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Abstract
Mixed-effects models with different time-varying decay rate functions have been proposed for

HIV/AIDS studies. However (i) it is not clear which model is more appropriate, and (ii) the model
random error is commonly assumed to follow a normal distribution, which may be unrealistic and
can obscure important features of within- and among-subject variations. Because asymmetry of
HIV viral load data is still noticeable even after transformation, it is important to use a more general
distribution family that enables the unrealistic normal assumption to be relaxed. We developed
skewed elliptical (SE) Bayesian mixed-effects models by considering the model random error to
have an SE distribution. We compared five SE models that have different time varying decay rate
functions. For each model, we also contrasted the performance under different model random error
assumption such as normal, Student-t, skew-normal or skew-t distribution. The results indicate that
the model with a time-varying viral decay rate that has two exponential components is preferred.
The models with skew distributions have been shown beneficial in dealing with asymmetric data
and provided better fitting to the data than those with symmetric distributions.

Key Words: Bayesian analysis, HIV/AIDS, mixed-effects models, skew-elliptical distribution,
time-dependent viral decay rate

1. Introduction

Mathematical modeling is an important tool for understanding the evolution of HIV viral
load (number HIV-1 RNA copies in plasma) and interactions between HIV and its target
cells. The viral load trajectory is complex and has multiplephases of change (Maldarelli et
al., 2007; Perelson et al., 1997). Data from the AIDS clinical trial, ACTG5055 (Acosta et
al., 2004) in Figure 1(a), show that: (i) within the first 2 weeks after the initial treatment,
the viral load (transformed in natural log scale) dropped linearly and sharply, therefore,
the change of viral load can be approximated by an exponential function; (ii) within the
first 2–3 months but after the first 2 weeks, the relationship between the viral load and
time was still linear but the slope became flatter, which indicates a slower decay rate; (iii)
between the third to eighth month, the viral load either decreased more slowly, remained at
a constant low level, or started to increase up to the level measured before treatment was
initiated. The possible reasons for viral load rebound are development of resistance to the
medications, and other clinical issues such as lack of adherence. There is no clear cutoff
among the phases, not every subject will have all of these phases and the length of the
phases may vary among individuals. Therefore, the associated decay rate in the models for
the viral load trajectories is expected to vary over time andcan be individually specific.

For the first phase of HIV viral load dynamics (i.e., the first 1to 2 weeks), we can apply
a uniexponential equation (Ho et al., 1995; Wei et al., 1995)as,

V (t) = V (0) exp(−λt), (1)

whereV (t) is total viral load at timet, V (0) is the baseline viral load att = 0 andλ
is a constant viral change rate which is the speed of the loss of viral load after initiation
of antiviral treatment. Although equation (1) can precisely describe the phenomenon of a
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Figure 1: Profile and histogram of viral load in natural log scale froma clinical trial study.

linear decrease of logarithm transformed viral load withinapproximately one to two weeks
since treatment, we cannot apply it to the whole trajectory because the viral load is only
allowed to decrease at a constant rate in this equation. Besides that, there are at least three
unsolved issues.

First, in order to use entire HIV follow up data, extended from equation (1), different
models have been proposed in the literature, it is unclear which one is more appropriate.

Second, in mixed-effects model for longitudinal data analysis, random errors and/or
random-effects are usually assumed to have a normal distribution. Although the normality
assumption is satisfied in many situations, it may cause biased or misleading inference if the
data include extreme values or show skewness with heavy tails, which are commonly seen
in virological responses (Huang and Dagne, 2011; Sahu et al., 2003; Verbeke and Lesaffre,
1996). Figure 1(b) displays the histogram of repeated viralload in naturallog scale for 44
subjects enrolled in the ACTG5055 study. The skew pattern, which is still obvious even
after the transformation, tends to be right and ranges from 0.8 and 2.15 at each of the follow
up measurements. If the ratio between skewness value and standard error of skewness is
greater than 2, the data may be regarded as having unignorable skewness (Gardner, 2001).
In the ACTG5055 study, the ratio with 4 indicates that skewness needs to be accounted for.

Third, computation can be a challenge. Frequentist and Bayesian are two major ap-
proaches used in studies of HIV dynamics. In the frequentistapproach, based on the
maximum likelihood estimation (MLE), different extensions have been proposed, such
as Laplace approximation of the numerical integrals (Beal and Sheiner, 1982; Lindstrom
and Bates, 1990; Wu and Zhang, 2002), stochastic approximation EM (SAEM) algorithm
(Kuhn and Lavielle, 2005; Lavielle et al., 2011), joint model via Monte Carlo EM algorithm
(Liu and Wu, 2007; Wu, 2004) and asymptotic distribution of the maximum h-likelihood
estimators (MHLE) (Commenges et al., 2011). The second approach is Bayesian mixed-
effects modeling via Markov chain Monte Carlo (MCMC) (Huanget al., 2006; Huang and
Dagne, 2011; Putter et al., 2002). The Bayesian approach is an efficient way to incorpo-
rate prior information, both point estimates and uncertainties (variances), into analysis to
identify more unknown parameters in complex models.

The main focus of this paper is to provide a comprehensive comparison of five com-
monly used HIV dynamic models with skew-elliptical (SE) distribution (Sahu et al., 2003)
in random error under Bayesian approach. The rest of the paper is organized as follows.
Section 2 presents the HIV dynamic models that have a time-varying decay rate function,
so they can be applied to the entire follow-up data. In Section 3, we explore a general
Bayesian mixed-effects modeling approach. In Section 4, wedescribe the motivated AIDS
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data and present results of model comparisons. Finally, thepaper concludes with some
discussions in Section 5.

2. HIV Dynamic Models with Time-Varying Viral Decay Rate Function

As mentioned in Section 1, there is a multiphasic change in HIV viral load after the initia-
tion of HAART. One potential interpretation of this phenomenon is that the process involves
distinct populations with different homogenous behaviors. For example, the fast decreasing
decay rate observed in the first phase is due to the treatment effect on productively infected
CD4 cells, while the slower decay rate in the second phase is primarily due to the effect
on the latently or long-lived infected cells (Perelson et al., 1997). However, some phenom-
ena can’t be explained by this theory. For example, there canbe large differences in mean
decay rates in response to different treatment regimens: during the first week, the death of
infected cells may be substantially slower during days 3–6 than during days 2–3 (Grossman
et al., 1999). Following equation (1), Grossman et al.(1999) proposed an equation for viral
load as:

V (t) = V (0) exp{− log(R)
τ

t},
R(v) = R(1) + α(1 − v) exp(−ρv),
v(t) = V (t)/V (0),

(2)

whereR is reproduction ratio and is a function of time,ρ is an adjustable parameter,τ
is the average infection cycle time,v(t) is the ratio between the viral load at timet and
the baseline. Following Zhang and Wu (2011), equation (2) isequivalent to the following
equation,

V (t) = V (0) exp(−λ(t)t), (3)

whereλ(t) =
∫ t
0 α(τ)dτ/t is the average relative lost rate of the viral loadV (t). λ(t) can

be positive (ifR < 1 ), zero (ifR = 1 ), or negative (ifR > 1 ). If λ(t) < 0, the decay rate
λ(t) at timet actually is a growth rate. Therefore, by including a time-varying decay rate
functionλ(t), compared with equation (1), equation (3) is more flexible and can be applied
to include the entire follow up data without the need to arbitrarily truncate the data.

A unified model with a time-varying viral decay rate functioncan be expressed as:

y(t) = ln{V (0) exp[−λ(t)t]} + ǫ = β1 − λ(t)t+ ǫ, (4)

wherey(t) is the natural logarithm transformation of the number of HIV-1 RNA copies per
mL of plasma,ǫ is the measurement error,ln(V (0)) = β1 and is the macro-parameter for
initial viral load in naturallog scale.

Among the different decay rate functions proposed in literature, we select five repre-
sentatives as follow (Dagne and Huang, 2012; Grossman et al., 1999; Wu, 2004; Zhang
and Wu, 2011),

I : λ(t) = β2 + β3t,
II : λ(t) = β2 exp(−β3t) + β4,
III : λ(t) = β2 exp(−β3t) + β4 + β5t,
IV : λ(t) = β2 exp(−β3t) + β4 exp(−β5t),
V : λ(t) = v[w(t), hi(t)],

(5)

where the last one,λ(t) = v[w(t), hi(t)], is a nonparametric function.

3. Bayesian Mixed-Effects Models with Skewed Distributions

To account for the skewness observed in the data, the random errors in mixed-effects mod-
els can be assumed to follow an SE distribution (Huang and Dagne, 2010, 2011; Sahu
etal, 2003). The SE distribution is a family of distributions that is not only mathematically
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tractable but also flexible in its possible shapes. Because in the SE family, skew-normal
(SN), normal and Student-t distribution are all a special case of skew-t (ST) distribution,
therefore, in this section, we present a general form of a mixed-effects model with an ST
distribution under the Bayesian approach. A general mixed-effects model with an ST dis-
tribution can be expressed as,

yi = gi(ti,βi) + ǫi, ǫi
iid
∼ STni,ν(0,Σ,∆),

βi = d(β, bi), bi
iid
∼ N(0,Σb),

(6)

yi = (yi1, . . . , yini
)T with yij being the response value for theith individual at thejth time

(i = 1, ..., n; j = 1, ..., ni), gi(ti,βi) = (g(ti1,βi), . . . , g(tini
,βi))

T , ti = (ti1, . . . , tini
)T ,

βi andβ are individual-specific parameter vector and population parameter vector, re-
spectively,g(·) andd(·) are linear or nonlinear known parametric functions,bi is normal
random-effect vector withΣb being an unstructured covariance matrix. The vector of ran-
dom errorsǫi = (ǫi1, . . . , ǫini

)T follows a multivariate ST distribution with degrees of
freedomν, within-subject covariance matrixΣ and we usually can assumeΣ = σ2Ini

,
and unknownni × ni skewness diagonal matrix such that∆ = diag(δi1, . . . , δini

), skew-
ness parameter vectorδi = (δi1, . . . , δini

)T . In particular, ifδi1 = · · · = δini
=̂δ, then

∆ = δIni
andδi = δ1ni

, where1ni
= (1, . . . , 1)T , indicating that we are interested in

skewness of overall data set.
Following discussion by Huang and Dagne (2011) and Sahu et al.(2003), to implement

an MCMC procedure to model (6), by introducing oneni × 1 random vectorwi, based on
the stochastic representation, the model can be hierarchically formulated as follows.

yi|bi,wi ∼ tni,ni+ν(gi(ti,βi) + δwi, wiσ
2Ini

),
wi ∼ tni,ni+ν(0, Ini

)I(wi > 0),
bi ∼ N(0,Σb),

(7)

wherewi = (ν +wT
i wi)/(ν + ni), tni,ν(µ,A) denotes theni-variate Student-t distribu-

tion with parametersµ, A and degrees of freedomν, I(w > 0) is an indicator function
andw = |X0| with X0 ∼ tni,ν(0, Ini

). Note that the hierarchical models above un-
der Bayesian framework will allow researchers to easily implement the methods using the
freely available WinBUGS software (Lynn et al., 2000) and the computational effort for
the model with an ST distribution is almost equivalent to that of the model with a Student-t
distribution.

The unknown population parameters in the model (6) areθ = {β, σ2,Σb, ν, δ}, and
we assume they are independent of one another. Under Bayesian framework, we also need
to specify prior distributions for unknown parameters as follows.

β ∼ N(β0,Λ), σ2 ∼ IG(ω1, ω2),Σb ∼ IW (Ω, v), ν ∼ Exp(ν0)I(ν > 2), δ ∼ N(0, γ),
(8)

where the mutually independent Normal (N ), Inverse Gamma (IG), Exponential (Exp)
and Inverse Wishart (IW ) prior distributions are chosen to facilitate computations (David-
ian and Giltinan, 1995). The super-parameter matricesΛ andΩ can be assumed to be
diagonal for convenient implementation.

Let π(.) be a prior density function, soπ(θ) = π(β)π(σ2)π(Σb)π(ν)π(δ). Denote
the observed data byD = {yi, i = 1, ..., n}, andf(·|·) as a conditional density function.
Based on Bayesian inference, the posterior density ofθ is proportional to the observed data
and prior distribution as:

f(θ|D) ∝ {
n∏

i

∫
f(yi|bi,wi;β, σ

2, ν, δ) f(wi|wi > 0) f(bi|Σb)dbi}π(θ). (9)
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In general, the integral in (9) is of high dimension and does not have any closed form.
Analytic approximations to the integral may not be sufficiently accurate. Therefore, it is
prohibitive to directly calculate the posterior distribution of θ based on the observed data.
As an alternative, MCMC procedures can be used to sample based on (9) by the Gibbs
sampling along with the Metropolis-Hastings (M-H) algorithm.

4. AIDS Clinical Data Analysis

4.1 Data Description and Specific Models

We used two AIDS clinical trials to explore the best fit among the models with different
time-varying decay rate functions and different model error assumption such as normal,
SN, Student-t and ST distributions. The first trial, ACTG5055 (Acosta et al., 2004), is the
focus. Further, we used data from another clinical trial, ACTG398 (Pfister et al., 2003), to
validate the conclusions obtained from ACTG5055.

ACTG5055 study was a phase I/II, randomized, open-label, 24-week comparative study.
It included 44 HIV-1 infected patients who failed their firstprotease inhibitor (PI) treatment.
Subjects were randomly assigned into one of the two arms. RNAviral load was measured
(copies/mL) in blood samples collected at study days 0, 7, 14, 28, 56, 84,112, 140 and
168 with a low limit of quantification of 50 copies/mL. HIV-1 RNA measures below this
limit are not considered reliable. Following the simple substitution method of one half the
detection limit for the detection (Helsel, 1990), we used 25copies/mL if the viral load was
50 copies/mL or less.

ACTG398 study was a phase II trial that included 481 HIV-1 positive patients with prior
exposure to approved PIs and loss of virological suppression. All patients were assigned
to receive routine antiretroviral treatment (ART). Besides these medications, depending on
the dose and type of PIs to which the patients previously exposed, they were selectively
randomly assigned into one of four groups. HIV-1 RNA levels were measured at the time
of entry into the study (day 0), at study weeks 2, 4, 8, 16, 24, 32, 40, and 48, every 8 weeks
thereafter, and at the time of confirmed virological failure. The low limit of quantification is
100 copies/mL and the HIV-1 RNA measures below this limit are not considered reliable
and 50 copies/mL was used instead. We draw two samples from ACTG398 based on the
method of simple random sampling without replacement, one sample includes 44 subjects
and the other includes 100 subjects. We also used all of the 481 subjects in ACTG398 in
the model comparisons.

Figure 2 shows the measurements of viral load in naturallog scale for four randomly
selected patients from ACTG5055 and two sample data sets from ACTG398. We can see
that viral load trajectories vary widely and they are substantially different across individu-
als. To account for this time-varying viral load change, we applied a mixed-effects model
with a time-varying decay rate function, as discussed in Section 2. In addition, we assumed
the model errors followed an ST distribution in order to makeit flexible in dealing with
the skewness observed in the data. The exact day of viral loadmeasurement was used to
compute study day in our analysis.

Under the general layout as model (4), corresponding to the five time-varying decay
functions presented in Section 2, the mixed-effects modelscan be expressed as follow.
Model I: Quadratic linear mixed-effects model:

yij = β1i − [β2i + β3itij ]tij + eij ,

ei
iid
∼ STni,v(0, σ

2Ini
, δIni

),
β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i,

(10)

whereβ = (β1, β2, β3)
T andbi = (b1i, b2i, b3i)

T iid
∼ N3(0,Σb)
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Figure 2: Profiles of viral load in naturallog scale for four randomly selected patients
among ACTG5055 and ACTG398, respectively.

Model II: Nonlinear mixed-effects model (uniexponential plus a constant):

yij = β1i − [β2i exp(−β3itij) + β4i]tij + eij ,

ei
iid
∼ STni,v(0, σ

2Ini
, δIni

),
β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i,

(11)

whereβ = (β1, β2, β3, β4)
T andbi = (b1i, b2i, b3i, b4i)

T iid
∼ N4(0,Σb)

Model III: Nonlinear mixed-effects model (uniexponential plus a linear function):

yij = β1i − [β2i exp(−β3itij) + β4i + β5itij]tij + eij ,

ei
iid
∼ STni,v(0, σ

2Ini
, δIni

),
β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i, β5i = β5 + b5i,

(12)
whereβ = (β1, β2, β3, β4, β5)

T andbi = (b1i, b2i, b3i, b4i, b5i)
T iid
∼ N5(0,Σb)

Model IV: Nonlinear mixed-effects model (two uniexponential):

yij = β1i − [β2i exp(−β3itij) + β4i exp(−β5itij)]tij + eij ,

ei
iid
∼ STni,v(0, σ

2Ini
, δIni

),
β1i = β1 + b1i, β2i = β2 + b2i, β3i = β3 + b3i, β4i = β4 + b4i, β5i = β5 + b5i,

(13)
whereβ = (β1, β2, β3, β4, β5)

T andbi = (b1i, b2i, b3i, b4i, b5i)
T iid
∼ N5(0,Σb)

Model V: Semiparametric mixed-effects model:

yij = β1i − v[w(tij), hi(tij)]tij + eij ,

wherew(t) andhi(t) are unknown nonparametric smooth fixed-effects and random-effects
functions, respectively, andhi(t) are iid realizations of a zero-mean stochastic process.
Model V is a semiparametric mixed effects model ifw(t) and hi(t) are modeled non-
parametrically such as splines or local polynomials. Thereare several ways to approximate
these nonparametric functions. Following the similar approach as Shi et al.(1996), Rice and
Wu (2001) and Huang and Dagne (2010), we used natural cubic basis function instead of
smoothing splines or kernel methods for two reasons: this method is more straightforward
in application and we can select the bases by Akaike information criterion (AIC) or the
Bayesian information criterion (BIC) to balance the goodness-of-fit and model complexity.
A linear combination of base function can be expressed as:

w(t) ≈ wp(t) =
∑p−1

l=0
µlψl(t) = µpΨp(t)

T , hi(t) ≈ hiq(t) =
∑q−1

l=0
ξilφl(t) = ξiqΦq(t)

T ,

(14)
whereµp andξiq (q ≤ p) are the unknown vectors of fixed and random coefficients, re-
spectively. We setψ0 = φ0 ≡ 1 and took the same natural cubic splines in the approx-
imations withp ≤ q, based on the AIC and BIC values, selected asw(tij) + hi(tij) ≈
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µ0 + µ1ψ1(tij) + µ2ψ2(tij) + ξi0, wherep = 3 andq = 1. Model V, therefore, can be
expressed as,

yij = β1i − [µ0ψ0(tij) + µ1ψ1(tij) + µ2ψ2(tij) + ξi0]tij + eij ,
β1i = β1 + b1i, β2i = µ0 + ξi0, β3 = µ1, β4 = µ2,

(15)

whereβ = (β1, µ0, µ1, µ2)
T andbi = (b1i, ξi0)

T iid
∼ N2(0,Σb).

In each of the five models above, besides the ST distribution assumption, the model
random error can also be assumed to follow other more specificdistributions as normal,
SN and Student-t. We used several criteria to check the model fit by applying the models
on the data mentioned above.

We first used deviance information criterion (DIC) (Spiegelhalter, 2002) to compare
models. Same as AIC and BIC, the smaller the value of DIC, the better of the model fit.
DIC is not intended for identification of the ‘correct’ model, but rather merely as a way to
compare a collection of alternative formulations.

Because model comparisons are critical for our study, besides DIC, we also compared
the values of expected predictive deviance (EPD) and residual sum of squares (RSS) that
are obtained from each model. EPD is formulated byEPD = E{Σi,j(yrep,ij − yobs,ij)

2},
where the predictive valueyrep,ij is a replicate of the observedyobs,ij and the expectation
is taken over the posterior distribution of the model parametersθ (Gelman et al., 2003).
RSS is given byΣi,j(yobs,ij − yfitted,ij)

2. The smaller the value of DIC, EPD and RSS,
the better fit of the model to the data. Besides these statistical criteria, two types of plots,
Quantile-Quantile (Q-Q) plot and observed values vs. fittedvalues, were also reported to
give a visualized goodness-of-fit in the model comparisons.

In the Bayesian inferential approach, we also need to specify values of the hyper-
parameters at the population level. Weakly informative prior distributions are taken for all
the parameters: (i) for each component of fixed-effects vector of β, the prior was assumed
to follow independent normal distribution asN(0, 100); (ii) for the scale parameterσ2, we
assumed a limiting non-informative inverse gamma prior distribution asIG(0.01, 0.01),
therefore, the mean is 1 and variance is 100; (iii) the prior for the variance-covariance ma-
trix for the random-effectΣb was taken to be inverse Wishart distribution asIW (Ω, v),
the degree of freedom,v = 5, andΩ is diagonal matrix with diagonal elements being 0.01;
(iv) for the skewness parameterδ, we chose normal distribution; (v) the degree of freedom
ν followed truncated exponential distribution withν0 = 0.5

The MCMC sampler was implemented using WinBUGS package (Lunn et al., 2000).
The posterior means and quantiles were drawn after the collecting the final MCMC sam-
ples. We used one long chain. Convergence, which refers the algorithm has reached its
equilibrium target distribution, was closely watched by using the standard tools within
WinBUGS such as trace plots, the MC error and depicting the evolution of the ergodic
means of a quantity over the number of iterations. After an initial 100,000 burn-in itera-
tions, every 50th MCMC sample was retained from the next 200,000. Thus, we obtained
4,000 samples of targeted posterior distribution of the unknown parameters for statistical
inference.

We carry out model comparisons in two steps as follows. Step 1: in Section 4.2, we
determine when the model errors are assumed to have an ST distribution, among the five
models presented in Section 4.1, which one has the best fit. Step 2: in Section 4.3, because
normal, SN and Student-t distributions are all a special case of an ST distribution, focusing
on the best model selected from Step 1, we compare the resultsbased on random errors
with the normal, SN, Student-t and ST distributions. The model comparisons are carried
on A5055 data and confirmed by A398 data. Section 4.4 presentsthe results based on the
best model selected.
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4.2 Comparison of Five Models under an ST Distribution

We should not directly compare the parameter values obtained from the models that have
different components. However, because the models were applied to the same HIV viral
load data, we could use DIC, EPD and RSS to find out which model had the best fit. Table
1 indicates that Model IV has the best fit. Among all of the datasets: ACTG5055, the
two randomly selected samples from ACTG398 and ACTG398 thatincludes every subject,
Model IV constantly has the lowest DIC, EPD and RSS. For example, in ACTG5055, the
DIC value for Model IV is 21.7, while the DIC values are 1192.0, 401.1, 669.2, and 1015.7
in Models I, II, III and V, respectively.

Table 1: DIC, EPD and RSS among the five models, random error is assumed to follow an
ST distribution.

Data set Model I Model II Model III Model IV Model V
ACTG5055: DIC 1192.0 401.1 669.2 21.7 1015.7
All subjects EPD 0.33 0.12 0.15 0.05 0.20

(n=44) RSS 59.2 20.7 27.1 8.4 35.3
ACTG398: DIC 1239.4 1122.6 1162.9 576.9 1200.5
Sample 1 EPD 3.17 3.48 3.63 1.04 3.04
(n=44) RSS 396 436 454 134 381

ACTG398: DIC 2264.9 1947.5 2855.3 1757.7 2204.5
Sample 2 EPD 0.44 0.51 3.45 0.33 0.39
(n=100) RSS 130.6 158.3 1083 99.39 116.7

ACTG398: DIC 12900.6 10891.2 10763.4 8819.3 14217
All subjects EPD 1.49 1.42 1.31 0.93 1.84

(n=481) RSS 2665 2185 2059 1470 2703

4.3 Comparison of the Best Model IV with Four Distributions for Random Error

For Model IV, we further investigated how different distributions of random error would
affect the model fit and the DIC values are shown in Table 2 below. The model with ST
(ACTG5055, two samples of ACTG398) has the lowest DIC.

Table 2: DIC values based on For Model IV with different distribution assumptions.

Distribution ACTG5055 (n=44) ACTG398 (n=44) ACTG398 (n=100)
Normal 1133.3 961.4 2158.5

SN 222.8 727.3 1937.2
Student-t 1004.9 949.8 2144.3

ST 21.7 576.9 1757.7

We applied Model IV on ACTG5055 to further compare the estimation results obtained
from different distributions. The posterior mean (PM), thecorresponding standard devia-
tion (SD) and 95% credible interval (CI) for fixed-effects parameters are presented in Table
3. We found that: (i) with the exceptionβ5 based on the normal distribution, all of the other
estimates were significant because the 95% CIs don’t includezero; (ii) for the varianceσ2,
the estimated value based on the SN (0.05) and ST (0.01) models were much smaller than
the model with normal (1.15) or Student-t assumption (0.38); (iii) among all of the param-
eters estimated, the SD obtained from ST were the smallest; (iv) the estimates were similar
between normal and Student-t model, but they were substantially different to those obtained
from SN or ST model. For example,β2 based on normal and Student-t models was 34.67
and 38.10, respectively, while it was 24.53 and 27.89 in SN and ST models, respectively;
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(v) the skewness parameterδ was significantly positive in SN and ST models, confirming
the positive skewness of the viral load in naturallog scale as shown in Figure 1(a); (vi)
compared to the model with normal or Student-t random error, the models with an SN or
ST fit the data better. For example, in ACTG5055, for DIC values, 1133.3 (normal) vs.
222.8 (SN), 1004.9 (Student-t) vs. 21.7 (ST), it indicates that consideration of a departure
from normality will improve the model fitting.

Table 3: A summary of the estimated posterior mean (PM) of interested population (fixed-
effects), precision and skewness parameters, the corresponding standard deviation (SD)
and lower limit (LCI ) and upper limit (UCI ) of 95 % equal-trial credible interval (CI)
from Model IV with normal, SN, Student-t and ST distributions of random error (based on
ACTG5055 data).

Model IV β1 β2 β3 β4 β5 σ2 δ DIC EPD RSS
Normal PM 8.30 34.67 5.95 6.77 0.38 1.15 – 1133.3 2.29 1133.3

LCI 7.81 26.86 4.01 2.65 -0.40 0.96 –
UCI 8.77 43.04 8.54 12.92 1.01 1.37 –
SD 0.26 4.15 1.26 2.52 0.35 0.11 –

SN PM 6.69 24.53 6.38 13.49 1.55 0.05 2.22 222.8 0.10 17.5
LCI 6.03 12.66 4.10 7.10 0.89 0.01 1.97
UCI 7.40 35.03 11.22 20.19 2.15 0.16 2.51
SD 0.35 5.69 1.72 3.85 0.37 0.04 0.14

Student-t PM 8.33 38.10 9.41 11.97 0.94 0.38 – 1004.9 2.19 420.8
LCI 7.84 30.31 7.34 8.99 0.66 0.28 –
UCI 8.83 46.61 11.64 15.59 1.24 0.50 –
SD 0.25 4.11 1.13 1.66 0.15 0.06 –

ST PM 7.18 27.89 7.19 13.69 1.73 0.01 1.17 21.7 0.05 8.4
LCI 6.66 21.53 6.34 11.72 1.55 0.00 0.99
UCI 7.67 33.93 8.63 16.22 1.98 0.04 1.34
SD 0.25 3.26 0.66 1.28 0.13 0.01 0.08

Several diagnostic plots for goodness-of-fit are also applied. Firstly, we select three
representative subjects corresponding to the three typical patterns trajectories displayed in
Figure 1(a). These three trajectory patterns represent (i)rapid decline followed by slow de-
crease, (ii) rapid decline followed by rebound and then decrease, and (iii) decline followed
by rebound. The individual estimates of viral load trajectories are shown in Figure 3. The
following findings are observed: (i) the estimated individual trajectories obtained from SN
and ST fit the originally observed data much closer than thosegot from the model where the
random error is assumed to be normal or Student-t; (ii) the average SD obtained from ST
is the smallest, which is 0.15, while the mean of SD for the individual estimation got from
SN, N and Student-t is 0.22, 0.52 and 0.46, respectively. Note that the lack of smoothness
in SN and ST model estimates of individual trajectories is understandable since a random
componentwi was incorporated in the expected function (see equation (7)for details) ac-
cording to the stochastic representation feature of the SN and ST distributions for “chasing
the data” to this extent.

We also applied two diagnostic plots: plot of the observed values versus the fitted
values and Q-Q plot (not shown here). The findings agree with that from DIC criterion: the
models with SN and ST distributions provided better fit to theobserved data than the ones
with normal or Student-t distribution. Based on the results from DIC, EPD, RSS and the
diagnostic plots, we conclude that Model IV with an ST distribution fits the data better than
the other combinations among the models with a different time-varying decay rate function
and/or distribution assumption of random errors.
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Figure 3: Individual estimates of viral load trajectories for threerepresentative patients
based on Model IV with normal, Student-t, SN and ST distributions. The observed values
are indicated by circle.

4.4 Results Based on Model IV with an ST Distribution

Based on Model IV with an ST distribution, the estimated population decay rate function
based on ACTG5055 data is

λ̂(t) = 27.89 exp(−7.9t) + 13.69 exp(−1.73t).

Because the estimated̂λ(t) is always positive, the population viral load would always de-
crease in this specific HIV/AIDS data set.

The individual time-varying decay rate function is given by,

λ̂(tij) = β̂i2 exp(−β̂i3tij) + β̂i4 exp(−β̂i5tij)

where the individual estimated decay rateλ̂(tij) is considered to be dependent on both
subjects and time points. We found that the individual decayrate at initial treatment,̂λ(ti1),
whereti1 = 0, was positively correlated with baseline viral load (Spearman correlation
coefficient r = 0.769,p< 0.0001) and negatively associated with baseline CD4 cell count (r
= -0.447,p = 0.0025). Overall, the individual decay rate,λ̂(tij), was positively associated
with viral load (p< 0.0001) and negatively associated with CD4 cell count (p< 0.0001).

Because 30∼ 60% (Havlir et al., 2000) of patients eventually will have viral rebound,
it is important to have a model that can reasonably predict this type of treatment failure
in the long term. Following Wu et al.(2008), we defined rebound as, comparing with the
HIV-1 viral load (natural log transformed) from the previous measurement, if there was≥
1.15 increase at one time point or≥ 0.46 increase at two or more consecutive time points.
In ACTG5055, there were 11 (26.2%) subjects had rebound. There was no significant dif-
ference in the baseline viral load (naturallog (RNA)) between the rebound and no rebound
group (median was 9.18 and 8.78/mL, respectively,p = 0.8610), while the median of base-
line CD4 cell count intended to be higher in the no rebound group than in the rebound
group (285 vs. 253/mL, respectively,p = 0.1169).

The trend of the changes in decay rates during the treatment was different between the
rebound and no rebound group (Figure 4). For example, every individual decay rate was
positive in the no rebound group, while some individual decay rates in the rebound group
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Figure 4: Profiles of viral load in naturallog scale and decay rate in rebound and no
rebound group.

became negative, especially after the 3rd month of the treatment, which corresponded to
the viral load rebound.

Based on the results of Model IV under the ST distribution in ACTG5055 data, we also
found that: (i) overall, the average value of individual decay rates,̂λ(tij), was bigger in the
no rebound group (14.97) than in the rebound group (12.93); (ii) the initial individual decay
rates,λ̂(ti1), were significantly bigger in the no rebound group than in therebound group
(mean is 53.16 and 40.95, respectively); (iii)λ̂(ti1) was significantly associated with the
rebound status in the long term (OR = 0.703, 95% CI is 0.580 – 0.853,p = 0.0003) and this
association was still significant even after controlling the baseline viral load and CD4 cell
count (OR = 0.717, 95% CI is 0.588 – 0.875,p = 0.0010). (iv) the average individual decay
rate at the last visit (̂λ(tini

)) among the no rebound subjects was 4.67, while it was -2.28 in
the rebound group which indicates the viral load actually increasing instead of decreasing
in this group. Among these findings, the most interesting is the associated relationship
between initial individual decay rate (̂λ(ti1)) and rebound status: the results indicated that
the odds of rebound decreased about 30% with each 1 unit increased in the decay rate. This
may be helpful for physicians to predict the long-term results based on the information at
early stage of the disease.

5. Concluding Discussion

With an ST distribution assumption for model random errors to account skewness observed
in viral load responses, we compared five commonly used mixed-effects models in HIV
dynamics via the Bayesian approach. We also investigated the impact of the four distri-
butions in the skew-elliptical family on the model fitting. The results indicate that with
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the ST distribution, there is potential gain of efficiency and accuracy in estimating certain
parameters when the normality assumption does not apply to the data. The skew-elliptical
modeling via the Bayesian approach proposed in this study can be easily carried out via the
WinBUGS package. Because the proposed model is quite general in theory and accessible
to the existing software, it will allow statisticians to apply this method in other fields.

After finding the best fitting model, we estimated the relationship between the indi-
vidual viral decay rate and some clinical important variables. The initial individual decay
rate was positively correlated with the baseline viral loadand negatively associated with
baseline CD4 cell count. We also found that, overall, the average individual decay rate was
lower in the rebound group than in the no rebound group. A moreinteresting finding is the
significant association between the initial individual decay rate and the rebound status in
the long-term, even after controlling for the baseline viral load and CD4 cell count. This
finding is clinically important because it may enable physicians to predict the long-term
outcome based on the estimated decay rate at an early stage.

Using the model with a time-varying decay rate function has some advantages over the
biphasical models. (i) In the biphasical models, the association between the first decay
rate and baseline viral load could be positive (Notermans etal., 1998; Wu et al., 2004)
or negative (Wu et al., 1999); no significant association wasfound between the rebound
and the first decay rate either (Wu et al., 2008); (ii) although the second decay rate in
the biphasical models is supposed to be associated with long-term treatment status such
as rebound (Ding and Wu, 1999; Wu et al.,2005), no significantassociation was found
between the second decay rate and the low-level viral replication in long term (Sedaghat et
al., 2008; Wu et al., 2003).

This paper has some limitations. Usually, covariates are included in the mixed-effects
model to control within- and between-subject variation, and CD4 cell count is a commonly
used covariate in HIV dynamic models. However, in order to use the original proposed
models in the comparisons, we did not include covariates such as CD4 cell count or demo-
graphic information. For the viral load, the values below the detectable level are usually
considered as inaccurate. Instead of treating these valuesas censored, we computed them
by half the value of the detectable level. Furthermore, the issue of missing values is not
considered in this study either.

In conclusion, the skewness parameter in the model with SN orST distribution as-
sumption is significantly positive, which confirms the positive skewness observed in the
viral load data even after natural log transformed. The model fit is the best in the model
with skewed (SN or ST) distribution. Because estimated parameters can be considerably
different between the models with skewed distribution and normal or Student-t distribution,
it is important to account for skewness in the model when dataexhibits noticeable skew-
ness. Different models may yield different conclusions about the relationship between the
individual decay rate with viral load, CD4 cell count and therebound status in HIV dy-
namics, therefore, it is also critical to choose a reasonable model that can balance between
complexity and utility.
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