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Abstract

Mixed-effects models with different time-varying decayerdunctions have been proposed for
HIV/AIDS studies. However (i) it is not clear which model isone appropriate, and (ii) the model
random error is commonly assumed to follow a normal distiiloy which may be unrealistic and
can obscure important features of within- and among-stivj@gations. Because asymmetry of
HIV viral load data is still noticeable even after transfation, it is important to use a more general
distribution family that enables the unrealistic normadwaaption to be relaxed. We developed
skewed elliptical (SE) Bayesian mixed-effects models bysodering the model random error to
have an SE distribution. We compared five SE models that hiffezedht time varying decay rate
functions. For each model, we also contrasted the perfacmander different model random error
assumption such as normal, Student-t, skew-normal or skkstribution. The results indicate that
the model with a time-varying viral decay rate that has twpamential components is preferred.
The models with skew distributions have been shown benkficidealing with asymmetric data
and provided better fitting to the data than those with symmdistributions.

Key Words: Bayesian analysis, HIV/AIDS, mixed-effects models, skaliptical distribution,
time-dependent viral decay rate

1. Introduction

Mathematical modeling is an important tool for understagdihe evolution of HIV viral
load (number HIV-1 RNA copies in plasma) and interactionsveen HIV and its target
cells. The viral load trajectory is complex and has multjgt@ases of change (Maldarelli et
al., 2007; Perelson et al., 1997). Data from the AIDS clihigal, ACTG5055 (Acosta et
al., 2004) in Figure 1(a), show that: (i) within the first 2 Weelfter the initial treatment,
the viral load (transformed in natural log scale) droppeedrly and sharply, therefore,
the change of viral load can be approximated by an exponduatiation; (ii) within the
first 2-3 months but after the first 2 weeks, the relationskdpvben the viral load and
time was still linear but the slope became flatter, whichdatiis a slower decay rate; (iii)
between the third to eighth month, the viral load either dased more slowly, remained at
a constant low level, or started to increase up to the levelsomed before treatment was
initiated. The possible reasons for viral load rebound axeelbpment of resistance to the
medications, and other clinical issues such as lack of adicer There is no clear cutoff
among the phases, not every subject will have all of thesegshand the length of the
phases may vary among individuals. Therefore, the assdctcay rate in the models for
the viral load trajectories is expected to vary over time eawl be individually specific.

For the first phase of HIV viral load dynamics (i.e., the firéd 2 weeks), we can apply
a uniexponential equation (Ho et al., 1995; Wei et al., 1385)

V(t) = V(0) exp(=At), )
where V' (t) is total viral load at timet, V' (0) is the baseline viral load at = 0 and A

is a constant viral change rate which is the speed of the lbggab load after initiation
of antiviral treatment. Although equation (1) can pregisggscribe the phenomenon of a
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(a). Profiles of viral load natural log scale in ACTG5055 (b). In(RNA) in ACTG5055
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Figure 1. Profile and histogram of viral load in natural log scale frardinical trial study.

linear decrease of logarithm transformed viral load witliiproximately one to two weeks
since treatment, we cannot apply it to the whole traject@gabse the viral load is only
allowed to decrease at a constant rate in this equationd@gthat, there are at least three
unsolved issues.

First, in order to use entire HIV follow up data, extendechirequation (1), different
models have been proposed in the literature, it is uncle@hadne is more appropriate.

Second, in mixed-effects model for longitudinal data asiglyrandom errors and/or
random-effects are usually assumed to have a normal distnib Although the normality
assumption is satisfied in many situations, it may causetiasmisleading inference if the
data include extreme values or show skewness with heawy tailich are commonly seen
in virological responses (Huang and Dagne, 2011; Sahu, &043; Verbeke and Lesaffre,
1996). Figure 1(b) displays the histogram of repeated ld&d in naturalog scale for 44
subjects enrolled in the ACTG5055 study. The skew pattetmg¢hwis still obvious even
after the transformation, tends to be right and ranges fr@&wafd 2.15 at each of the follow
up measurements. If the ratio between skewness value amdastherror of skewness is
greater than 2, the data may be regarded as having uniga@idivness (Gardner, 2001).
In the ACTG5055 study, the ratio with 4 indicates that skessneeeds to be accounted for.

Third, computation can be a challenge. Frequentist and 8ayere two major ap-
proaches used in studies of HIV dynamics. In the frequemtigiroach, based on the
maximum likelihood estimation (MLE), different extensgmave been proposed, such
as Laplace approximation of the numerical integrals (Bedl &heiner, 1982; Lindstrom
and Bates, 1990; Wu and Zhang, 2002), stochastic appraximitM (SAEM) algorithm
(Kuhn and Lavielle, 2005; Lavielle et al., 2011), joint mbdi@ Monte Carlo EM algorithm
(Liu and Wu, 2007; Wu, 2004) and asymptotic distribution e maximum h-likelihood
estimators (MHLE) (Commenges et al., 2011). The secondoagfris Bayesian mixed-
effects modeling via Markov chain Monte Carlo (MCMC) (Huagtcal., 2006; Huang and
Dagne, 2011; Putter et al., 2002). The Bayesian approaah éffigient way to incorpo-
rate prior information, both point estimates and unceti@én(variances), into analysis to
identify more unknown parameters in complex models.

The main focus of this paper is to provide a comprehensivepaoison of five com-
monly used HIV dynamic models with skew-elliptical (SE)tdisution (Sahu et al., 2003)
in random error under Bayesian approach. The rest of ther pajpeganized as follows.
Section 2 presents the HIV dynamic models that have a timgngdecay rate function,
so they can be applied to the entire follow-up data. In SecBpwe explore a general
Bayesian mixed-effects modeling approach. In Section 4jegeribe the motivated AIDS
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data and present results of model comparisons. Finallypdper concludes with some
discussions in Section 5.

2. HIV Dynamic Models with Time-Varying Viral Decay Rate Function

As mentioned in Section 1, there is a multiphasic change W\hal load after the initia-
tion of HAART. One potential interpretation of this phenama is that the process involves
distinct populations with different homogenous behaviéi@ example, the fast decreasing
decay rate observed in the first phase is due to the treatrfiect @ productively infected
CD4 cells, while the slower decay rate in the second phasearnsgly due to the effect
on the latently or long-lived infected cells (Perelson etE97). However, some phenom-
ena can'’t be explained by this theory. For example, therebedarge differences in mean
decay rates in response to different treatment regimengglthe first week, the death of
infected cells may be substantially slower during days &a@ tluring days 2—3 (Grossman
et al., 1999). Following equation (1), Grossman et al.(1$88posed an equation for viral
load as:

V(t) = V(0)exp{— "8y},

R(v) = R(1)+ a(l —v)exp(—pv), (2)

u(t) = V(t)/V(0),
where R is reproduction ratio and is a function of time,is an adjustable parameter,
is the average infection cycle time(t) is the ratio between the viral load at tinhend
the baseline. Following Zhang and Wu (2011), equation (2pisvalent to the following
equation,

V(t) = V(0) exp(=A(t)t), ®3)

where\(t) = f(f a(r)dr/t is the average relative lost rate of the viral Ida¢). A\(¢) can
be positive (ifR < 1), zero (if R = 1), or negative (ifR > 1). If A\(¢) < 0, the decay rate
A(t) at timet actually is a growth rate. Therefore, by including a timeyirgg decay rate
function A(t), compared with equation (1), equation (3) is more flexible @m be applied
to include the entire follow up data without the need to aaliy truncate the data.

A unified model with a time-varying viral decay rate functican be expressed as:

y(t) = In{V(0) exp[—A(t)t]} + € = 51 — M(t)t + €, 4

wherey(t) is the natural logarithm transformation of the number of HIRNA copies per
mL of plasma is the measurement errdn(V'(0)) = 5; and is the macro-parameter for
initial viral load in naturalog scale.

Among the different decay rate functions proposed in litery we select five repre-
sentatives as follow (Dagne and Huang, 2012; Grossman, t289; Wu, 2004; Zhang
and Wu, 2011),

. /\(t) = 52 + 631:7
IT: Xt) = poexp(—pst)+ Ba,
IIT: At) = Peexp(—fst) + Ba+ Bst, (5)
IV : At) = pBoexp(—Pst) + Byexp(—LPst),
ViAW) = ofwl) k),
(

3. Bayesian Mixed-Effects Models with Skewed Distributios

To account for the skewness observed in the data, the randors & mixed-effects mod-
els can be assumed to follow an SE distribution (Huang anch®ag010, 2011; Sahu
etal, 2003). The SE distribution is a family of distributsotihat is not only mathematically
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tractable but also flexible in its possible shapes. Becauseei SE family, skew-normal
(SN), normal and Studentdistribution are all a special case of ske{ST) distribution,
therefore, in this section, we present a general form of a&dieffects model with an ST
distribution under the Bayesian approach. A general mpféekts model with an ST dis-
tribution can be expressed as,

vi = 9iltuB) e € ST, (0,3, A),

B, = d(B,bi), bi % N(0,3), ©

Y = (Yi1, -, Yin,) T With y;; being the response value for tith individual at thejth time
(i =1, 0nif = 1,0, 36 B5) = (9t Bi)s -+ 9(ting, B i = (tirs - tin,) T
B; and 3 are individual-specific parameter vector and populatiorap@ter vector, re-
spectively,g(-) andd(-) are linear or nonlinear known parametric functiobsjs normal
random-effect vector witl;, being an unstructured covariance matrix. The vector of ran-
dom errorse; = (€;1,...,¢i,)" follows a multivariate ST distribution with degrees of
freedomv, within-subject covariance matriX and we usually can assun® = o1,
and unknowm; x n; skewness diagonal matrix such th&t= diag(d;i, ..., din,), Skew-
ness parameter vectdf = (8;1,...,0,,)7 . In particular, ifd;; = --- = 6;,,=6, then
A = 0I,, andé; = 61,,, wherel,,, = (1,..., 1T, indicating that we are interested in
skewness of overall data set.

Following discussion by Huang and Dagne (2011) and Sahu(208B), to implement
an MCMC procedure to model (6), by introducing aniex 1 random vectotw;, based on
the stochastic representation, the model can be hierathformulated as follows.

y2|bl7 wi ~ tnz:”z+V

(
w; o~ m,nz—w(
bi ~ (O Zb),

9:(t;, B;) + dw;, w;o? I,,),
0,I,)I(w;>0), @)

7

wherew; = (v + w!w;)/(v + n;), tn, (11, A) denotes they;-variate Student-distribu-
tion with parameterg:, A and degrees of freedom I(w > 0) is an indicator function
andw = |X| with X ~ t,,,(0,I,,). Note that the hierarchical models above un-
der Bayesian framework will allow researchers to easilylamgnt the methods using the
freely available WinBUGS software (Lynn et al., 2000) and tomputational effort for
the model with an ST distribution is almost equivalent td tifdhe model with a Studerit-
distribution.

The unknown population parameters in the model (6)éare {3, 02,3, v,0}, and
we assume they are independent of one another. Under Bayesiaework, we also need
to specify prior distributions for unknown parameters dkoves.

B ~ N(Bo, A),0° ~ IG(wi,wn), By ~ IW (,v), v ~ Exp(1) (v > 2),6 ~ N(0,7),
(8)
where the mutually independent Norma&'), Inverse Gammal(=), Exponential £xp)
and Inverse Wishart/{1") prior distributions are chosen to facilitate computasi¢bavid-
ian and Giltinan, 1995). The super-parameter matridkeand 2 can be assumed to be
diagonal for convenient implementation.

Let 7(.) be a prior density function, so(8) = «(8)7(c?)n(Zy)7(v)7(5). Denote
the observed data i = {y;,7 = 1,...,n}, andf(-|-) as a conditional density function.
Based on Bayesian inference, the posterior densi§isfproportional to the observed data
and prior distribution as:

FOID) o {I1S F(yilbi,ws B, 0%, v,8) f(wilw; > 0) £(b;|y)dbi}n(6).  (9)
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In general, the integral in (9) is of high dimension and dogtshave any closed form.
Analytic approximations to the integral may not be suffitigmccurate. Therefore, it is
prohibitive to directly calculate the posterior distrilaut of 8 based on the observed data.
As an alternative, MCMC procedures can be used to sampleal lzas€9) by the Gibbs
sampling along with the Metropolis-Hastings (M-H) algbnit.

4. AIDS Clinical Data Analysis
4.1 Data Description and Specific Models

We used two AIDS clinical trials to explore the best fit amohg models with different
time-varying decay rate functions and different model rassumption such as normal,
SN, Student-and ST distributions. The first trial, ACTG5055 (Acosta et 2004), is the
focus. Further, we used data from another clinical trial,T&398 (Pfister et al., 2003), to
validate the conclusions obtained from ACTG5055.

ACTG5055 study was a phase I/ll, randomized, open-labely@dk comparative study.
Itincluded 44 HIV-1 infected patients who failed their fipgbtease inhibitor (PI) treatment.
Subjects were randomly assigned into one of the two arms. RN#load was measured
(copiegmL) in blood samples collected at study days 0, 7, 14, 28, 56182, 140 and
168 with a low limit of quantification of 50 copi¢s:L. HIV-1 RNA measures below this
limit are not considered reliable. Following the simple stithtion method of one half the
detection limit for the detection (Helsel, 1990), we usea@piegm L if the viral load was
50 copiegmL or less.

ACTG398 study was a phase Il trial that included 481 HIV-1ifhaes patients with prior
exposure to approved Pls and loss of virological suppressidl patients were assigned
to receive routine antiretroviral treatment (ART). Besideese medications, depending on
the dose and type of Pls to which the patients previously seghothey were selectively
randomly assigned into one of four groups. HIV-1 RNA levelsrgvmeasured at the time
of entry into the study (day 0), at study weeks 2, 4, 8, 16, 2448, and 48, every 8 weeks
thereafter, and at the time of confirmed virological failuf@e low limit of quantification is
100 copiegm L and the HIV-1 RNA measures below this limit are not considesdiable
and 50 copieén L was used instead. We draw two samples from ACTG398 basedeon th
method of simple random sampling without replacement, angpde includes 44 subjects
and the other includes 100 subjects. We also used all of thesdBjects in ACTG398 in
the model comparisons.

Figure 2 shows the measurements of viral load in nafisgakcale for four randomly
selected patients from ACTG5055 and two sample data sets AGTG398. We can see
that viral load trajectories vary widely and they are sutissdly different across individu-
als. To account for this time-varying viral load change, yweleed a mixed-effects model
with a time-varying decay rate function, as discussed iri@2@€. In addition, we assumed
the model errors followed an ST distribution in order to m#kidexible in dealing with
the skewness observed in the data. The exact day of viralnf@sasurement was used to
compute study day in our analysis.

Under the general layout as model (4), corresponding to tretifne-varying decay
functions presented in Section 2, the mixed-effects mochatsbe expressed as follow.
Model I: Quadratic linear mixed-effects model:

yij = Bu— [Ba + Baitijltiy + eij,
e; % ST, ,(0,0%I,,.61,), (10)
Bri = B1+bu, B2 =P+ by, B3 = B3+ b,

whereB = (81, B2, 83)7 andb; = (by;, bay, bs;)T S N3(0, Sp,)
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(a): ACTG5055 (N=44) (b): ACTG398 (samplel: N=44) (c): ACTG398 (sample2: N=100)
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Figure 2: Profiles of viral load in naturalog scale for four randomly selected patients
among ACTG5055 and ACTG398, respectively.

Model II: Nonlinear mixed-effects model (uniexponential plus a tams3:

Yij = Bri — [Boi exp(—Pitij) + Bailtij + eij,
e, ~ STy, (0, azIm., ol,,), (11)
Bri = P1+bi, B2 = P2+ by, B3i = P3+ b3, Bai = Pa+ by,

whereg = (81, 52, B3, 81)T andb; = (bis, boi, bai, bai)” % N4(0, T,)
Model lll: Nonlinear mixed-effects model (uniexponential plus adiniinction):

Yij = Bri— [Boexp(—=Psitij) + Bai + Britisltij + eij,
e; ™ STh.(0,0°T,,,0L,),

Bii = P14 bui, Bai = Ba+ ba, Bz = 3+ b3i, Bai = Ba+ bai, Bsi = Bs + bsy,

i (12)
whereg = (81, B, B, A1, Bs)” andb; = (b, bai, bai, bai, bsi)T % N5 (0, Sp)
Model IV: Nonlinear mixed-effects model (two uniexponential):

Yij = P — [Baiexp(—Paiti;) + Bai exp(—Psitiz)]tij + €ij,
e; ~ ST, .0, o?I,,,61,.),
Bii = P14 0bui, Bai = Ba+ ba, Bzi = 3+ b3i, Bai = Ba+ bai, Bsi = Bs + bsy,

whereB = (81, B, B3, 1, B5)” andb; = (b, bay, bsi, bai, bsi) T %S N5(0, ) (13)
Model V: Semiparametric mixed-effects model:

vi; = B —vlw(tiy),hi(ti;)]t; + eij,
wherew(t) andh;(t) are unknown nonparametric smooth fixed-effects and ranefects
functions, respectively, antl;(t) areiid realizations of a zero-mean stochastic process.
Model V is a semiparametric mixed effects modelkuift) and h;(¢t) are modeled non-
parametrically such as splines or local polynomials. Tiaeesseveral ways to approximate
these nonparametric functions. Following the similar apph as Shi et al.(1996), Rice and
Wu (2001) and Huang and Dagne (2010), we used natural cubis famction instead of
smoothing splines or kernel methods for two reasons: thikodels more straightforward
in application and we can select the bases by Akaike infaamatriterion (AIC) or the
Bayesian information criterion (BIC) to balance the goanef-fit and model complexity.
A linear combination of base function can be expressed as:

w(t) m wy(t) = 12y mn(t) = @07, hi(t) = hig(t) = 120 &adu(t) = €, P ()7,

(14)
wherepu,, and§;, (¢ < p) are the unknown vectors of fixed and random coefficients, re-
spectively. We set)y = ¢9 = 1 and took the same natural cubic splines in the approx-
imations withp < ¢, based on the AIC and BIC values, selectedus;) + h;(t;;) =
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po + pathr(tij) + petba(ti;) + &o, wherep = 3 andg = 1. Model V, therefore, can be
expressed as,
Yij = B — [povo(ti;) + pahi (tij) + paba(tsj) + Siolti; + eij,
Bri = PB1+bu, Bo=po+&o, Bz=p1, P1=po,

whereg = (81, po, 1, )T andb; = (biy, o) < No(0, S,).

In each of the five models above, besides the ST distributssmraption, the model
random error can also be assumed to follow other more spelisficbutions as normal,
SN and Student- We used several criteria to check the model fit by applyirgrttodels
on the data mentioned above.

We first used deviance information criterion (DIC) (Spidgdier, 2002) to compare
models. Same as AIC and BIC, the smaller the value of DIC, #iebof the model fit.
DIC is not intended for identification of the ‘correct’ mogblt rather merely as a way to
compare a collection of alternative formulations.

Because model comparisons are critical for our study, bedIC, we also compared
the values of expected predictive deviance (EPD) and rakslum of squares (RSS) that
are obtained from each model. EPD is formulatedEdyD = E{3; ;(Yrep,ij — Yobs.ij)> }»
where the predictive valug,..,, ;; is a replicate of the observeg,, ;; and the expectation
is taken over the posterior distribution of the model paranms® (Gelman et al., 2003).
RSS is given bYE; ; (Yobs,ij — Yfitted.ij)’. The smaller the value of DIC, EPD and RSS,
the better fit of the model to the data. Besides these staisiriteria, two types of plots,
Quantile-Quantile (Q-Q) plot and observed values vs. fiti@des, were also reported to
give a visualized goodness-of-fit in the model comparisons.

In the Bayesian inferential approach, we also need to gpeeiues of the hyper-
parameters at the population level. Weakly informativempdistributions are taken for all
the parameters: (i) for each component of fixed-effectsoreait3, the prior was assumed
to follow independent normal distribution a8(0, 100); (i) for the scale parameter?, we
assumed a limiting non-informative inverse gamma priotritiigtion as/G(0.01,0.01),
therefore, the mean is 1 and variance is 100; (iii) the poottie variance-covariance ma-
trix for the random-effect;, was taken to be inverse Wishart distribution /a% (2, v),
the degree of freedone,= 5, andf2 is diagonal matrix with diagonal elements being 0.01;
(iv) for the skewness paramet&rwe chose normal distribution; (v) the degree of freedom
v followed truncated exponential distribution with = 0.5

The MCMC sampler was implemented using WinBUGS packager{lairal., 2000).
The posterior means and quantiles were drawn after thectioiethe final MCMC sam-
ples. We used one long chain. Convergence, which referslgoeitam has reached its
equilibrium target distribution, was closely watched byngsthe standard tools within
WInBUGS such as trace plots, the MC error and depicting tlwduéen of the ergodic
means of a quantity over the number of iterations. After d@minl00,000 burn-in itera-
tions, every 5h MCMC sample was retained from the next 200,000. Thus, wertdda
4,000 samples of targeted posterior distribution of thenomkn parameters for statistical
inference.

We carry out model comparisons in two steps as follows. Step $ection 4.2, we
determine when the model errors are assumed to have an $ibutish, among the five
models presented in Section 4.1, which one has the bestd. Ztin Section 4.3, because
normal, SN and Studentdistributions are all a special case of an ST distributionuging
on the best model selected from Step 1, we compare the rémdesi on random errors
with the normal, SN, Studentand ST distributions. The model comparisons are carried
on A5055 data and confirmed by A398 data. Section 4.4 preflemtesults based on the
best model selected.

(15)
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4.2 Comparison of Five Models under an ST Distribution

We should not directly compare the parameter values olatdioen the models that have
different components. However, because the models weledp the same HIV viral
load data, we could use DIC, EPD and RSS to find out which maatktie best fit. Table
1 indicates that Model 1V has the best fit. Among all of the dsgts: ACTG5055, the
two randomly selected samples from ACTG398 and ACTG398itlchides every subject,
Model IV constantly has the lowest DIC, EPD and RSS. For exanip ACTG5055, the
DIC value for Model 1V is 21.7, while the DIC values are 1192401.1, 669.2, and 1015.7
in Models 1, Il, lll and V, respectively.

Table 1. DIC, EPD and RSS among the five models, random error is agbtorfellow an
ST distribution.

Data set Modell Modelll Modellll ModellV Model V
ACTG5055: DIC 1192.0 401.1 669.2 21.7 1015.7
All subjects EPD 0.33 0.12 0.15 0.05 0.20

(n=44) RSS 59.2 20.7 27.1 8.4 35.3
ACTG398: DIC 12394 1122.6 1162.9 576.9 1200.5

Sample 1 EPD 3.17 3.48 3.63 1.04 3.04

(n=44) RSS 396 436 454 134 381
ACTG398: DIC 2264.9 19475 2855.3 1757.7 2204.5

Sample 2 EPD 0.44 0.51 3.45 0.33 0.39

(n=100) RSS 130.6 158.3 1083  99.39 116.7
ACTG398: DIC 12900.6 10891.2 10763.4 8819.3 14217
All subjects EPD 1.49 1.42 131 0.93 1.84

(n=481) RSS 2665 2185 2059 1470 2703

4.3 Comparison of the Best Model IV with Four Distributions for Random Error

For Model 1V, we further investigated how different distrttons of random error would
affect the model fit and the DIC values are shown in Table 2vinelbhe model with ST
(ACTG5055, two samples of ACTG398) has the lowest DIC.

Table 2 DIC values based on For Model IV with different distributiassumptions.

Distribution | ACTG5055 (n=44) ACTG398 (n=44) ACTG398 (n=100)
Normal 1133.3 961.4 2158.5
SN 222.8 727.3 1937.2
Studentt 1004.9 949.8 21443
ST 21.7 576.9 1757.7

We applied Model IV on ACTG5055 to further compare the estiomaresults obtained
from different distributions. The posterior mean (PM), tweresponding standard devia-
tion (SD) and 95% credible interval (Cl) for fixed-effecta@aeters are presented in Table
3. We found that: (i) with the exceptiory based on the normal distribution, all of the other
estimates were significant because the 95% Cls don't indede (ii) for the variance?,
the estimated value based on the SN (0.05) and ST (0.01) smageé much smaller than
the model with normal (1.15) or Studeh&ssumption (0.38); (iii) among all of the param-
eters estimated, the SD obtained from ST were the smaligsth¢ estimates were similar
between normal and Studetrodel, but they were substantially different to those otsdi
from SN or ST model. For examplg,; based on normal and Studentodels was 34.67
and 38.10, respectively, while it was 24.53 and 27.89 in SINSh models, respectively;
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(v) the skewness parametémwas significantly positive in SN and ST models, confirming
the positive skewness of the viral load in natukad scale as shown in Figure 1(a); (vi)
compared to the model with normal or Studém&éndom error, the models with an SN or
ST fit the data better. For example, in ACTG5055, for DIC vaJuEl33.3 (hormal) vs.
222.8 (SN), 1004.9 (Studenivs. 21.7 (ST), it indicates that consideration of a departu
from normality will improve the model fitting.

Table 3. A summary of the estimated posterior mean (PM) of inteteptspulation (fixed-
effects), precision and skewness parameters, the condisygostandard deviation (SD)
and lower limit Lor) and upper limit Ucr) of 95 % equal-trial credible interval (CI)
from Model IV with normal, SN, Studerttand ST distributions of random error (based on

ACTG5055 data).

Model IV B P 55 B4 Bs o2 & DIC EPD RSS
Normal PM 830 3467 595 677 038 115 - 11333 229 1133.3
Lc; 7.81 26586 401 265 -040 096 -
Uc; 877 4304 854 1292 1.01 137 -
SD 026 415 126 252 035 011 -
SN PM 6.69 2453 638 1349 155 005 222 2228 010 175
Lc; 603 1266 410 7.0 0.89 001 1.97
Uc; 7.40 3503 11.22 2019 215 0.16 251
SD 035 569 172 385 037 004 014
Student PM 833 38.10 941 11.97 094 0.38 — 10049 219 420.8
Lc; 784 3031 734 899 066 028 -
Uc; 883 4661 11.64 1559 124 050 —
SD 025 411 113 1.66 015 006 -
ST PM 7.8 27.89 719 1369 1.73 001 117217 005 8.4
Lc; 666 2153 634 11.72 155 0.00 0.99
Uc; 7.67 3393 863 1622 198 004 1.34
SD 025 326 066 1.28 013 001 0.08

Several diagnostic plots for goodness-of-fit are also efpliFirstly, we select three
representative subjects corresponding to the three typétterns trajectories displayed in
Figure 1(a). These three trajectory patterns represeraijl decline followed by slow de-
crease, (ii) rapid decline followed by rebound and thene&se, and (iii) decline followed
by rebound. The individual estimates of viral load trajeiet® are shown in Figure 3. The
following findings are observed: (i) the estimated indiattrajectories obtained from SN
and ST fit the originally observed data much closer than tgos&om the model where the
random error is assumed to be normal or Studge(ii} the average SD obtained from ST
is the smallest, which is 0.15, while the mean of SD for theviddal estimation got from
SN, N and Studentis 0.22, 0.52 and 0.46, respectively. Note that the lack afathmess
in SN and ST model estimates of individual trajectories idaratandable since a random
componentw; was incorporated in the expected function (see equatiofoffetails) ac-
cording to the stochastic representation feature of ther®N\Sa distributions for “chasing
the data” to this extent.

We also applied two diagnostic plots: plot of the observeldies versus the fitted
values and Q-Q plot (not shown here). The findings agree Wwahftom DIC criterion: the
models with SN and ST distributions provided better fit todbserved data than the ones
with normal or Student-distribution. Based on the results from DIC, EPD, RSS and the
diagnostic plots, we conclude that Model IV with an ST disition fits the data better than
the other combinations among the models with a differenétimrying decay rate function
and/or distribution assumption of random errors.
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D= 21 ID= 37 ID=41
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Figure 3. Individual estimates of viral load trajectories for thregpresentative patients
based on Model IV with normal, StudentSN and ST distributions. The observed values
are indicated by circle.

4.4 Results Based on Model IV with an ST Distribution

Based on Model IV with an ST distribution, the estimated papon decay rate function
based on ACTG5055 data is

A(t) = 27.89 exp(—7.9t) + 13.69 exp(—1.73¢).

Because the estimatéc(t) is always positive, the population viral load would always d
crease in this specific HIV/AIDS data set.
The individual time-varying decay rate function is given by

A(tij) = Bizexp(—Bistij) + Bis exp(—Bisti;)

where the individual estimated decay rait&,-j) is considered to be dependent on both
subjects and time points. We found that the individual deagg at initial treatment&(tﬂ),
wheret;; = 0, was positively correlated with baseline viral load (Spean correlation
coefficient r =0.769p < 0.0001) and negatively associated with baseline CD4 cahic
=-0.447,p = 0.0025). Overall, the individual decay raﬁe(,tij), was positively associated
with viral load (p < 0.0001) and negatively associated with CD4 cell copnt (0.0001).

Because 30- 60% (Havlir et al., 2000) of patients eventually will havealirebound,
it is important to have a model that can reasonably predisttiipe of treatment failure
in the long term. Following Wu et al.(2008), we defined relmas, comparing with the
HIV-1 viral load (natural log transformed) from the previomeasurement, if there was
1.15 increase at one time point Br0.46 increase at two or more consecutive time points.
In ACTG5055, there were 11 (26.2%) subjects had reboundteThas no significant dif-
ference in the baseline viral load (natulat (RNA)) between the rebound and no rebound
group (median was 9.18 and 8.#8L, respectivelyp = 0.8610), while the median of base-
line CD4 cell count intended to be higher in the no reboundigrthan in the rebound
group (285 vs. 2534 L, respectivelyp = 0.1169).

The trend of the changes in decay rates during the treatmedifferent between the
rebound and no rebound group (Figure 4). For example, eweliyidual decay rate was
positive in the no rebound group, while some individual geedes in the rebound group
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(a): Profiles of viral load in natural log scale in rebound group (b):Profiles of viral load in natural log scale in no rebound group
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(c): Profiles of decay rate in rebound group (d):Profiles of decay rate in no rebound group
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Figure 4. Profiles of viral load in naturalog scale and decay rate in rebound and no
rebound group.

became negative, especially after thrd 8ronth of the treatment, which corresponded to
the viral load rebound.

Based on the results of Model IV under the ST distribution @TA45055 data, we also
found that: (i) overall, the average value of individual alyecates;\(tij), was bigger in the
no rebound group (14.97) than in the rebound group (12.98dé¢ initial individual decay
rates,;\(tﬂ), were significantly bigger in the no rebound group than inréi®ound group
(mean is 53.16 and 40.95, respectively); (ﬁ'()t,-l) was significantly associated with the
rebound status in the long term (OR =0.703, 95% Cl is 0.58@53)p = 0.0003) and this
association was still significant even after controlling tlaseline viral load and CD4 cell
count (OR =0.717, 95% Cl is 0.588 — 0.876+ 0.0010). (iv) the average individual decay
rate at the last visitj((tini)) among the no rebound subjects was 4.67, while it was -2.28 in
the rebound group which indicates the viral load actualtyeasing instead of decreasing
in this group. Among these findings, the most interestindhé dssociated relationship
between initial individual decay rate\(¢;1)) and rebound status: the results indicated that
the odds of rebound decreased about 30% with each 1 unitsetdn the decay rate. This
may be helpful for physicians to predict the long-term ressbhsed on the information at
early stage of the disease.

5. Concluding Discussion

With an ST distribution assumption for model random erroradcount skewness observed
in viral load responses, we compared five commonly used reffiedts models in HIV
dynamics via the Bayesian approach. We also investigatdntpact of the four distri-
butions in the skew-elliptical family on the model fitting.h@ results indicate that with
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the ST distribution, there is potential gain of efficiencylatcuracy in estimating certain
parameters when the normality assumption does not apphetddta. The skew-elliptical
modeling via the Bayesian approach proposed in this studyeaasily carried out via the
WIinBUGS package. Because the proposed model is quite deménaory and accessible
to the existing software, it will allow statisticians to dpphis method in other fields.

After finding the best fitting model, we estimated the relagtuip between the indi-
vidual viral decay rate and some clinical important vagblThe initial individual decay
rate was positively correlated with the baseline viral l@ad negatively associated with
baseline CD4 cell count. We also found that, overall, theaye individual decay rate was
lower in the rebound group than in the no rebound group. A ritdegesting finding is the
significant association between the initial individual @gcate and the rebound status in
the long-term, even after controlling for the baseline Mioad and CD4 cell count. This
finding is clinically important because it may enable phigsis to predict the long-term
outcome based on the estimated decay rate at an early stage.

Using the model with a time-varying decay rate function lase advantages over the
biphasical models. (i) In the biphasical models, the assioti between the first decay
rate and baseline viral load could be positive (Notermaral.etl998; Wu et al., 2004)
or negative (Wu et al., 1999); no significant association feasd between the rebound
and the first decay rate either (Wu et al., 2008); (ii) altHodilge second decay rate in
the biphasical models is supposed to be associated withtéwng treatment status such
as rebound (Ding and Wu, 1999; Wu et al.,2005), no signifieessbciation was found
between the second decay rate and the low-level viral egic in long term (Sedaghat et
al., 2008; Wu et al., 2003).

This paper has some limitations. Usually, covariates asteidted in the mixed-effects
model to control within- and between-subject variatiorg &D4 cell count is a commonly
used covariate in HIV dynamic models. However, in order te tiee original proposed
models in the comparisons, we did not include covariates agad€CD4 cell count or demo-
graphic information. For the viral load, the values below tletectable level are usually
considered as inaccurate. Instead of treating these vakiesnsored, we computed them
by half the value of the detectable level. Furthermore, fiseié of missing values is not
considered in this study either.

In conclusion, the skewness parameter in the model with SRTodistribution as-
sumption is significantly positive, which confirms the pmsitskewness observed in the
viral load data even after natural log transformed. The rhbidis the best in the model
with skewed (SN or ST) distribution. Because estimatedrpatars can be considerably
different between the models with skewed distribution ameial or Student-distribution,
it is important to account for skewness in the model when databits noticeable skew-
ness. Different models may yield different conclusionsudltbe relationship between the
individual decay rate with viral load, CD4 cell count and tlebound status in HIV dy-
namics, therefore, it is also critical to choose a reasenatddel that can balance between
complexity and utility.

ACKNOWLEDGEMENTS
This research was partially supported by USF Proposal Edmaent Grant to Y. Huang.

References

Acosta, E.P., Wu, H., Walawander, A., Eron, J., Pettin€llj,Yu, S.,..., Gerber, J.G. (2004). Com-
parison of two indinavir/ritonavir regimens in treatmemperienced HIV-infected individu-
alsJournal of Acquired Immune Deficiency Syndron3&s,1358—-1366.

Beal, S.L., Sheiner, L.B. (1982). Estimating populationéktics. Critical Review in Biomedical

386



JSM 2013 - Biometrics Section

Engineering8, 192-222.

Commenges, D., Jolly, D., Drylewicz, J., Putter, H., Thigh&. (2011). Inference in HIV dynamics
models via hierarchical likelihood®iometrics55(1):446-456.

Dagne, G., Huang, Y. (2012). Mixed-effects Tobit joint misder longitudinal data with skewness,
detection limits and measurement erralsurnal of Probability and Statistics/olume 2012
(2012), Article ID 614102.

Davidian, M., Giltinan, D.M. (1995)Nonlinear Models for Repeated Measurement Datandon-
Chapmart: Hall.

Ding, A.A., Wu, H. (1999). Relationships between antivitt@atment effects and biphasic viral
decay rates in modeling HIV dynamidglathematical Bioscience$60, 63—82.

Gelman, A., Carline, J.B., Stern, H.S., Rubin, D.B. (200Bayesian data analysisChapman &
Hall/CRC. London.

Gardner R.C. (2001Pyschological statistics using SPSS for WindoMisGraw-Hill.

Grossman, Z., Polis, M., Feinberg, M., Grossman, Z., Leyidnkelevich, S., Yarchoan, R., Boon,
J., de Wolf, F., Lange, J.M.A., Goudsmit, J., Dimitrov, D.Baul, W.E. (1999). Ongoing HIV
dissemination during HAARTNature Medicine5(10), 1099-1104.

Havlir, D.V., Hellmann, N.S., Petropoulos, C.J., WhitcandtM., Collier, A.C., Hirsch, M.S.,...,
Richman, D.D. (2000). Drug susceptibility in HIV infectiaiter viral rebound in patients
receiving Indinavir-containing regimendournal of the American Medical Associati@&83,
229-234,

Helsel, D.R. (1990). Less than obvious-statistical treathof data below the detection limEnvi-
ronmental Science and Technolog@y#(12), 1766—-1774.

Ho, D.D., Neumann, A,U., Perelson, A.S., Chen, W., Leonaid,, Markowitz, M. (1995). Rapid
turnover of plasma virions and CD4 lymphocytes in HIV-1 ttfen. Nature,373, 123-126.

Huang, Y., Liu, D., Wu, H. (2006). Hierarchical Bayesian Meds for Estimation of Parameters in
a Longitudinal HIV Dynamic SystenBiometrics,62(2), 413-423.

Huang, Y., Dagne, G. (2010). Skew-normal Bayesian nontimeéeed-effects models with applica-
tion to AIDS studiesStatistics in Medicing29, 2384-2398.

Huang, VY., Dagne, G. (2011). A Bayesian approach to jointeatigffects models with a skew-
normal distribution and measurement errors in covari@esnetrics,67, 260-269.

Kuhn, E., Lavielle, M. (2005). Maximum likelihood estimaiti n nonlinear mixed effects models.
Computational Statistics and Data Analysi9, 1020-1038.

Lavielle, M., Samson, A., Karine-Fermin, A., Mentre E. (201 Maximum likelihood estimation
of long-term HIV dynamic models and antiviral responB&ametrics,67(1), 250-259.

Lindstrom, M., Bates, D. (1990). Nonlinear mixed effectsduls for repeated measures data.
Biometrics 46, 673—-687.

Liu, W., Wu, L. (2007). Simultaneous inference for semipagtric nonlinear mixed-effects models
with covariate measurement errors and missing respoBg&asetric,63, 342—-350.

Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D. (2000JnBUGS — a Bayesian modelling
framework: concepts, structure, an extensibil8yatistics and Computin@0, 325-337.
Maldarelli, F., Palmer, S., King, M.S., Wiegand, A., Poli$.A., Mican, J., Kovacs, J.A,, ..., Mel-
lors, J.M. (2007). ART suppresses plasma HIV-1 RNA to a staelt point predicted by

pretherapy viremiaPloS Clinical Trials,3(4), e46—e87.

Notermans, D.W., Goudsmit, J., Danner, S.A., De-Wolf, Erdison, A.S., Mittler, J. (1998). Rate
of HIV-1 decline following antiretroviral therapy is rekd to viral load at baseline and drug
regimen.AIDS, 12, 1483-1490.

Perelson, A.S., Essunger, P., Cao, Y., Vesane, M., Hurleytaksela, K., Markowltz, M., Ho, D.D.
(1997). Decay characteristics of HIV-1-infected companits during combination therapy.
Nature,387, 188-191.

Pfister, M., Labbe, L., Hammer, S.M., Mellors, H., BennettKK Rosenkranz, S., Sheiner, L.B.
and the AIDS clinical trial group protocol 398 investigatorPopulation pharmacokinetics
and pharmacodynamics of Efavirenz, Nelfinavir and Indinadult AIDS clinical trial group
study 398 Antimicrobial Agents and Chemotheragy,(1), 130-137.

387



JSM 2013 - Biometrics Section

Putter, H., Heisterkamp, S.H., Lange, J.M.A., Wolf, F. (2D8 Bayesian approach to parameter
estimation in HIV dynamic modelstatistics in Medicine21, 2199-2214.

Rice, J.A., and Wu, C.O. (2001). Nonparametric mixed-effewodels for unequally sampled noisy
curves.Biometrics 57, 253—-259.

Sahu, S.K., Dey, D.K., Branco, M.D. (2003). A new class of tivaliate skew distributions with
applications to Bayesian regression modélse Canadian Journal of Statistic3],129-150.

Shi, M., Weiss, R.E., Taylor, IMG. (1996). An analysis of jaétic CD4+ counts for acquired
immune deficiency syndrome using flexible random cur¥gxplied Statistics45, 151163.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der kidl. (2002). Bayesian measures of model
complexity and fit (with Discussion)Journal of the Royal Statistical Society, Serie6B,
583-639.

Verbeke, G. Lesaffre, E. (1996). A linear mixed-effects mlatiith heterogeneity in random-effects
population.Journal of the American Statistical Associatid®l, 217-221.

Wei, X., Ghosh, S.K., Taylor, M.E., Johnson, V.A., EminiAE.Deutsch, P.D., et al. (1995). Viral
dynamics in human immunodeficiency virus type 1 infectiNature,373(12), 117-122.

Wu, H., Kuritzkes, D.R., McClernon, D.R., Kessler, H., Carka E., Landay, A., , Lederman, M,
M. (1999). Characterization of viral dynamics in human inmodeficiency virus type 1-
patients treated with combination antiretroviral theramlationship to host factors, cellular
restoration, and virologic end poinfehe Journal of Infectious Diseasds9, 799-807.

Wu, H., Zhang, J-T. (2002). The study of long-term HIV dynasising semi-parametric non-
linear mixed-effects modelStatistics in Medicine21, 3655-3675.

Wu, H., Zhao, C., Liang, H. (2004). Comparison of linear, lire@ar and semiparametric mixed-
effects models for estimating HIV dynamics parametBiemetrical Journal6, 233—-245.

Wu, L. (2004). Simultaneous inference for longitudinaladatith detection limits and covariates
measured with errors, with application to AIDS studi&}tatistics in Medicine23, 1715—
1731.

Wu, H., Huang, Y,, Acosta, E.P., Rosenkranzm S.L., Kuristhd.R., Eronm J.J., Perelson, A.S.,
Gerber, J.G. (2005). Modeling long-term HIV dynamics antiratroviral responseJournal
of AIDS 39: 272-283.

Wu, L., Hu, X.J., Wu, H. (2008). Joint inference for nonlin@aixed-effects models and time to
event at the presence of missing dd&@statistics 9(2), 308—320.

Zhang, J., WU, H. (2011). Modeling HIV dynamics using unifiatked-effects modelsAmerican

Journal of Mathematical and Management Scien86¢2), 83—-111.

388



