
Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

Anoop Korattikara∗ Yutian Chen† Max Welling‡∗

Abstract

Can we make Bayesian posterior MCMC sampling more efficient when faced with very large

datasets? We argue that computing the likelihood for N datapoints twice in order to reach a single

binary decision is computationally inefficient. We introduce an approximate Metropolis-Hastings

rule based on a sequential hypothesis test which allows us to accept or reject samples with high

confidence using only a fraction of the data required for the exact MH rule. While this introduces

an asymptotic bias, we show that this bias can be controlled and is more than offset by a decrease

in variance due to our ability to draw more samples per unit of time.

Key Words: MCMC, Metropolis-Hastings, Sequential testing, Big Data

1. Introduction

Markov chain Monte Carlo (MCMC) sampling has been the main workhorse of Bayesian

computation ever since its development in the 1950’s. A canonical MCMC algorithm pro-

poses samples from a distribution q and then accepts or rejects these proposals with a certain

probability given by the Metropolis-Hastings (MH) formula [Metropolis et al., 1953]. The

MH rule needs to examine the likelihood of all the data-items twice, once for the current

state and a second time for the proposed state. When the number of data-cases is large

this is an awful lot of computation for one bit of information, namely to accept or reject a

proposal.

In today’s Big Data world, we need to rethink our Bayesian inference algorithms or risk

becoming obsolete. Standard MCMC methods do not meet the Big Data challenge for the

reason described above. Researchers have made some progress in terms of making MCMC

more efficient, mostly by focusing on parallelization. Very few question the algorithm

itself: is the standard MCMC paradigm really optimally efficient in achieving its goals?

We claim it is not.

Any method that includes computation as an essential ingredient should acknowledge

that there is a finite amount of time, T , to finish a calculation. An efficient MCMC al-

gorithm should therefore decrease the “error” (properly defined) maximally in the given

time T . For MCMC algorithms, there are two contributions to this error: bias and vari-

ance. Bias occurs because the chain needs to burn in during which it is sampling form the

wrong distribution. Bias usually decreases fast, as evidenced by the fact that practitioners

are willing to wait until the bias has (almost) completely vanished after which they discard

these “burn-in samples”. The second cause of error is sampling variance, which occurs

because of the random nature of the sampling process. The retained samples after burn-in

will reduce the variance roughly as O(1/T).
However, given a finite amount of computational time, it is not at all clear whether

the strategy of retaining few unbiased samples and thus accepting an error dominated by

variance is optimal. Perhaps, by decreasing the bias more slowly we could sample faster

and thus reduce variance faster? In this paper we illustrate this effect by cutting the com-

putational budget of the MH accept/reject step. We argue that many accept/reject decisions

∗Donald Bren School of Information & Computer Sciences, University of California, Irvine, USA
†Department of Engineering, University of Cambridge, Cambridge, UK
‡Institute of Informatics, University of Amsterdam, Amsterdam, The Netherlands

JSM 2013 - IMS

236

can be taken by examining only a fraction of the full dataset. To achieve that, we conduct

sequential hypothesis tests to decide whether to accept or reject a given sample and find

that the majority of these decisions can be made based on a small fraction of the data with

high confidence. A similar method was developed in Singh et al. [2012], where the factors

of a graphical model are sub-sampled to compute fixed width confidence intervals for the

log-likelihood terms appearing in the MH test.

Our “philosophy” runs deeper than the algorithm proposed here. We advocate MCMC

algorithms with a “bias-knob”, allowing one to dial down the bias at a rate that optimally

balances error due to bias and variance. We only know of one algorithm that would also

adhere to this strategy: stochastic gradient Langevin dynamics [Welling and Teh, 2011]

and its successor stochastic gradient Fisher scoring [Ahn et al., 2012]. In their case the

bias-knob was the stepsize. These algorithms do not have an MH step which resulted in

occasional samples with extremely low probability. We show that our approximate MH

step largely resolves this issue, still avoiding O(N) computations per iteration.

In the next section we introduce the MH algorithm and discuss its drawbacks. Then

in section 3, we introduce the idea of approximate MCMC methods and the bias variance

trade-off involved. We develop approximate MH tests in section 4 for Bayesian posterior

sampling. Finally, we show our experimental results in section 5 and conclude in section 6.

2. The Metropolis-Hastings algorithm

MCMC methods generate samples from a distribution S0(θ) by forward simulating a Markov

chain designed to have stationary distribution S0(θ). A Markov chain with a given station-

ary distribution can be constructed using the Metropolis-Hastings algorithm [Metropolis et al.,

1953], which uses the following rule for transitioning from the current state θt to the next

state θt+1:

1. Draw a candidate state θ′ from a proposal distribution q(θ′|θt)

2. Compute the acceptance probability:

Pa = min

[

1,
S0(θ′)q(θt|θ′)
S0(θt)q(θ′|θt)

]

(1)

3. Draw u ∼ Uniform[0, 1]. If u < Pa set θt+1 ← θ′, otherwise set θt+1 ← θt.

Following this transition rule ensures that the stationary distribution of the Markov

chain is S0(θ). The samples from the Markov chain are usually used to estimate the ex-

pectation of a function f(θ) with respect to S0(θ). To do this we collect T samples and

approximate the expectation I = 〈f〉S0
as Î = 1

T

∑T
t=1 f(θt). Since the stationary distri-

bution of the Markov chain is S0, Î is an unbiased estimator of I .

The variance of Î is V = E[(〈f〉S0
− 1

T

∑T
t=1 f(θt))

2], where the expectation is over

multiple simulations of the Markov chain. It is well known that V ≈ σ2f,S0
τ/T , where

σ2f,S0
is the variance of f with respect to S0 and τ is the integrated auto-correlation time,

which is a measure of the interval between independent samples [Gamerman and Lopes,

2006]. Usually, it is quite difficult to design a chain that mixes fast and therefore, the auto-

correlation time will be quite high. Also, for a lot of important problems, evaluating S0(θ)
to compute the acceptance probability Pa in every step is so expensive that we can collect

only a very small number of samples (T) in a given amount of computational time. Thus

the variance of Î can be prohibitively high, even though it is unbiased.

JSM 2013 - IMS

237

3. Approximate MCMC and the Bias Variance Trade-off

Ironically, the reason why MCMC methods are so slow is that they are designed to be

unbiased. In fact, if we were to allow a slight bias in the stationary distribution, it is

possible to design a Markov chain that can be simulated cheaply [Welling and Teh, 2011,

Ahn et al., 2012]. That is, to estimate I = 〈f〉S0
, we can construct a Markov chain with

stationary distribution Sǫ where ǫ is a parameter that can be used to control the bias in the

algorithm. Then I can be estimated as Î = 1
T

∑T
t=1 f(θt), computed using samples from

Sǫ instead of S0.

As ǫ → 0, Sǫ approaches S0 (the distribution of interest) but it becomes expensive to

simulate the Markov chain. Therefore, the bias in Î is low, but the variance is high because

we can collect only a small number of samples in a given amount of computational time.

As ǫ moves away from 0, it becomes cheap to simulate the Markov chain but the difference

between Sǫ and the distribution of interest S0 grows. Therefore, Î will have higher bias,

but lower variance because we can collect a larger number of samples in the same amount

of computational time. This is a classical bias-variance trade-off and can be studied using

the risk of the estimator.

Risk is defined as the mean squared error in Î , i.e. R = E[(〈f〉S0
− 1

T

∑T
t=1 f(θt))

2],
where the expectation is taken over multiple simulations of the Markov chain. It is easy

to show that the risk can be decomposed as R = B2 + V , where B is the bias and V is

the variance. If we ignore burn-in, it can be shown that B = 〈f〉Sǫ
− 〈f〉S0

and V =
E[(〈f〉Sǫ

− 1
T
f(θt))

2] ≈ σ2f,Sǫ
τ/T .

The optimal setting of ǫ that minimizes the risk depends on the amount of computa-

tional time available. If we have an infinite amount of computational time, we should set ǫ
to 0. Then there is no bias, and the variance can be brought down to 0 by drawing an infinite

number of samples. This is the traditional MCMC setting. However, given a finite amount

of computational time, this setting may not be optimal. It might be better to tolerate a small

amount of bias in the stationary distribution if it allows us to reduce the variance quickly,

either by making it cheaper to collect a large number of samples or by mixing faster.

It is interesting to note that two recently proposed algorithms follow this paradigm:

Stochastic Gradient Langevin Dynamics (SGLD) [Welling and Teh, 2011] and Stochastic

Gradient Fisher Scoring (SGFS) [Ahn et al., 2012]. These algorithms are biased because

they omit the required Metropolis-Hastings tests. However, in both cases, a knob ǫ (the

step-size of the proposal distribution) is available to control the bias. As ǫ→ 0, the accep-

tance probability Pa → 1 and the bias from not conducting MH tests disappears. However,

when ǫ → 0 the chain mixes very slowly and the variance increases because the auto-

correlation time τ → ∞. As ǫ is increased from 0, the auto-correlation, and therefore the

variance, reduces. But, at the same time, the acceptance probability reduces and the bias

from not conducting MH tests increases as well.

In the next section, we will develop another class of approximate MCMC algorithms for

the case where the target S0 is a Bayesian posterior distribution given a very large dataset.

We achieve this by developing an approximate Metropolis-Hastings test, equipped with a

knob for controlling the bias. Moreover, our algorithm has the advantage that it can be

used with any proposal distribution. For example, our method allows approximate MCMC

methods to be applied to problems where it is impossible to compute gradients (which is

necessary to apply SGLD/SGFS). Or, we can even combine our method with SGLD/SGFS,

to obtain the best of both worlds.

JSM 2013 - IMS

238

4. Approximate Metropolis-Hastings Test for Bayesian Posterior Sampling

An important method in the toolbox of Bayesian inference is posterior sampling. Given a

dataset XN consisting of N independent observations {x1, ...xN} which we model using

a distribution p(x; θ) parameterized by θ ∈ R
D, and a prior distribution ρ(θ), the task is to

generate samples from the posterior distribution S0(θ) ∝ ρ(θ)
∏N

i=1 p(xi; θ) defined on a

space Θ with measure Ω.

If the dataset has a billion datapoints, it becomes excruciatingly painful to compute

S0(.) in the MH test, which has to be conducted for each posterior sample that we generate.

Spending O(N) computation to get just 1 bit of information, i.e. whether to accept or reject

a sample, is likely not the best use of computational resources.

But, if we try to develop such accept/reject tests using only sub-samples of data, that

satisfy detailed balance exactly with respect to the posterior distribution, we will quickly

see the no free lunch theorem kicking in. For example, the pseudo marginal MCMC method

[Andrieu and Roberts, 2009] and the method developed by Lin et al. [2000] provide a way

to conduct exact accept/reject tests using unbiased estimators of the likelihood. However,

unbiased estimators of the likelihood that can be computed from mini-batches of data, such

as the Poisson estimator or the Kennedy-Bhanot estimator [Lin et al., 2000] have incredibly

high variance for large datasets. Because of this, once we get a very high estimate of the

likelihood, almost all proposed moves are rejected and the algorithm gets stuck.

Therefore, we should be willing to tolerate some error in the stationary distribution

if we want faster accept/reject tests. If we can offset this small bias by drawing a large

number of samples cheaply and reducing the variance faster, we can establish a potentially

large reduction in the risk.

We will now show how to develop such approximate tests by reformulating the MH test

as a statistical decision problem. It is easy to see that the original MH test (Equation 1) is

equivalent to the following procedure: Draw u ∼ Uniform[0, 1] and accept the proposal θ′

if the average difference µ in the log-likelihoods of θ′ and θt is greater than a threshold µ0,

i.e. compute

µ0 =
1

N
log

[

u
ρ(θt)q(θ

′|θt)
ρ(θ′)q(θt|θ′)

]

, and

µ =
1

N

N
∑

i=1

li where li = log p(xi; θ
′)− log p(xi; θt) (2)

Then if µ > µ0, accept the proposal and set θt+1 ← θ′. If µ ≤ µ0, reject the proposal

and set θt+1 ← θt. This reformulation of the MH test makes it very easy to frame it as

a statistical hypothesis test. Given µ0 and a random sample {li1 , . . . , lin} drawn without

replacement from the population {l1, . . . , lN}, can we decide whether the population mean

µ is greater than or less than the threshold µ0? The answer to this depends on the precision

in the random sample. If the difference between the sample mean l̄ and µ0 is significantly

greater than the standard deviation s of l̄, we can make the decision to accept or reject the

proposal confidently. If not, we should draw more data to increase the precision of l̄ (reduce

s) till we have enough evidence to make a decision.

More formally, we test the null hypothesis H0 : µ = µ0 vs the alternate H1 : µ 6= µ0 .

To do this, we proceed as follows: We compute the sample mean l̄ and the sample standard

deviation sl =
√

∑n
i=1(li − l̄)2/(n − 1). Then the standard deviation of l̄ can be estimated

as

s =
sl√
n

√

1− n

N
(3)

JSM 2013 - IMS

239

−5 0 5
0

0.01

0.02

0.03

0.04

(a) n=500

−5 0 5
0

0.01

0.02

0.03

0.04

(b) n=5000

−5 0 5
0

0.01

0.02

0.03

0.04

(c) n=10000

Figure 1: Theoretical (red line) and empirical distribution (blue bars) of the t-statistic

under resampling n datapoints without replacement from a dataset composed of digits 7
and 9 from the MNIST dataset (total N = 12214 points).

where
√

1− n
N

, the finite population correction term, is applied because we are drawing

the subsample without replacement from a finite-sized population. Then, we compute the

test statistic:

t =
l̄ − µ0
s

(4)

If n is large enough for the central limit theorem to hold, the test statistic t follows

a standard Student-t distribution with n − 1 degrees of freedom, if the null hypothesis is

true (see Figure 4 for empirical verification). Then, we compute the p-value δ = 1 −
φn−1(|t|) where φn−1(.) is the cdf of the standard Student-t distribution with n−1 degrees

of freedom. If δ < ǫ we can reject the null hypothesis, i.e. we have enough precision in

the sample to make a decision. In this case, if l̄ > µ0, we accept the proposal, otherwise

we reject it. If we fail to reject the null hypothesis, we draw more data to reduce the

uncertainty, s, in the sample mean l̄. We keep drawing more data until we have enough

precision to make a decision. Note, that this procedure will terminate because when we

have used all the available data, i.e. n = N the standard deviation s is 0, and the sample

mean l̄ = µ. So, in this case we will make the same decision as the original MH test would

make. Pseudo code for our test is shown in Algorithm 1 (here we have assumed that the

total number of datapoints is divisible by the size of the mini-batch for simplicity). This

algorithm is similar to the Pocock sequential design [Pocock, 1977] which allows us to set

a value of ǫ given a particular value of Type I error.

The advantage of our method is that often we can make confident decisions with n < N
datapoints and save on computation, although we introduce a small bias in the stationary

distribution. But, we can use the computational time we save to draw more samples and

reduce the variance. The bias-variance trade-off can be controlled by adjusting the knob ǫ.
When ǫ is high, we make decisions without sufficient evidence and introduce a high bias.

As ǫ → 0, we make more accurate decisions but are forced to examine more data which

results in high variance.

We will now prove an upper bound in the error of the stationary distribution of our ap-

proximate algorithm. Denote by T0 the transition kernel of the exact Metropolis-Hastings

algorithm, and by dv(P,Q)
def
= 1

2

∫

θ∈Θ |fP (θ) − fQ(θ)|dΩ(θ) the total variation distance

between two distributions, P and Q, that are absolutely continuous w.r.t. Ω with their

Radon-Nikodym derivatives fP and fQ respectively. Let Pa,ǫ(θ, θ
′) be the actual accep-

tance probability of our approximate Metropolis-Hastings test. Given an upper bound on

the error of this probability: ∆max = supθ,θ′ |Pa,ǫ(θ, θ
′)− Pa(θ, θ

′)|, and if T0 satisfies the

contraction condition dv(PT0,S0) ≤ ηdv(P,S0) for all probability distributions P and a

constant η ∈ [0, 1), we can prove the following upper bound on the discrepancy between

the posterior distribution and the stationary distribution of our approximate Markov chain:

JSM 2013 - IMS

240

Algorithm 1 Approximate MH test

Input: θt, θ
′, ǫ, m, XN

Output: accept
1: Initialize estimated means l̄ ← 0 and l̄2 ← 0
2: Initialize n← 0
3: Draw u ∼ Uniform[0,1]

4: Compute µ0 ← 1
N
log
[

uρ(θt)q(θ′|θt)
ρ(θ′)q(θt|θ′)

]

,

5: done← false

6: while not done do

7: Draw mini-batch Xm of size m without replacement from XN

8: Set XN ← XN \ Xm

9: Update l̄ and l̄2 using Xm.

10: n← n+m

11: Compute estimated standard deviation s←
√

1− n

N

√

l̄2 − (l̄)2

n− 1

12: Compute student-t statistic t← l̄ − µ0
s

13: Compute p-value δ ← 1− φn−1(|t|)
14: if δ < ǫ then

15: accept← true if l̄ > µ0 and false otherwise

16: done← true

17: end if

18: end while

Theorem 1. The distance between the posterior distribution S0 and the stationary distri-

bution of our approximate Markov chain Sǫ is upper bounded as

dv(S0,Sǫ) ≤
∆max

1− η

The proof is given in the appendix. The theorem applies to both continuous and discrete

state spaces.

5. Experiments

5.1 Random Walk - Logistic Regression

We first test our method using a random walk proposal q(θ′|θt) = N (θt, σ
2
RW). Al-

though the random walk proposal is not efficient, it is very useful for illustrating our al-

gorithm because the proposal contains no information about the target distribution, unlike

Langevin/Hamiltonian methods. So, the responsibility of converging to the correct distribu-

tion lies solely with the MH test. Also note that since q is symmetric i.e. q(θt|θ′) = q(θ′|θt),
it does not appear in the MH test at all. Therefore we can conduct the MH test with:

µ0 =
1

N
log

[

u
ρ(θt)

ρ(θ′)

]

, (5)

The target distribution in this experiment was the posterior for a logistic regression model

trained on the MNIST dataset for classifying digits 7 vs 9. The dataset consisted of 12214

datapoints and we reduced the dimensionality from 784 to 50 using PCA. We chose a

Gaussian prior on the parameters.

JSM 2013 - IMS

241

In figure 2, we show the average percentage of data used per test (blue line) and the

percentage of wrong decisions (red line) as a function of ǫ. The amount of data required

drops off very fast as ǫ is increased even though the error does not increase much. Note

that the setting ǫ = 0 corresponds to the exact MH algorithm.

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

P
er

ce
nt

ag
e

of
 d

at
a

or
 e

rr
or

Data
Error

Figure 2: Percentage of data (blue line)

used and percentage of wrong accept-

reject decisions (red line) as a function

of ǫ.

0 50 100 150 200 250 300 350 400
−12

−10

−8

−6

−4

−2

0

Wall Clock Time (secs)

Lo
g

(R
is

k)

ε =0.00, T = 75484

ε =0.01, T = 133069

ε =0.05, T = 200672

ε =0.10, T = 257897

ε =0.20, T = 422978

Figure 3: Average Risk in predictive

mean of 2037 test points vs wall clock

time for different values of ǫ. T denotes

the total number of samples collected in

400 secs.

−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
−5.5

−5

−4.5

−4

−3.5

−3

(a) ǫ=0, WCT = 50 sec, T =

9.5K

−1.16 −1.14 −1.12 −1.1 −1.08 −1.06 −1.04
−3.25

−3.2

−3.15

−3.1

−3.05

−3

(b) ǫ=0, WCT = 100 sec, T =

19K

−1.14 −1.12 −1.1 −1.08 −1.06 −1.04
−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

(c) ǫ=0, WCT = 400 sec, T =

75.5K

−1.16 −1.14 −1.12 −1.1 −1.08 −1.06 −1.04 −1.02
−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

−3

−2.95

−2.9

(d) ǫ=0.01, WCT = 50 sec, T =

16.5K

−1.16 −1.14 −1.12 −1.1 −1.08 −1.06 −1.04
−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

(e) ǫ=0.01, WCT = 100 sec, T =

33K

−1.14 −1.12 −1.1 −1.08 −1.06 −1.04
−3.3

−3.25

−3.2

−3.15

−3.1

−3.05

(f) ǫ=0.01, WCT = 400 sec, T =

133K

Figure 4: Marginals θ1 vs θt for ǫ = 0 and ǫ = 0.01 at different values of wall clock time.

The actual number of samples T is shown as well. The blue curve shows the true marginal

obtained using a long run of Hybrid Monte Carlo. The red curve shows marginals obtained

by running the random walk algorithm 3 times.

In figure 4, we show marginals of θ1 vs θ2 for ǫ = 0 and ǫ = 0.01 at different values

of wall clock time. The red curves are marginals for 3 different runs of the random walk

algorithm whereas the blue curve shows the true marginal obtained from a long run of Hy-

brid Monte Carlo. At T = 50 sec, the exact MH algorithm ǫ = 0 has still not completed

burn-in. Our algorithm with ǫ = 0.01 is able to accelerate burn-in because it can collect

more samples in a given amount of time. Theoretically, as more computational time be-

comes available the exact MH algorithm will catch up with (and eventually outperform)

our algorithm, because the exact MH algorithm is unbiased unlike ours. But the bias is

JSM 2013 - IMS

242

hardly noticeable in this example and the error is still dominated by the variance even after

collecting around 100K samples.

In figure 3, we show how the logarithm of the risk in the predictive mean of a test point

decreases as a function of wall clock time. The risk is computed by measuring the squared

error in the estimate (of predictive mean), and averaging it over 8 different simulations of

the Markov chain. We plot the average risk of 2037 datapoints in the test set. Since the risk

R = B2 + V = B2 + σ2f
T

, we expect it to decrease as a function of time until the bias

dominates the variance. The figure shows that even after collecting a lot of samples, the

risk is still dominated by the variance and the minimum risk is obtained with ǫ > 0.

5.2 Random Walk on Stiefel Manifold - Independent Component Analysis

Next, we use our algorithm to sample from the posterior distribution of the unmixing ma-

trix in Independent Component Analysis (ICA) [Hyvärinen and Oja, 2000]. When using

prewhitened data, the unmixing matrix W ∈ R
D×D is constrained to lie on the Stiefel

manifold of orthonormal matrices. We choose a prior that is uniform over the manifold

and zero elsewhere. We model the data as p(x|W) = |det(W)|∏D
j=1

[

4 cosh2(12w
T
j x)

]−1

where wj are the rows of W .

Since the prior is zero outside the manifold, the same is true for the posterior. Therefore

we use a random walk on the Stiefel manifold as a proposal distribution [Ouyang, 2008].

To propose a new value of W , we first randomly discard a row wk. Then, we randomly

pick a row wj , scale it by a constant ψ, add standard Gaussian noise, project it onto the

subspace orthogonal to the other D−2 vectors and then renormalize it to unit length. Then

we set wk to the unique unit vector orthonormal to the other D − 1 vectors. For a more

detailed description, see Ouyang [2008]. The constant ψ determines the peakedness of the

proposal distribution. This is a symmetric proposal distribution and does not appear in the

MH ratio. Therefore, we can use:

µ0 =
1

N
log [u] , (6)

In order to perform a large scale experiment, we created a synthetic dataset by mixing 4

sources: a) a Classical music recording b) street / traffic noise c) standard Gaussian noise

d) another independent standard Gaussian noise source. We used a 43 second clip of each

source sampled at 44.1 kHz resulting in about 1.95 million samples.

To measure the correctness of the sampler, we measure the risk in estimating I =
Ep(W |X) [dA(W,W0)] where the test function dA is the Amari distance [Amari et al., 1996]

and W0 is the inverse of the true mixing matrix. We computed the ground truth using a long

run (T = 100K samples) of the exact MH algorithm. Then we ran each algorithm 10 times,

each time for around 6400 secs. We calculated the risk by averaging the squared error in the

estimate from each Markov chain, over the 10 chains. This is shown in figure 5. Note that

even after 6400 secs the variance dominates the bias, as evidenced by the still decreasing

risk, except for the most biased algorithm with ǫ = 0.2. Also, the lowest risk at 6400 secs

is obtained with ǫ = 0.1 and not the exact MH algorithm with ǫ = 0. However, if we were

to run for an infinitely long time, we would expect the exact algorithm to outperform all the

approximate algorithms.

5.3 Reversible Jump - Variable selection in Logistic Regression

Now, we apply our MH test to variable selection in a logistic regression model using the

reversible jump MCMC algorithm of Green [1995]. We use a model that is very simi-

lar to the Bayesian LASSO model for linear regression described in Chen et al. [2011].

JSM 2013 - IMS

243

0 1000 2000 3000 4000 5000 6000 7000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

secs
Lo

g
R

is
k

ε = 0, T = 5992
ε = 0.01, T = 11320
ε = 0.05, T = 40973
ε = 0.1, T = 171917
ε = 0.2, T = 1894000

Figure 5: Risk in mean of Amari distance for the ICA model

Specifically, given D input features (covariates), our parameter θ = {β, γ} where β is a D
dimensional vector of regression coefficients and γ is a D dimensional binary vector that

indicates whether a particular feature is included in the model or not. The prior we choose

for β is p(βj |γ, ν) = 1
2ν exp

{

− |βj|
ν

}

if γj = 1. If γj = 0, βj does not appear in the

model. Here ν is a shrinkage parameter that pushes βj towards 0, and we choose a prior

p(ν) ∝ 1/ν. We also place a right truncated Poisson prior on γ as in Chen et al. [2011] to

control the size of the model, k =
∑D

j=1 γj :

p(γ|λ) ∝ λk
(

D
k

)

k!
(7)

The extra
(

D
k

)

factor appears because there are
(

D
k

)

different models of size k. The likeli-

hood of the data is:

p(yN |XN , β, γ) =
N
∏

i=1

[

sigm(βTxi)
yi(1− sigm(βTxi)

(1−yi)
]

(8)

In the above, ‘sigm’ is the sigmoid function. We will denote this likelihood by lN (β, γ).
Then, the posterior distribution after analytically integrating out ν is:

p(β, γ|XN , yN , λ) ∝ lN (β, γ)‖β‖−k
1 λkB(k,D − k + 1) (9)

where B(., .) is the beta function. We do not analytically integrate out λ, but instead use

it as a knob to control the size of the model. We use the same proposal distribution as in

Chen et al. [2011] which is a mixture of 3 type of moves that are picked randomly in each

iteration: an update move, a birth move and a death move. The update move is the usual

MCMC move which involves changing the parameter vector β without changing the model

γ. Specifically, we randomly pick an active component j : γj = 1 and set βj = βj + η
where η ∼ N (0, σupdate). The birth move involves (for k < D) randomly picking an

inactive component j : γj = 0 and setting γj = 1. We also propose a new value for

βj ∼ N (0, σbirth). The birth move is paired with a corresponding death move (for k > 1)

which involves randomly picking an active component j : γj = 1 and setting γj = 0. The

corresponding βj is discarded. The probabilities of picking these moves p(γ → γ′) is the

same as in Chen et al. [2011]. The value of µ0 used in the MH test for different moves is

JSM 2013 - IMS

244

given below.

1. Update move:

µ0 =
1

N
log

[

u
‖β‖−k

1

‖β′‖−k
1

]

(10)

2. Birth move:

µ0 =
1

N
log

[

u
‖β‖−k

1 p(γ → γ′)N (βj |0, σbirth)(D − k)
‖β′‖−(k+1)

1 p(γ′ → γ)λk

]

(11)

2. Death move:

µ0 =
1

N
log

[

u
‖β‖−k

1 p(γ → γ′)λ(k − 1)

‖β′‖−(k−1)
1 p(γ′ → γ)N (βj |0, σbirth)(D − k + 1)

]

(12)

For more details see Chen et al. [2011]. We applied this to the MiniBooNE dataset from the

UCI machine learning repository[Bache and Lichman, 2013]. Here the task is to classify

electron neutrinos (signal) from muon neutrinos (background). There are 130,065 data-

points with 50 features to which we add a constant feature of 1’s. Around 28% of the

examples are in the positive class. We randomly split the data into a training (80%) and

testing (20%) set. First, to compute ground truth, we collected T=400K samples using the

exact reversible jump algorithm. Then, we ran different algorithms with ǫ = 0, ǫ = 0.01,

ǫ = 0.05 and ǫ = 0.1 for around 3500 seconds. We plot the risk in predictive mean of test

data (estimated from 10 Markov chains) in figure 6 . Again we see that the lowest risk is

obtained with ǫ > 0. We also plot the marginal posterior probability of including a feature

in the model, i.e. p(γj = 1|XN , yN , λ) in figure 7.

0 500 1000 1500 2000 2500 3000 3500
−9

−8

−7

−6

−5

−4

−3

−2

−1

Time (secs)

Lo
g

R
is

k

ε = 0, T = 24583
ε = 0.01, T = 137375
ε = 0.05, T = 245906
ε = 0.1, T = 419090

Figure 6: Risk in predictive mean of test data for variable selection using Reversible jump

MCMC for different values of ǫ

The acceptance rates for the birth/death moves starts off at ≈ 20% but dies down to ≈
2% once a good model is found. The acceptance rate for update moves is kept at ≈ 50%.

The model also suffers from local minima. For the plot in figure 6, we started with only one

variable and we ended up learning models with around 12 features, giving a classification

error ≈ 15%. But, if we initialize the sampler with all features included and initialize β to

the MAP value, we learn models with around 45 features, but with a lower classification

error ≈ 10%. Both the exact reversible jump algorithm and our approximate version suffer

from this problem. We should bear this in mind when interpreting “ground truth”. We can,

however, see that when initialized with the same values, we obtain similar results with the

approximate algorithm and the exact algorithm.

JSM 2013 - IMS

245

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ground Truth

Feature

In
cl

us
io

n
P

ro
ba

bi
lit

y

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ε = 0.01

Feature

In
cl

us
io

n
P

ro
ba

bi
lit

y

Figure 7: Marginal probability of features to be included in the model

5.4 Stochastic Gradient Langevin Dynamics (SGLD)

Finally, we apply our method to Stochastic Gradient Langevin Dynamics[Welling and Teh,

2011]. In each iteration of SGLD, we randomly draw a mini-batch Xn of size n, and

propose θ′ ∼ q(.|θ,Xn) where:

q(.|θ,Xn) = N
(

θ +
α

2
∇θ

{

N

n

∑

x∈Xn

log p(x|θ) + log ρ(θ)

}

, α

)

(13)

The proposed state θ′ is always accepted (without conducting any MH test). Since the

acceptance probability approaches 1 as we reduce α, the bias from not conducting the MH

test can be kept under control by using α ≈ 0. However, we have to use a reasonably large

α to keep the mixing rate high. This can be problematic for some distributions, because

SGLD relies solely on gradients of the log density and it can be easily thrown off track by

large gradients in low density regions, unless α ≈ 0.

As an example, consider an L1-regularized linear regression model. Given a dataset

{xi, yi}Ni=1 where xi are predictors and yi are targets, we use a Gaussian error model

p(y|x, θ) ∝ exp
{

−λ
2 (y − θTx)2

}

and choose a Laplacian prior for the parameters p(θ) ∝
exp(−λ0‖θ‖1). For pedagogical reasons, we will restrict ourselves to a toy version of the

problem where θ and x are one dimensional. We use a synthetic dataset with N = 10000
datapoints generated as yi = 0.5xi + ξ where ξ ∼ N (0, 1/3). We choose λ = 3 and

λ0 = 4950, so that the prior is not washed out by the likelihood. The posterior density and

the gradient of the log posterior are shown in figures 8(a) and 8(b) respectively.

The empirical histogram of 100000 samples obtained by running SGLD with α =
5 × 10−6 are shown as red bars in figure 8(c). The effect of omitting the MH test is quite

severe in this case. When the sampler reaches the mode of the distribution, the Langevin

noise occasionally throws it into the valley to the left, where the gradient is very high. This

high gradient propels the sampler far off to the right, after which it takes a long time to find

its way back to the mode. However, if we had used an MH accept-reject test, most of these

troublesome jumps into the valley would be rejected because the density in the valley is

much lower than that at the mode.

To apply an MH test, note that the SGLD proposal q(θ′|θ) can be considered a mixture

of component kernels q(θ′|θ,Xn) corresponding to different mini-batches. The mixture

kernel will satisfy detailed balance with respect to the posterior distribution if each of the

component kernels q(θ′|θ,Xn) satisfy detailed balance. Thus, we can use an MH test with:

µ0 =
1

N
log

[

u
ρ(θt)q(θ

′|θt,Xn)

ρ(θ′)q(θt|θ′,Xn)

]

, (14)

JSM 2013 - IMS

246

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Posterior density

θ

p(
θ|

D
at

a)

(a) Posterior density

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−2000

0

2000

4000

6000

8000

10000

Gradient of log density

θ

∇
θ lo

g
p(

θ|
D

at
a)

(b) Gradient of log posterior

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

80

True & estimated posterior density

θ

p(
θ|

D
at

a)

SGLD
True

(c) Stationary distribution of uncor-

rected SGLD

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

80

True & estimated posterior density

θ

p(
θ|

D
at

a)

ε = 0
True

(d) Stationary distribution of SGLD

corrected using the exact MH test

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

80

True & estimated posterior density

θ

p(
θ|

D
at

a)

ε = 0.1
True

(e) Stationary distribution of SGLD

corrected using our approximate

MH test, with ǫ = 0.1.

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

10

20

30

40

50

60

70

80

True & estimated posterior density

θ

p(
θ|

D
at

a)

ε = 0.5
True

(f) Stationary distribution of SGLD

corrected using our approximate

MH test, with ǫ = 0.5.

Figure 8: Pitfalls of using uncorrected Stochastic Gradient Langevin Dynamics with cer-

tain distributions

The result of running SGLD (keeping α = 5×10−6 as before) with the exact MH correction

is shown in figure 8(d). As expected, we are now able to sample correctly as the MH

test rejects most proposals from the mode to the valley. Results of running SGLD with

our approximate MH test are shown in figure 8(e) (ǫ = 0.1) and figure 8(f)(ǫ = 0.5)

respectively. The stationary distribution obtained with ǫ = 0.1 is almost indistinguishable

from that obtained by the exact MH test, although on average, the approximate test uses

only 14.2% of the data per test. The bias with ǫ = 0.5 is also negligible, even though it

uses only 5% of the data per test, which is no more than the size of the mini-batch we used

in the SGLD proposal distribution. Note that when ǫ = 0.5, a decision is always made in

the first step, without querying more data sequentially.

5.5 Troubleshooting

Our algorithm will behave erratically if the Central Limit Theorem(CLT) does not hold,e.g.

with very sparse datasets or datasets with extreme outliers. The CLT assumption can be

easily tested empirically before running the algorithm to avoid such pathological situations.

However, we expect any algorithm that does not examine every datapoint to suffer from

similar problems on such datasets.

6. Conclusions and Future Work

In this work, we have taken a first step towards cutting the computational budget of the

Metropolis-Hastings MCMC algorithm, which takes O(N) likelihood evaluations to make

the binary decision of accepting or rejecting a proposed sample. In our approach we com-

pute the probability that a new sample will be accepted based on a subset of the data. We

increase the cardinality of the subset until a prescribed confidence level is reached. In the

process we create a bias, which is more than compensated for by a reduction in variance

JSM 2013 - IMS

247

due to the fact that we can draw more samples per unit time. Current MCMC procedures

do not take these trade-offs into account. In this work we have focused on a fixed decision

threshold for accepting or rejecting a sample, but in theory a better algorithm can be ob-

tained by adapting the decision threshold over time. An adaptive algorithm can tune bias

and variance contributions in such a way that at every moment our risk (the sum of squared

bias and variance) is as low as possible. We leave these extensions for future work.

7. Acknowledgements

This material is based upon work supported by the National Science Foundation under

Grant Number 1216045. The authors would like to thank Alexander Ihler, Daniel Gillen

and Babak Shahbaba for their invaluable suggestions.

A. Proof of Theorem 1

A.1 Upper Bound Based on One Step Error

We first prove a lemma that will be used for the proof of Theorem 1.

Lemma 2. Given two transition kernels, T0 and Tǫ, with respective stationary distributions,

S0 and Sǫ, if T0 satisfies the following contraction condition with a constant η ∈ [0, 1) for

all probability distributions P :

dv(PT0,S0) ≤ ηdv(P,S0) (15)

and the one step error between T0 and Tǫ is upper bounded uniformly with a constant

∆ > 0 as:

dv(PT0, PTǫ) ≤ ∆,∀P (16)

then the distance between S0 and Sǫ is bounded as:

dv(S0,Sǫ) ≤
∆

1− η (17)

Proof. Consider a Markov chain with transition kernel Tǫ initialized from an arbitrary dis-

tribution P . Denote the distribution after t steps by P (t) def
= PT t

ǫ . At every time step,

t ≥ 0, we apply the transition kernel Tǫ on P (t). According to the one step error bound in

Equation 16, the distance between P (t+1) and the distribution obtained by applying T0 to

P (t) is upper bounded as:

dv(P
(t+1), P (t)T0) = dv(P

(t)Tǫ, P (t)T0) ≤ ∆ (18)

Following the contraction condition of T0 in Equation 15, the distance of P (t)T0 from its

stationary distribution S0 is less than P (t) as

dv(P
(t)T0,S0) ≤ ηdv(P (t),S0) (19)

Now let us use the triangle inequality to combine Equation 18 and 19 to obtain an upper

bounded for the distance between P (t+1) and S0:

dv(P
(t+1),S0) ≤ dv(P (t+1), P (t)T0) + dv(P

(t)T0,S0) ≤ ∆+ ηdv(P
(t),S0) (20)

JSM 2013 - IMS

248

Let r < 1−η be any positive constant and consider the ball B(S0, ∆r)
def
= {P : dv(P,S0) <

∆
r
}. When P (t) is outside the ball, we have ∆ ≤ rdv(P (t), S). Plugging this into Equation

20, we can obtain a contraction condition for P (t) towards S0:

dv(P
(t+1),S0) ≤ (r + η)dv(P

(t),S0) (21)

So if the initial distribution P is outside the ball, the Markov chain will move mono-

tonically into the ball within a finite number of steps. Let us denote the first time it enters

the ball as tr. If the initial distribution is already inside the ball, we simply let tr = 0. We

then show by induction that P (t) will stay inside the ball for all t ≥ tr.

1. At t = tr, P (t) ∈ B(S0, ∆r) holds by the definition of tr.

2. Assume P (t) ∈ B(S0, ∆r) for some t ≥ tr. Then, following Equation 20, we have

dv(P
(t+1),S0) ≤ ∆+ η

∆

r
=
r + η

r
∆ <

∆

r
=⇒ P (t+1) ∈ B(S0,

∆

r
) (22)

Therefore, P (t) ∈ B(S0, ∆r) holds for all t ≥ tr. Since P (t) converges to Sǫ, it follows that:

dv(Sǫ,S0) <
∆

r
,∀r < 1− η (23)

Taking the limit r → 1− η, we prove the lemma:

dv(Sǫ,S) ≤
∆

1− η (24)

A.2 Proof of Theorem 1

We first derive an upper bound for the one step error of the approximate Metropolis-

Hastings algorithm, and then use Lemma 2 to prove Theorem 1. The transition kernel

of the exact Metropolis-Hastings algorithm can be written as

T0(θ, θ′) = Pa(θ, θ
′)q(θ′|θ) + (1− Pa(θ, θ

′))δD(θ
′ − θ) (25)

where δD is the Dirac delta function. For the approximate algorithm proposed in this paper,

we use an approximate MH test with acceptance probability Pa,ǫ(θ, θ
′) where the error,

∆Pa
def
= Pa,ǫ − Pa, is upper bounded as |∆Pa| ≤ ∆max. Now let us look at the distance

between the distributions generated by one step of the exact kernel T0 and the approximate

kernel Tǫ. For any P ,
∫

θ′
dΩ(θ′)|(PTǫ)(θ′)− (PT0)(θ′)|

=

∫

θ′
dΩ(θ′)

∣

∣

∣

∣

∫

θ

dP (θ)∆Pa(θ, θ
′)
(

q(θ′|θ)− δD(θ′ − θ)
)

∣

∣

∣

∣

≤ ∆max

∫

θ′
dΩ(θ′)

∣

∣

∣

∣

∫

θ

dP (θ)(q(θ′|θ) + δD(θ
′ − θ))

∣

∣

∣

∣

= ∆max

∫

θ′
dΩ(θ′)

(

gQ(θ
′) + gP (θ

′)
)

= 2∆max (26)

where gQ(θ
′)

def
=
∫

θ
dP (θ)q(θ′|θ) is the density that would be obtained by applying one step

of Metropolis-Hastings without rejection. So we get an upper bound for the total variation

distance as

dv(PTǫ, PT0) =
1

2

∫

θ′
dΩ(θ′)|PTǫ − PT0| ≤ ∆max (27)

Apply Lemma 2 with ∆ = ∆max and we prove Theorem 1.

JSM 2013 - IMS

249

References

S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via stochastic gradi-

ent Fisher scoring. In International Conference on Machine Learning, 2012.

S.-i. Amari, A. Cichocki, H. H. Yang, et al. A new learning algorithm for blind signal

separation. Advances in neural information processing systems, pages 757–763, 1996.

C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo

computations. The Annals of Statistics, 37(2):697–725, 2009.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL

http://archive.ics.uci.edu/ml.

X. Chen, Z. Jane Wang, and M. J. McKeown. A Bayesian Lasso via reversible-jump

MCMC. Signal Processing, 91(8):1920–1932, 2011.

D. Gamerman and H. F. Lopes. Markov chain Monte Carlo: stochastic simulation for

Bayesian inference, volume 68. Chapman & Hall/CRC, 2006.

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model

determination. Biometrika, 82(4):711–732, 1995.

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications.

Neural networks, 13(4):411–430, 2000.

L. Lin, K. Liu, and J. Sloan. A noisy Monte Carlo algorithm. Physical Review D, 61(7):

074505, 2000.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation

of state calculations by fast computing machines. The journal of chemical physics, 21:

1087, 1953.

Z. Ouyang. Bayesian Additive Regression Kernels. PhD thesis, Duke University, 2008.

S. J. Pocock. Group sequential methods in the design and analysis of clinical trials.

Biometrika, 64(2):191–199, 1977.

S. Singh, M. Wick, and A. McCallum. Monte Carlo MCMC: efficient inference by approx-

imate sampling. In Proceedings of the 2012 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural Language Learning, pages

1104–1113. Association for Computational Linguistics, 2012.

M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin dynamics. In

Proceedings of the 28th International Conference on Machine Learning (ICML), pages

681–688, 2011.

JSM 2013 - IMS

250

http://archive.ics.uci.edu/ml

	Introduction
	The Metropolis-Hastings algorithm
	Approximate MCMC and the Bias Variance Trade-off
	Approximate Metropolis-Hastings Test for Bayesian Posterior Sampling
	Experiments
	Random Walk - Logistic Regression
	Random Walk on Stiefel Manifold - Independent Component Analysis
	Reversible Jump - Variable selection in Logistic Regression
	Stochastic Gradient Langevin Dynamics (SGLD)
	Troubleshooting

	Conclusions and Future Work
	Acknowledgements
	Proof of Theorem 1
	Upper Bound Based on One Step Error
	Proof of Theorem 1

