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Abstract 
In discrete part manufacturing, quality depends on the final geometry of the product, 
which is usually constrained by geometric tolerances. This is why appropriate tools for 
shape monitoring can highly reduce scraps and reworking. A review of approaches for 
monitoring the shapes of manufactured objects is given. We start from the simplest case 
of bi-dimensional curves (i.e., traditional profiles) to move to tri-dimensional surfaces. 
Critical issues of modeling and monitoring this specific type of profiles and surfaces  are 
explained. Directions for future research are highlighted. 
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1. Introduction 
 
Starting from the seminal papers on linear profile monitoring (Kang and Albin (2000), 
Kim et al. (2003), Mahmoud and Woodall (2004)), the literature on profile monitoring 
has now covered many application domains. Reviews of the literature on profile 
monitoring can be found in Woodall et al. (2004) and Woodall (2007) and in the book 
recently edited by Noorossana et al. (2012).  
 
In this scenario, one stream of research focused on monitoring profiles corresponding to 
physical shapes obtained on the machined workpiece (Colosimo and Pacella (2007, 
2010), Colosimo et al. (2008), Colosimo and Senin (2011)). These profiles are usually 
related to geometric tolerances, i.e. requirements that concern the physical shape of an 
object, such as straightness and roundness or circularity. Most of these specifications 
concern 2-dimensional (2D) curves, i.e. profile that lie in a plane. In case where 3D 
curves are of interest, for example when the straightness of an axis is the quality feature 
of interest, different approaches for profile modeling have to be considered (Colosimo 
and Pacella, 2011).  Similarly, when moving from profiles to surfaces, appropriate 
extensions of methods and tools developed for profile monitoring have to be developed 
(Colosimo et al. (2008, 2010)). 
 
This paper summarizes the main results and the current state of research on methods and 
tools for monitoring profiles and surfaces representing shapes obtained on an object. 
Directions for future research are outlined in the conclusions of the paper.  
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1. Profile monitoring for shapes 
 
Very often the final shape of a machined workpiece is constrained by geometric 
tolerances. Sometimes, these tolerances concern 2D profiles. As an example, Figure 1 
shows a technical drawing where a circularity or roundness tolerance of 0.2 mm is 
specified. In this case, the constraint refers to the circular profile measured at each cross-
section of the cylinder. Figure 2 shows on the left 100 profiles measured on a cross-
section of turned specimens. As it is clear from the figure, all the real profiles are not 
perfect circles and this is why the circularity constraint allows one to judge wether the 
observed difference from a perfect circle has to be “tolerated”, i.e., the workpiece is 
conforming to requirements.  
Figure 2 on the right shows how the specification has to be checked. Starting from the 
real profile (passing through the dots), the form error is measured as the radial distance 
between two concentric circles including between them the real profile observed. This 
form error is called “out-of-roundness”  (OOR) and has to be compared with the 
tolerance t  specified on the technical drawing (Figure 1). If the OOR is lower than the 
tolerance t, the workpiece can be considered as conforming to this requirement.  
 

Figure 1: Technical drawing specifying a circularity tolerance equal to t=0.2 (GDT, 
2013). 
 
 
. 

 
Figure 2: On the left: examples of 100 roundness profiles. On the right: the real profile is 
included between two concentric circles, whose radial distance is equal to OOR (out-of-
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roundness). The maximum form error allowed is t, which is the tolerance specified on the 
technical drawing (Figure 1).  
 
A common approach for monitoring the circular profile consists of summarizing all the 
information contained in the profile in one synthetic indicator (the OOR) and then 
monitoring it using a simple univariate control chart, as shown in Figure 3. A clear 
drawback of this approach is that the profile can deviate from its natural or in-control 
shape in many different ways, while remaining within the band defined by the OOR  - 
shown in Figure 2 on the right. In these cases, the control chart should in principle issue 
an alarm because the change of the final shape can be due to problems with the materials 
or the manufacturing process that is machining the workpiece.  
 

             
 
Figure 3: A common approach for monitoring circural profiles: on the left – compute the 
OOR for each profile observed with time and – on the right -  design and use a univariate 
control chart on the OOR values. 
 
Starting from the simple OOR control chart, many different approaches have been 
proposed in order to enhance roundness profile monitoring, namely: 

 a location control chart reproducing the approach proposed by Boeing (1998) – 
named “LOC cc” in Figure 4; 

 a profile monitoring method combining linear regression with harmonic 
regressors to a spatial autoregressive model for the residuals (Colosimo et al, 
2008)– named “REG cc” in Figure 4;  

 a profile monitoring method based on principal component analysis (Colosimo 
and Pacella, 2007) – named “PCA cc” in Figure 4; 

 a profile monitoring method based on a one-class classifier adaptive resonance 
theory neural network (Pacella and Semeraro, 2011) – named “ART NN” in 
Figure 4. 

  
Figure 4 shows comparison of performance achieved by using different methods for 
circular profile monitoring. In particular, 95% confidence intervals of the overall Averge 
Run Length (ARL) when different out-of-control states are considered (bi-lobe, tri-lobe, 
quadri-lobe, half-frequency) are shown. Details of the comparison procedure are 
described in Colosimo and Senin (2011).  
 
The main conclusions of the performance comparison study can be summarized as 
follows: 
• Profile monitoring methods (based on regression or principal component analsysis, 

i.e., REG cc or PCA cc) outperform competing methods.  
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• Other approaches based on artificial neural networks – ART NN - can be effective, 
especially when profile-to-profile randomness is present – see Colosimo and Senin 
(2011 – chapter 11). However, these approaches are not suitable for Phase 1 because 
they are sensitive to otulying profiles in the training set. 

• Profile monitoring methods, as the REG cc and the PCA cc, are worth because they 
include a phase of profile modeling, which is then used as baseline for the monitoring 
procedure. The model of the profile is useful to gain knowledge on the manufacturing 
process behind the workpiece and to design a process optimization procedure 
(Colosimo and Pacella, 2011). 

 

 
 
 
 
Figure 4: Confidence interval (95%) on the Average Run Length performance of 
different approaches for roundness profile monitoring. 
 
 

2. Surface monitoring 
 
Surface monitoring can be faced using an approach similar to the one used for profile 
monitoring: i) modeling the target shape and estimating the unknown coefficients; ii) 
monitoring the estimated coefficients via control charts.  
However, when moving from profiles to surfaces different issues moving from 2D profile 
to 2.5D or even 3D surfaces have to be solved. As an example, monitoring of cilindrical 
surfaces is discussed in the following.  
 
 
2.1 A cylindrical shape  
 
A cilindricity requirement is shown in Figure 5. Similarly to what we showed with 
respect to the circularity, this tolerance is requiring to the machined surfaces to lie within 
two concentric cylinders whose radial distance is equal to 0.2 mm. 
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Figure 5: A technical drawing showing the cylindricity requirement (GDT, 2013). 
 
 
 

 
Figure 6: Reconstruction of a cylinder and the corresponding form error (OOC).  
 
Figure 6 shows a possible shape of a real cylindrical surface and the corresponding form 
error, the out-of-cilindricity (OOC), which has to be lower than the tolerance shown in 
the technical drawing in order to let the shape be considered as conforming to 
requirements. 
 
2.2 A parametric approach for monitoring cylindrical surfaces 
 
When Coordinate Measuring Machines (CMMs) are used as measurement systems, 
surfaces are usually inspected at a regular grid, as the one shown on the right of Figure 7.  
In this case, a viable solution consists of using a Spatial Autoregressive Regression 
(SARX) model (Cressie, 1993) to reconstruct the obtained shape. SARX models are used 
in spatial statistics to represent the spatial correlation in regular lattices and are 
constituted by a large-scale model, representing the main shape of the machine feature, 
and a small-scale model, representing the spatial correlation of the residuals.  
Colosimo et al. (2010, 2013) explored the use of SARX model for modeling cylindrical 
features obtained by turning. In their models, the deviation from a perfect cylinder 

ooc 
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observed at location 𝒔! = (𝜃! , 𝑧! ,𝑅) (see Figire 7) is modeled by combining Chebyshev 
polynomials and Fourier (periodic) functions to represent axial errors and circular errors, 
respectively. Then, the remaining errors are modeled considering a spatial autoregressive 
structure linking residuals observed at neighboors.  
The model allows one to represent the typical patterns shown in Figure 8. 
Once the in-control model of the cylindrical surface is identified, the monitoring 
approach consists of estimating all the unknown coefficients, store them in a vector, 
which is then monitored via multivariate control charting (Colosimo et al. 2010, 2013). 

 
Figure 7: On the left: Cylindrical coordinates to represent the deviation from a nominal 
cylinder at a given location. On the right: grid showing the first-order neighbours for 
modeling the small-scale component of the SARX model. 
 
 
 

     
 
Figure 8: Typical patterns of cylindrical component (Henke et al., 1999; Zhang et al., 
2005). 
 
 
2.3 Surface monitoring via Gaussian processes 
 
When the surface is not inspected on a regular grid and/or defining the appropriate 
regressors is not an easy task, Gaussian processes (GPs) can be used for modeling 
surfaces (Cressie, 1993). 
In this case, the deviation from a perfect cylinder is modeled using a GP with a constant 
mean and a covariance function that represents the similarity between measured points as 
a function of their distance (isotropic assumption). Colosimo et al. (2013) tried 
comparing different correlation functions (namely squared ecxponential vs. Matern) for 
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fitting the in-control cylindrical surface shown in Figure 9. No significant difference was 
found for the case study at hand, as shown in Figure 10. 
 
 

 
Figure 9: The in-control cylindrical surface (Colosimo et al. 2013). 
 
 
 

 
 

Figure 10: Confidence interval of the prediction error obtained via GP when using the 
squared exponential and the Matern correlation functions. 
 
 
After fitting the surface, the problem of how to control its stability with time has to be 
solved. Colosimo et al. (2013) tried different methods: 

1) a control chart on the GP parameters estimated on each new surface; - “GP_par”; 
2) a Hotelling T2 control chart built on the differences between the target surface 

pattern and the GP-predicted values at all the N=460 available locations – 
“GP_all”; 

3) an approach similar to the one used in 2) but based on predictions done at a 
subset of n=25 uniformly placed locations – “GP_unif”; 
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4) an approach similar to the one used in 2) but based on predictions done at a 
subset of n=25 locations placed according to a latin hypercube (lh) design – 
“GP_lh”. 

Figure 11 shows the performance obtained using all the aforementioned procedures for 
cylindrical surface monitoring. As it is clear from the figure, all the approaches have been 
designed to achieve the same in-control Average Run Length (ARL) but have very 
different out-of-control ARLs. In particular, the GP-lh method outperforms the other GP-
based approaches in all the simulated out-of-control scenarios. 

  
 

 

Figure 11: Average Run Length performance considering different in-control and out-of-
control states (quadrilobe, trilobe, half-frequency, tapering, increase of the residual 
variance) of the cylindrical surfaces.   
 
Eventually, Figure 12 shows the comparison of ARL performance when different 
methods for cylindrical surface monitoring are considered, namely: 

- a univariate control chart on the out-of-clindricity (OOC); 
- a control chart based on the SARX model of the cylindrial surfaces; 
- a control chart based on the GP-model of the cylindrical surfaces when using a 

uniform or lh sampling strategy. 
As it is clear from the figure,  the GP-lh method and the SARX method outperforms 
competitor approaches. 
 
 

JSM 2013 - Quality and Productivity Section

153



 
 

Figure 1: Average Run Length performance of different approaches for cilindrical 
surface monitoring (OOC, SARX, GP-based methods with uniform or latin hypercube 
locations of points) – on the abscissa the size of the simulated shift (trilobe pattern). 
Similar perfromance have been obtained for other out-of-control scenarios.  
 
 
 

3. Conclusions and concluding remarks 
 
This paper summarized methods for monitoring surfaces and profiles representing shapes 
of machined objects. In particular, we showed that both regression-based and GP-based 
methods can be effectively used to detect unwanted changes of the shape of the machined 
features. 
Different directions for future research can be outlined and are summarized below. 
1) Registration or alignment of machined features is a very important pre-processing 

step (Senin et al., 2013). Significant attention should be devoted to register shapes 
before detecting whether they are in control or not. 

2) Surfaces can have complex shapes and – furthermore – all the three spatial 
coordinates can be affected by measurement errors. Different approaches as the 
Geodesic Gaussian process (del Castillo et al., 2013) should be considered for 
surface modeling. 

3) A new generation of non-contact measurement systems is going to replace existing 
contact sensors. In this scenario, high-dimension data will be available to reconstruct 
the surface. Appropriate tools for “big data” should be considered. 
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