each observation on the intercept. The Martingale residuals plot was also obtained to 

check the influence of individual observations on the model. No extreme values of the 

residuals were observed; therefore it can be concluded that no influential observations 

were found. 

 

5. Statistical Model Validation 

 

5.1 Internal Validation 

 

 
In order to assess the performance of the model in predicting long-term survival after 

only a short duration of follow-up with heavily censored data, the impact of censoring 

needed to be explored.  The observed survivorship data was censored beginning at 1 year, 

so that only follow-up from Year 0 to Year 1 were used in the model.  The estimated 10-

year and 15-year survivorships and associated 95% confidence intervals were calculated.  

The follow-up period was extended a year at a time until year 7 (the last interval for 

which data from the primary data set was available) [3].  A new model was fit each time 

and predicted 10-year and 15-year survivorships were re-estimated based on the model.  

Figure 3a and 3b show the predicted 10-year and 15-year survivorship (respectively) for 

each iteration.  The 10-year predicted survival ranges from 88% when data is censored at 

Year 3, to 95% when data is censored at Year 7.  The 15-year predicted survival ranges 

from 82% when data is censored at Year 4, to 93% when data is censored at Year 7.  The 

confidence intervals (calculated using the Delta Method) overlap, with the exception of 

Year 4 and Year 7.  

 

10-year and 15-year survivorship estimates are lowest when the censoring occurs at Year 

3 and Year 4 (respectively).  Year 4 is also when the last event occurs within the primary 

data set; although follow-up still occurred from years 5-7, no revisions occurred during 

this time.  In addition, censoring has increased to ~30% by year 4 and to ~50% by year 5.   

 

Although the model predictions are relatively stable, results show that the amount and 

pattern of censoring likely has some impact on the model predictions.  External validation 

of the predictions based on all data from the primary dataset is considered in order to 

make a better conclusion about whether the estimates produced by the model are accurate 

for predicting long-term survivorship. 
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Figure 3a: Iterative prediction of 10-year survival (per Jackson et al [3]) 

 

 

 

 
Figure 3b: Iterative prediction of 15-year survival (per Jackson et al [3]) 

 
 

5.2 External Validation 

 
In practice, the best way to validate a model is to use an external source of data to check 

the predictive ability of the model, as opposed to internal validation methods such as data 

splitting, cross-validation and bootstrap resampling on the primary data set.  

Unfortunately, there is little statistical literature on formal techniques for external 

validation of models for time-to-event data [3].  In general, external validation uses an 

independent dataset in which a completely different cohort of patients is used from the 

one used for building the model. The patients should have a set of relevant factors in 

common, including the same clinical condition within similar settings and the same 

definition of the time-to-event outcome [7].  In addition, similar patient populations as 
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indicated by similar distributions of primary indication for surgery, gender, age, BMI are 

needed.   

 

Using the estimated Exponential model parameter from the model built using the primary 

dataset, estimated survival probabilities for the secondary dataset were obtained and 

compared with the actual Kaplan-Meier estimates for the secondary dataset to assess the 

predictive ability of the exponential model. The secondary data set has a longest observed 

event time of approximately 24 years, compared with 7 years of the longest event time of 

the primary set of data used to build the predictive model. Figures 4 and 5 show the 

survival estimates based on the Exponential and Kaplan-Meier models for the primary 

and secondary data sets, respectively.  It can be seen from the plots that the estimated 

survivorships from the model match the observed Kaplan-Meier very well within the time 

window of follow-up (approximately 7 years) and for a few years outside this window.  

Not surprisingly, as the predictions get farther from the observed window of data, the 

estimates are not as closely matched by the external validation model.  Also adding to the 

uncertainty at these later time points are the many censored observations caused by low 

patient follow-up at later time points in both primary and secondary datasets. 

 

In addition, the yearly average relative bias between Kaplan-Meier estimates and 

Exponential Regression Estimates of Survivorship were calculated, and are listed in 

Table 3 [4].  Relative bias is calculated by dividing Kaplan-Meier estimate by the 

difference between Kaplan-Meier estimate and exponential estimate. The average relative 

biases before 17 years are less than 5%, which is very small [4,9], and much smaller than 

those of longer follow-up time in years. We would conclude with a reasonable level of 

confidence that the survivorship can be predicted to at least a few years beyond the time 

window of observed data.   

 

Table 3: Yearly Estimates of Average Relative Bias Between Kaplan-Meier 

Estimates and Exponential Regression Estimates of Survivorship for the 

Secondary Data Set 
 

Follow-up Time in 

Years 

Average Relative 

Bias(%) 

Follow-up Time in 

Years 

Average Relative 

Bias(%) 

0 0.4991374 12 1.0730166 

1 0.8018126 13 1.5535007 

2 0.6669383 14 2.1144513 

3 0.7812099 15 2.9582373 

4 0.5582979 16 3.631268 

5 0.5254385 17 5.0697704 

6 0.4197201 18 7.0696639 

7 0.6494154 19 8.4293814 

8 0.6563039 20 10.328814 

9 0.5875496 21 12.984082 

10 0.6592852 22 18.423965 
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Follow-up Time in 

Years 

Average Relative 

Bias(%) 

Follow-up Time in 

Years 

Average Relative 

Bias(%) 

11 0.8753437 23 27.867682 

 

 

6. Point Estimates and Confidence Intervals for Predicted Exponential 

Survivorship 

 

 
Table 4 shows the predicted survivorship at selected time periods.  Years 1-5 are within 

the time window of available data, and years 10 and 15 are outside this window.  At 10 

years, the point estimate for survivorship is 0.958, and at 15 years the estimate is 0.937. 

 

Table 4: Predicted Survivorship at Selected Time Points Using Exponential 

Regression Parameter Estimates 
 

Follow-up time in Years Predicted Survivorship 

1 0.996 

2 0.991 

3 0.987 

4 0.983 

5 0.979 

10 0.958 

15 0.937 

 

Pointwise confidence intervals for the predicted exponential survivorships were 

constructed for the primary data set.  These were developed by transforming S(t) onto a 

scale which more closely follows a normal distribution [3],  that is, log(-log(S(t))), as 

proposed by Borgan and Liestol 1990[8].  The variance of S(t) was derived using the 

Delta method [2] as shown below. Note that the parameter 0  and its standard error are 

the estimates obtained from the model fitted on the primary data set. 

 

For the intercept only model, 

 

Since     

 

  ))exp(exp()( 0 ttS    

   

 Using the Delta method, we have,  

 

                      )()exp())exp(exp()(( 000  setttSse 
 

 

 The confidence intervals based on log(-log(S(t)))  is 

                        ])(,)([ /1  tStS
 

 

  Where ))]](log()(/[))(((exp[ 2/ tStStSsez  
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The estimated survivorships and the confidence intervals are plotted as in Figure 4, along 

with Kaplan-Meier estimates and associated confidence intervals using Greenwood’s 

formula to estimate the variance of S(t).  As the number of years from surgery increases, 

the exponential model increasingly over-estimates the Kaplan Meier survivorship.  This 

may be due in part to the patient drop-out rate, which increases considerably with time.  

This would be the case, for example, if patients without issues and who are doing fine are 

less likely to return for follow-up visits than patients who are not doing well, which 

would result in the Kaplan Meier method underestimating the true survivorship at these 

time points.  This is, however, difficult to prove, since data on these patients is not 

available. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Estimated Survivorships and 95% Confidence Intervals Constructed Using 

Kaplan Meier and Exponential Regression Method for Primary Data 

 

 
Figure 5: Estimated Survivorships and 95% Confidence Intervals Constructed Using 

Kaplan Meier and Exponential Regression Method for Secondary Data 

 

7. General Challenges 

 
In general, survivorship data on total joint replacement products often has a very high 

percentage of censored values.  A primary reason for this is that due to the high success 

rates seen in total joint replacement, many subjects do not actually have the “event”, 

which is revision of the implant for any reason.  Although this is good from the 
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standpoint that the joint replacements are performing as intended, from a statistical 

analysis perspective, this means that we have less information about the times to event 

with which to build our predictive model, and therefore more uncertainty about the 

distribution of times to event at the future time points. 

 

Another common reason for censored values is that there are often many patients who do 

not return for the later follow up visits.  A plausible reason for this is that in many cases, 

they are doing well and feel they do not need to be seen.  Of course, this cannot be 

definitively proven.  As a result, the length of time into the future for which the predictive 

model can be expected to be accurate is somewhat limited by the adequacy of the patient 

follow-up at these later time points. 

 

 

8. Conclusion 

 
The parametric model built using the exponential distribution for censored survival data 

from a joint replacement implant and procedure works very well to make predictions for 

implant survivorship for the newer generation of device within the range of available 

follow-up time as well as for prediction to longer time windows. This model is viable and 

relatively accurate to project the survival of the implant into the near future beyond the 

observed time windows.  Refinement and update of this predictive model can be made 

when new data is collected as time progresses. In general, this method can potentially 

serve as an alternative to the traditional clinical data acquisition methods in order to allow 

for faster attainment of long-term survivorship information on newer implant designs.  It 

provides a useful tool to predict the survivorship of a product before long-term data is 

available and can help to more proactively assess product performance. 
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