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ABSTRACT 
 
The theoretical underpinnings of standard least squares regression analysis are based on 
the assumption that the independent variable (often thought of as x) is measured without 
error as a design variable.  The dependent variable (often labeled y) is modeled as having 
uncertainty or error.  Pipeline companies use the inline inspection (ILI) metal loss depth 
as the x variable and field measured excavation depth as the y variable.  Both 
measurements have sources of error.  Thus the underlying least squares regression 
assumptions are violated.  Often one common result is a regression line that has a slope 
much less than the ideal 1-1 relationship. 
 
Reduced Major Axis (RMA) Regression is specifically formulated to handle errors in 
both the x and y variables.  It is not commonly found in the standard literature but has a 
long pedigree including the 1995 text book Biometry by Sokal and Rohlf in which it 
appears under the title of Model II regression.  In this paper we demonstrate the potential 
improvements brought about by RMA regression. 
 
BACKGROUND 
 
ILI data is based on assessment made by what is commonly referred to as a smart pigging 
device.  Typically these use some form of ultrasonic or magnetic flux signals through 
pipeline walls as the pigs migrate down the oil or gas pipeline.  Based on the resulting 
signal response, potential anomalies of various types (e.g., corrosion) are identified and 
sized.  This is not a static measurement as it comes from data that a pigging device 
collects while travelling down the line.  This data is then analyzed by both a computer 
algorithm and human beings to predict the size (i.e. length, width, and depth) of the metal 
loss.  It has multiple sources of measurement and identification errors.   
 
When parts of the underground pipeline are excavated, field measurements are made of 
any metal loss due to corrosion uncovered.  These are also subject to error both from the 
field measurement tools used as well as human error.  Nonetheless the excavation data is 
the current “gold standard” in the pipeline industry. 
 
Typically only a small portion of all the potential anomalies reported by the ILI tool can 
be excavated.  The limited field measurements are paired with the associated ILI calls as 
best possible.  Sometimes there are multiple ILI calls in an area and it is not always clear 
which ILI call should be paired with the field excavation measurement.  From the 
matched ILI to field data a regression relationship is desired that can then be applied to 
the usually thousands of ILI calls that were not dug up and measured. 
 
The importance of comparing in-line inspection calls to field measured excavation data 
should not be underestimated.  Neither should it be undertaken without a solid 
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understanding of the methodologies being employed.  Such a comparison is not only a 
key part of assessing how well the ILI tool performed, but also for any subsequent use of 
the ILI data.  The use of the matched ILI and field data regression analysis are commonly 
used to provide the basis for assessing the likelihood of leaks or failures from 
unexcavated ILI calls.  Additional methods such as statistically active corrosion [5] and 
probability of exceedance [6] help develop an integrity maintenance plan for the pipeline 
operator. 
 
REGRESSION ISSUE BACKGROUND 
 
Both field depth measurements and the corresponding ILI estimated depths can have 
error as discussed above.  Excavations are expensive and such data should be given a 
proper treatment.  Almost all linear regression analysis performed in the world is based 
on a least squares methodology that has much to offer.  However the assumptions 
underlying such applications are commonly ignored.  In doing so the resulting regression 
fits are sometimes disappointing and may not be appropriate for the intended modeling.   
 
With both variables subject to error the underlying least squares regression assumptions 
are violated.  Often one common result is a regression line that has a slope much less than 
the ideal 1-1 relationship between the ILI estimated depth of an anomaly (such as a 
corrosion pit) compared to its field measurement depth.  Reduced Major Axis (RMA) 
Regression is one method specifically formulated to handle errors in both the x and y 
variables.  It is not commonly found in the introductory regression literature but has a 
long pedigree including the 1995 text book Biometry by Sokal and Rohlf in which it 
appears under the title of Model II regression.  This paper demonstrates the potential 
improvements brought about by RMA regression for this pipeline application. 
 
Building on a solid comparison between ILI data and excavations provides the 
foundation for hopefully more accurate predictions and management plans that reliably 
provide longer range planning.  This may also result in cost savings as the time between 
ILI runs might be lengthened due to a better analysis of such important data. 
 
REGRESSION APPROACHES 

Least Squares Regression 
 
In many commercial spreadsheet programs and major statistical packages, least-squares is 
the default method for performing a linear regression.  Least squares regression 
minimizes the sum of squared deviations (errors) of the vertical distance between the 
actual y values and their corresponding predictions, typically termed y-hat where the hat 
implies an estimate.   A key assumption in such a design is that the independent variable 
x is measured without error.  Often in pipeline integrity the horizontal or x predictor 
variable is the ILI call and the vertical or y variable is the matched field measurement.  
Both the ILI call (x) and the field measurement (y) in this case are subject to error.  Thus 
from a theoretical statistics perspective, there are problems using least squares regression 
for such modeling efforts. 

Reduced Major Axis Regression 
 
Reduced Major Axis (RMA) has its roots in various fields including biological 
applications.  For example from fish capture data the biologist may want to develop a 
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predictive model to predict fish weight for a given breed based on its length or vice versa.  
However in this case both weight and length are subject to errors when trying to collect 
data from live fish.  Similarly, metal loss data will have error in both the tool reported 
depth and field measured depth [1].  The RMA approach can be found in the text book by 
Sokal & Rohlf (1995) [2].  Other names that may appear in the literature for RMA are 
geometric mean regression, least products regression, diagonal regression, line of organic 
correlation, and the least areas line (Wikipedia, January 3, 2012) [3]. 
 
A common experience for fitting a least squares regression predicting field measurements 
as a function of ILI calls is that the resulting model under-predicts deeper calls and over-
predicts shallow calls.  This is reminiscent of the problem of regression to the mean 
(Galton, F., 1886) [4] although this paper will not pursue the impact of this interesting 
but different issue with respect to pipeline integrity.   It is a question as to whether this 
result of over and under predicting is a reasonable match for reality or whether it is an 
artifact of the methodology employed. 
 
While one desires an accurate predictive model so that ILI calls for corrosion pits that 
have not been excavated can be reasonably quantified, a common desire among many 
integrity engineers is to be conservative.  For predicting pit depths, a model that generally 
under-predicts deeper pits is non-conservative. 
RMA minimizes the sum of the areas (thus using both vertical and horizontal distances of 
the data points from the resulting line) rather than the least squares sum of squared 
vertical distances.  One of the issues with standard least squares regression is the inability 
to treat the least squares regression equation y = a + bx as an ordinary equation and back 
solve to obtain an equation that predicts x from y.  With least squares, when one 
interchanges the x and y variables, the resulting regression equation is not the equivalent 
of x = (y – a)/b.  Additionally, doing so with least squares results in the paradox of 
similar over and under prediction when the variables are interchanged.  With an RMA 
equation, one can perform this simple algebraic feat as it will match the equation RMA 
one would obtain with the variables interchanged - i.e., the resulting RMA regression is 
the equivalent of x = (y – a)/b.   
 
EXAMPLE - LEAST SQUARES VERSUS RMA 

 
This paper presents illustrates the differences in various aspects of least squares versus 
RMA.  The example given consists of a relatively large data set of matched excavation 
pit depths and the ILI calls.  The data set has 1,812 ILI external pit depths from a single 
ILI run that have been matched with excavation field data and is much larger than most 
samples typically available.  The authors’ routine can be used to compute both least 
squares and RMA estimates.  Table 1 shows the y-intercept and the slope for both 
approaches. 
 

Coefficient 
Traditional 

Least Squares 

Reduced 
Major 
Axis 

Intercept 0.096220 -0.00225 
Slope 0.501700 1.070149 

 
Table 1.  Least Squares, RMA regression coefficients. 
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In this example, which is fairly typical of least squares for such data, results in the 
expected field measured y (called “Pit Depth (%)” for this application) regression 
equation y = 0.09622 + 0.5017 * x where x is the ILI %Depth (% of wall thickness).  At 
this point, it is worthwhile to examine the issues associated with the regression equation.  
In many applications, pig calls are not reported (or filtered out) if they are less than some 
threshold such as 10%.  Assuming this is a reasonable lower bound the least squares 
regression equation y = 0.09622 + 0.5017x will predict no values less than approximately 
14.6% wall thickness.  If there was a pig call of 100%, the least squares equation only 
predicts 59.8%.  This is a concern that is too often overlooked.  The following figures 
will better illustrate some aspects of this issue. 
 
The RMA equation is y = -0.00225 + 1.070149 * x.  For a 10% ILI call, the RMA 
predicted value is 10.5% and for a 100% ILI call the predicted value is 106.8%.  While a 
wall thickness greater than 100% is not possible, one starts to see that, at least in this 
example, the RMA covers a predictive range of importance and is not limited to such a 
tight interval as will be shown more explicitly in plots that follow.  Instead of showing 
both axes ranging from the possible full range from 0% to 100%, Figure 1 focuses on the 
actual range of the values in the data to provide a more detailed view in which the 1,812 
pairings reside.  YHat_RMA is the predicted RMA field depth while YHat_Trad is the 
traditional least-squares prediction for the field depth. 
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Figure 1.  Predicted Least-squares and RMA Regression over the range of the ILI calls.  
YHat_RMA is the predicted RMA field depth while YHat_Trad is the traditional least-
squares prediction for the field depth.   
 
Figure 2 shows box plots for the following: 

1. Y variable: Field Depth (%) which is the field measurement 
2. X variable: ILI % Depth 
3. YHat_RMA: predicted y using RMA 
4. YHat_Trad: traditional predicted y using least squares 

 
Figure 2 shows in a much clearer fashion the concern listed in the prior paragraph.  The 
range of predictions for the least squares regression is much too narrow to adequately 
model the field measured pit depths.  Each of the four items is shown with a box plot.  
The lower part of the box is the 25th percentile, the middle line is the median or 50th 
percentile, and the top line is the 75th percentile.  The lines (known as whiskers) 
extending out of the box go to the most extreme values that are not potential outliers.  
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Any potential outliers (per the box plot methodology) are represented by asterisks (*).  
Note the unrealistic small range of distribution in the traditional least squares regression 
(YHat_Trad) versus the other three plots.  Note also the predicted RMA regression 
distribution (YHat_RMA) is fairly similar to the distribution of Field Depth(%). 
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Figure 2.  Box plots of dependent variable Field Depth (%), independent variable ILI % 
Depth, and the two predictions: YHat_RMA and the least squares YHat_Trad. 
 
Figures 3 and 4 also illustrate the difference between the RMA and least squares 
regression predictions with a super-imposed 1-1 line.  The primary observation from 
Figures 3 and 4 is the limited range on the predicted least squares yhat that is shown here 
on the horizontal axis with the dependent (y) variable Field Depth (%) on the vertical 
axis.  The coverage shown in the plots illustrate a previous point - i.e., while the RMA 
predictions range roughly from about 10% to 45% wall thickness, matching the range of 
the field measurements, the least squares predictions range from approximately 15% to 
30% wall thickness.  Such comparisons should be considered before using a traditional 
least squares regression when comparing ILI to field measurements.  Indeed this potential 
for concern may be generalized to cover a wider domain of pipeline integrity modeling 
issues. 
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Figure 3.  One to one plot of RMA regression predictions to actual Field Depth (%)  
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Figure 4.  One to one plot of Least Squares regression predictions to actual Field Depth 
(%)  
 
CONCLUSIONS 

 
Typical analytical work such as modeling pipeline data generally costs little in 
comparison to the associated field investigation.  The authors suggest the use of modeling 
methods that are theoretically sound and provide a reasonable approximation of reality.  
For regression oriented tasks, reduced major axis regression is worthy of consideration. 
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