
How Stable Are Top Choices Over Time?
An Investigation Into Preferences Among Popular Baby Names In The

United States

Srinath Sampath∗ Joseph S. Verducci †

Abstract
For the problem of assessing initial agreement between two rankings of long lists, inference in the

Fligner and Verducci (1988) multistage model for rankings is modified to provide a locally smooth
estimator of stage-wise agreement. An extension to the case of overlapping but different sets of
items in the two lists, and a stopping rule to identify the endpoint of agreement, are also provided.
Simulations show that this approach performs very well under several conditions. The methodology
is applied to a database of popular names for newborns in the United States and provides insights
into trends as well as differences in naming conventions between the two sexes.
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1. Introduction

The measurement of agreement between ranked lists of objects has witnessed many ap-
proaches, and has experienced a resurgence following interest in search algorithms. Hall
and Schimek (2012) provide a review of the Top-K problem and propose a 0-1 scoring
algorithm for matched ranks that uses an elegantly derived moderate deviation bound to
assess descent into randomness. The alternative approach investigated here is based on
the multistage ranking model of Fligner and Verducci (1988). This new approach incor-
porates information about the extent of agreement at each stage, and extends the applica-
bility of Top-K methods to ranking lists that may contain overlapping but different sets of
items. The statistical properties of the approach are illustrated through simulations, and
the method is used to analyze trends in naming newborns in the United States over the last
century.

The two rankings themselves are assumed to be ordered, for example by years, with
choices made in the current year being compared with the list from the previous year. Un-
der the new method, agreement is assessed in stages determined by the ordering of items in
the current year. This ordering starts with the most favored item of the current year and pro-
ceeds to the least favored item. At each stage, all remaining items (unselected in the current
year) are ranked according to their relative ranking from the previous year. Agreement of
the current choice with the previous year’s ranking is assessed by its position in this rela-
tive ranking. The actual algorithm described in the next section provides a computationally
efficient way of calculating these stage-wise agreements.

The main goal is to find the point, if any, where the agreement ceases and the remaining
choices become no more than random. To this end a novel stopping rule is proposed that
identifies the point where the signal turns to noise. This point estimates theK in the Top-K
problem.
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An innovation in this paper is the adjustment applied to the stage-wise penalties to
handle overlapping but different sets of ranked items in the two lists. A two-part penalty is
applied to the newcomers to properly account for their presence in the new list.

A treasure trove of high-quality data on the most popular baby names in the United
States, dating back to 1880 and categorized by birth year, is provided by the Social Se-
curity Administration. The data set contains the most popular baby names of each sex on
an annual basis in a readily accessible format. A detailed analysis of these data using our
methodology uncovers rich relationships in multiple dimensions: a) the naming conven-
tion differences between the sexes, b) the naming conventions in a given year, and c) the
changing trends across years.

The extension of the multistage model developed in Fligner and Verducci (1988) used
to build our analytical platform is provided in Section 2. In Section 3, moving average
estimators are devised to reduce the variance of maximum likelihood estimators; two-part
penalties are proposed to handle the case of overlapping but different lists; and a stopping
rule is defined to estimate the point at which stage-wise agreement ends. Simulations that
mimic the baby name database are used to evaluate our model’s efficacy in Section 4.
Section 5 describes the Social Security Administration baby names data set and presents
the results discovered by our methodology. A concluding discussion and some questions
raised by both the data and our analysis, which will foster future research, are presented in
Sections 6 and 7 respectively.

2. Extending The Multistage Model To Estimate Agreement

In this section, Fligner and Verducci (1988)’s multistage model is adapted to capture the
agreement between two long lists.

A ranking or permutation

π = [π(1), . . . , π(n)]

of n distinct objects is a vector of length n, with each component corresponding to an
object, and the value of the component being the rank of that object, namely the quantity
given by (1 plus the number of other objects that are considered superior). Thus π(i)
represents the rank of the i-th object. For example, if π = [3, 2, 4, 1], the rank of the first
object is 3, the rank of the second object is 2, the rank of the third object is 4, and the rank
of the fourth object is 1.

An ordering or inverse permutation of n objects, labeled 1 to n, is a vector of length
n, with each component i giving the label of the object that has rank i, i = 1, . . . , n. The
ordering or inverse permutation associated with π is specified by the mapping

π−1(j) = i, if π(i) = j, i = 1, . . . , n, j = 1, . . . , n.

The above example can be rewritten equivalently as π−1 = [4, 2, 1, 3], since the object
ranked first, namely “4,” occupies the first position of the vector π−1; the object ranked
second, namely “2,” occupies the second position; the object ranked third, namely “1,”
occupies the third position; and the object ranked fourth, namely “3,” occupies the last
position.

The baby names data corresponding to two consecutive years can be assumed to rep-
resent n objects ordered sequentially according to two independent processes, each rep-
resenting one year. The earlier year provides the reference ranking or ground truth, and
the later year provides the observed or generated ranking. The two ranking processes may
be initially governed by common parameters and, as one moves further down the list, the
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ranks can be expected to diverge from each other. A cursory analysis of the baby names
data reveals that the most popular names return year after year, often in the same positions,
whereas less popular names are not as strongly ordered, having to contend with several
close competitors to successfully maintain their ranks. The stage where the two lists be-
come completely uninformative about each other is denoted K, and its estimate measures
the length of agreement between the two lists.

The probability model for the penalties is motivated by the following example from the
baby names data. In 2010, the dozen most popular male baby names in the United States
were, in order,

Jacob, Ethan, Michael, Jayden, William, Alexander, Noah, Daniel, Aiden, Anthony,
Joshua, Mason,

while the dozen most popular male names in 2011 were, in order,

Jacob, Mason, William, Jayden, Noah, Michael, Ethan, Alexander, Aiden, Daniel,
Anthony, Matthew.

Penalties are now assigned to each of the names from year 2011 based on their dis-
cordance with the names from year 2010. Since the most popular name in 2011, Jacob,
matches the most popular name in 2010, the penalty for the first stage is 0. In the second
stage, the 2011 pick of Mason was the twelfth most popular name in 2010. Since Jacob
has already been accounted for in 2011, ten other more popular names from 2010 were
overlooked before Mason, and therefore the penalty for the second stage is 10. Similarly,
the penalty for the third stage is 3 (since Ethan, Michael and Jayden were ignored before
picking William). Continuing in this manner, the stage-wise penalties for the dozen names
are

[0, 10, 3, 2, 3, 1, 0, 0, 1, 0, 0, 4].

This penalty assignment can now be generalized and assigned a truncated geometric
probability distribution as given below. For illustrative purposes, we describe the calcula-
tions for the first stage, and then generalize to the other stages.

Stage 1: Here all n names from the reference year (2010 in the above example) are
available for the observed year (2011 in the above example) to choose from. The observed
year selects the (1 + v)th best name overall, as specified by π−1, and incurs the penalty
V1 = v, with truncated geometric probability

P (V1 = v) =

(
1− r1
1− rn1

)
rv1 , v = 0, . . . , n− 1, 0 < r1 < 1. (1)

Stage j (j = 2, . . . , n − 1): Here n − j + 1 names are available. The observed year
picks the (1 + v)th best name available, as specified by π−1, and incurs a penalty Vj = v,
with truncated geometric probability

P (Vj = v) =

(
1− rj

1− rn−j+1
j

)
rvj , v = 0, . . . , n− j, 0 < rj < 1. (2)

The rj’s are unknown and need to be estimated, while the penalties v will be supplied
by the data. It is reasonable to assume independent choices at each stage of the ranking
process, which causes the {Vj | j = 1, . . . , n−1} to become independent. {V1, . . . , Vn−1}
is therefore the penalty or discordance vector between the reference year and the observed
year. Since the probabilities in Eq. (1) and Eq. (2) are decreasing functions of v, the

JSM 2013 - Section on Nonparametric Statistics

340



model does indeed recognize that higher penalties at any stage are attained with lower
probabilities, and furthermore, at every stage it penalizes the observed year appropriately
for larger departures from the reference year.

The limiting distribution of each Vj as rj → 1 is discrete uniform on the set {0, . . . , n−
j}, j = 1, . . . , n − 1, which removes all ranking ‘skill’ from the observed year with re-
spect to the reference year. At every such stage, the observed year is assumed to select a
name from the remaining names at random. A visual analysis of a graph of the stage-wise
estimated rj’s can reveal the point where the selections made in the observed year go from
deliberate to random. This stage, where the tide turns, is a useful estimate of K, which
measures the length of the agreement between the popular names in the two years under
study.

For graphical and mathematical reasons, it is easier to work with

θj = − log rj , j = 1, . . . , n− 1,

and study the behavior of the θj’s in lieu of the rj’s. The condition rj → 1, which leads
to the limiting uniform distribution for the Vj’s, is now equivalent to the condition θj → 0.
Visually, the earliest stage where the θj’s descend to 0, and remain predominantly 0’s from
that stage forward, is a good estimate of K. More specifically, determining the value of K
where the agreement between the two years ceases, is equivalent to determining the value
of K for which θK > 0, and θj = 0 for all j > K. Once past this K, the observed year
and the reference year are no longer in agreement.

3. Parameter Estimation, Penalty Assignment, and the Stopping Rule

In this section we modify the estimation of the parameters {θ̂j} of the multistage ranking
model from the usual maximum likelihood estimators to more stable estimators known as
moving average maximum likelihood estimators (MAMLEs), which are compelled by the
constraint that only a single random ranking is observed. This is due to the fact that the ref-
erence year’s ranks are anchored as the ground truth, and only the stage-wise deviations of
the observed year’s ranks from those of the reference year are considered by the algorithm.
The underlying idea is that the initial θj’s should be positive and vary slowly with j, and
the later θj’s should be close to 0. Thus nearby stages should be helpful in estimating θj .

Recall that the rj , j = 1, . . . , n − 1, are stage-wise measures of the observed year’s
name agreement with the reference year. Since the probability mass function of the penal-
ties at stage j is inversely proportional to rj , a lower rj leads to higher agreement between
the two years. It can be reasonably assumed that the rj’s vary gradually from one stage
to the next, but not over the changepoint to noise. Specifically, to determine the MAMLE
r̂j for a given stage j, the assumption of a common value r for all the unknown ri in the
backward-looking window of the form j − w + 1 ≤ i ≤ j of width w, simplifies the
computation. The set of MAMLEs, r̂j , determined with this assumption, uses overlapping
rank data as the window advances down the stages. An examination of this MAMLE curve
across the stages provides a clear understanding of the strength and length of the agreement
between the two lists of names.
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3.1 Locally Smooth Estimation of Agreement

The MAMLE r̂j of the parameter rj is determined from the window j −w+ 1 ≤ i ≤ j as
follows. The local likelihood function of the fixed r in the window is given by

L(r) = P (Vj−w+1 = vj−w+1)× · · · × P (Vj = vj)

=

(
1− r

1− rn−(j−w+1)+1

)
rvj−w+1 × · · · ×

(
1− r

1− rn−j+1

)
rvj .

The local log likelihood is therefore

logL(r) = w log(1− r) + (log r)

j∑
i=j−w+1

vj −
n−j+w∑

k=n−j+1

log(1− rk). (3)

Differentiating Eq. (3) with respect to r gives the MAMLE r̂j as the solution to the equation
Vj = gj(rj), where

Vj =
1

w

j∑
i=j−w+1

Vi, (4)

is the mean penalty for the window, and

gj(r) =
r

1− r
− 1

w

n−j+w∑
k=n−j+1

k
rk

1− rk

is an increasing function of r. Since both the first term on the right hand side and the ratio in
the summand take the form of odds ratios, the computation of r becomes straightforward.

3.2 Assigning Penalties to Overlapping but Different Lists

The paper so far has only considered the possibility that the names in the reference and
observed years are identical, albeit ordered differently. But an analysis of the full Social
Security Administration baby names data reveals that the median number of new female
and male name entrants every year are 56 and 53 respectively. It is therefore prudent to
assess a two-part penalty on the newcomers; the position penalty that considers the stage
at which a new name enters the list during the observed year, and the median penalty that
reflects the size of the group of new names, and which accounts for the fact that the rela-
tive ranks among the newcomers are unknown. Specifically, if nnew newcomers enter the
database for a given sex in a given year, a newcomer that occupies position m on the list
will earn a position penalty of (n − m + 1) for ‘wrongly’ superseding that many names
from the reference year, plus a median penalty of (nnew + 1)/2 to account for the size of
the incoming block of names.

3.3 The Stopping Rule

The calculations in Subsection 3.1 provide MAMLEs for the stage-wise rj’s, which in turn
are used to compute the stage-wise θ̂j’s. To determine the rejection bound of the MAMLEs
{θ̂j}, a large number of simulations are generated from the multistage model assuming
that the θj’s are all 0 (which is equivalent to all permutations having the same probability
1/n!), compute the stage-wise θ̂j’s for each simulation, and, for each stage j, plot q(j), the

JSM 2013 - Section on Nonparametric Statistics

342



(1− α)th quantile of θ̂j . Then the stopping stage or endpoint K is estimated by

K̂ = the earliest stage at which θ̂K̂+w > q(K̂), and θ̂j > q(j) for at most α percent

of the remaining j > K̂ + w. (5)

The reason for moving the region of θj’s to {K̂ + w, . . . , n} is that when K̂ = K, all
θ̂j , j > K̂ are generated by pure noise, but earlier θ̂j , j ≤ K̂ are not. This last feature
happens because θ̂j is based on the previousw−1 observations through {Vj−w+1, . . . , Vj}.

The graph of estimated parameters {θ̂j} should be used as a diagnostic for both window
width selection and modification of the estimator K̂. In particular we recommend:

1. If the graph of {θ̂j} is erratic, increase window width.

2. Check if there is a noticeable drop in the {θ̂j} for j ∈ {K̂ − w, . . . , K̂}. If not,
increase the window width; K̂ is artificially large due to a random tail event.

3. If there is a very steep drop in the {θ̂j} curve at a single point K∗, choose K∗ rather
than K̂, which is likely to underestimate K due to bias.

We offer these as guidelines until an automatic implementation of the stopping rule
can be found. We have checked that the current K̂ is already fairly robust to the choice of
α ∈ (0, 1/2), so the user need focus only on window width w in estimating the point K
where agreement ends.

In the context of baby names, an analysis of the trend in endpoints for each sex over
the last century, coupled with a comparison of the endpoints between the sexes across the
years, can provide insights into the naming conventions observed by new parents in the
United States.

4. Analysis of the Multistage Model using Simulations

A theoretical curve based broadly on actual male name data from the 1950s was created to
test the efficacy of our methodology. The solid black line in Figure 1 shows the generated
theoretical curve and has the following characteristics: a linear descent over the first half of
the stages to represent the gradually declining agreement between the two lists, a cliff event
that causes an instantaneous discordance between the two lists, and finally a flat region that
represents the random assignment of ranks in the remaining stages. A single instance of the
observed list was simulated following Equations (1) and (2) and the probabilities computed
from this theoretical curve.

To further match this single simulation with actual data, the number and positions of
new names entering every observed year of the Social Security Administration data were
exhaustively recorded. Since the median number of new male names entering the database
was 53, the histogram of new name positions across the years (10,157 names across 539
unique positions) was sampled to simulate the positions where 53 new names were to enter
the simulated observed list. These new names then received both position and median
penalties in the manner described in Section 3.2. Lastly, the average penalty for a given
window was calculated using a Winsorized mean with trim 1/(window width) to smooth
the effect of the larger penalties, but to preserve the impact of a cluster of new names,
should more than one enter a window. Implementing the Winsorized mean also gives the
user the flexibility to modify the trim assumption for a smoother or rougher fit, as desired.

Figure 1 depicts two MAMLE curves calculated using the above method and different
window widths, 40 (dashed red line) and 80 (solid blue line). It is evident that both curves
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Figure 1: MAMLEs for a 1000-stage baby name simulation. Solid black line: true θj ,
dashed red line: θ̂ with 40-stage window width, solid blue line: θ̂ with 80-stage window
width.

capture the cliff event very well. Both curves exhibit a predominantly positive bias due
to the downward sloping nature of the theoretical curve, with the curve corresponding to
the wider window showing lower bias. Once past the cliff event, both curves succeed in
capturing the flatness of the theoretical curve in the later stages. It is also clear that the
wider window MAMLE curve exhibits lower variability in the earlier stages.

5. Application: Trends in Popular Baby Names in the United States

This section describes the characteristics of the baby names database compiled by the So-
cial Security Administration, and summarizes trends uncovered therein by the application
of the stopping rule proposed in Subsection 3.3.

5.1 The Database of Popular Baby Names

Arguably the largest and best-maintained data source of its kind in the world, the Popu-
lar Baby Names website http://www.ssa.gov/OACT/babynames/ of the Social
Security Administration hosts 133 years of the most popular first names given by parents
to male and female infants born in the United States, compiled exhaustively from social
security card applications since 1880. Known exclusions from the database are those in-
dividuals who were born prior to 1937 and never applied for a card, as well as those ap-
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Figure 2: Endpoints for agreement in baby names by reference year. Solid pink line:
endpoints for female baby names, dashed blue line: endpoints for male baby names.

plicants who omitted to provide their place of birth during the application process. The
data set therefore summarizes all two-character and longer names and counts from records
providing complete year of birth, sex, and state information. Name data are not modified
and multiple spellings of the same name are listed as separate entries. Where counts are
tied in a given year, the competing names are ranked alphabetically. In the event that the
same name appears in both male and female categories for a given year (Armani, Charlie,
Jaden, Jaiden, Jaidyn, Jayden, Skylar, Zion, etc., in 2011), it is ranked separately for the
two sexes since the annual data is maintained by name-sex combination. The genesis of
this massive compilation effort is briefly described in Shackleford (1998).

5.2 Descent into Randomness: Trends in Endpoints for the Baby Names Data

The null distribution of the name selection process, representing complete randomness in
the observed year and outlined in Subsection 3.3, was simulated 2,500 times. Stage-wise
MAMLEs were then computed for each simulation. The curve created by the stage-wise
95th quantiles computed from the simulated MAMLEs provided the rejection bound to
which all the MAMLE curves derived from the baby names data were compared. The ear-
liest stage K where each data MAMLE curve exceeded the 95th quantile of the simulated
MAMLEs for that stage, and past which there were at most five percent of the remaining
stages where the MAMLE curve exceeded the corresponding rejection bound, was denoted
the endpoint at which agreement between the reference year and the observed year ceased.

Figure 2 depicts the results of this endpoint methodology. The solid pink and dashed
blue lines show the trend in endpoints by reference year for female and male baby names
respectively. The chart shows three distinct regimes in endpoint behavior. The dramatic in-
crease in agreement from 1880 to 1915, as demonstrated by the steady climb in endpoints
for both sexes, is noteworthy and will be investigated further. From 1916 to 1969, both
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sexes showed similar trends in their behaviors. Starting with 1970, male names have pre-
dominantly exhibited a higher endpoint than female names, and this evidence is supported
by other analyses of these data, and will be discussed elsewhere. It is quite intriguing that
new parents would choose markedly different strategies to name their newborns based sim-
ply on the sex of the child. One explanation for the higher concordance in male names may
be the propagation of first names down successive generations. This promises to lead to
interesting collaborations with sociologists.

6. Discussion

We have refined estimation in the multistage ranking model by using MAMLEs to reduce
the variance of the maximum likelihood estimators of agreement. This is feasible only
because both ranking lists are long, and has been achieved while introducing very little
bias over those stages where agreement is maintained at a relatively constant level. The
MAMLEs enable accurate detection of the endpoint of agreement, and we have introduced
a well-defined estimator for this purpose. Additionally, we have introduced position and
median penalties, which, in conjunction with Winsorized means, extend the applicability
of the method to handle lists of overlapping but different items.

Simulations show that the new approach recognizes the overall shape of the parameter
curve; in particular the flat regions and cliff events, and the proposed stopping rule pinpoints
the stage at which the association between a pair of long ranked lists degenerates into
randomness. The simplicity of the approach enables efficient computation, even when
the data under study extends to a thousand stages and several thousand simulations. The
application of this method to the database of baby names that are popular in the United
States reveals unanticipated trends as well as differences in naming approaches for boys
and girls.

As a general comment, while the focus of this paper has been on ranks generated on
groups of discrete objects, the work applies equally to instances where the rankings are data
reductions from continuous data, as is often the case with data from -omics platforms, and
where the problem of reaching random ordering still holds interest. Another noteworthy
aspect of our approach is that the number of parameters in the multistage model is the same
as the number of items being ranked, so that the dimension of the parameter space is high
enough not to be handled well by standard parametric methods. However, the object of
interest—the stage at which the relative ordering becomes random—is a feature which is
well defined for arbitrary distributions on rankings.

7. Planned Extensions

An interesting next step is to study the performance of the methodology on data generated
from copulas, especially those with asymmetric tails. An evaluation of our technique on
customer retention data from a financial services company is also under consideration.

The window widths in the methodology are currently user inputs and typically multiples
of ten. A valuable extension would be to develop a self-tuning algorithm that determines,
at every stage, the optimal window width appropriate for the data, and represented as either
a fixed number or a percentage of the total number of stages available for analysis.

To the best of our knowledge, ours is the first comprehensive study of the trends in
the baby names database. There are several questions to be investigated: trends in the
MAMLE curves from the data analyzed for patterns in naming conventions between male
and female newborns, distribution fitting of the MAMLE curves to extract deeper insights
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into the trends, and even a comparison of popular names at the state level with the national
lists to examine how first names are dispersed throughout the United States.

The remarkable crossover between female and male endpoints over the past 133 years,
with female names first showing a stronger cohesiveness in the late 19th and early 20th
centuries, and subsequently relinquishing this claim to male names in recent years, bears
further scrutiny. Whether the cause is data or in fact a real trend will be investigated in
future work.
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