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Abstract

The regression discontinuity (RD) non-randomized design can iden-
tify and estimate causal effects for a "locally-randomized" subgroup of
subjects, under relatively mild conditions. Though, the accurate es-
timation of causal effects still relies on the predictive accuracy of the
statistical model. We propose a flexible Bayesian nonparametric regres-
sion model which can provide predictively-accurate estimates of causal
effects, either in terms of the mean, variance, distribution function, quan-
tile, probability density, or any other functional of the outcome variable.
We illustrate the model through the analysis of two real educational sets.
Keywords: Bayesian Nonparametric Regression, Causal Inference, Sharp
and Fuzzy Regression Discontinuity Designs.

1 Introduction

A basic objective in scientific research is to infer causal effects from empirical data.
Randomized studies are the gold standard of causal inference (Rubin, 2008), because
they ensure that any differences in treatment outcomes and non-treatment outcomes
are only due to changes in the treatment variable. In a standard randomized study,
the investigator randomly assigns each subject into one of the treatment conditions,
usually with equal probability; each subject complies with her/his treatment assign-
ment; and the Stable Unit Treatment Value Assumption (SUTVA) holds, such that
any subject’s outcome in response to treatment is independent of the treatments
received by all the other subjects (e.g., Cox, 1958). Then unconfoundedness holds
such that treatment outcomes and non-treatment outcomes are jointly independent
of treatment assignments, conditionally on every possible value of all subject pre-
treatment characteristics (covariates); and overlap holds such that for every value
of the subject pre-treatment characteristics, there is a chance to receive either the
treatment or the non-treatment. Then given unconfoundedness and overlap, the
causal effect can be identified and estimated by a comparison of the mean of treat-
ment outcomes, against the mean of non-treatment outcomes (e.g., Imbens, 2004).
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Often it is necessary to estimate causal effects from a non-randomized study,
because a randomized study is often infeasible due to financial, ethical, or time
constraints (Rubin, 2008). However, causal effect estimation is more challenging in
a non-randomized study, because in such a setting, treated subjects almost surely
differ in pre-treatment characteristics, compared to non-treated subjects. Popular
causal models for non-randomized studies are often used to estimate causal effects on
the basis of the SUTVA, unconfoundedness, and overlap assumptions (e.g., Imbens,
2004), while asserting no hidden bias such that none of the unobserved subject back-
ground characteristics serve as confounding variables (e.g., Rosenbaum 2002). Such
models involve either a regression of outcomes, on the treatment receipt variable and
on the observed pre-treatment characteristics, and/or involves matching/weighting
subjects on the observed pre-treatment characteristics and/or on propensity scores
(e.g., Imbens, 2004). The regression may also be on hypothesized unobserved pre-
treatment covariates, in order to examine the sensitivity of the causal effect estimates
over varying degrees of hidden bias (e.g., Rosenbaum & Rubin, 1983b). Though,
arguably, for typical non-randomized studies, SUTVA, unconfoundedness, and over-
lap do not strictly hold for every possible value of observed (or even both observed
and unobserved) subject pre-treatment characteristics (Imbens, 2004; Lee, 2008).

We propose a Bayesian nonparametric regression model (Karabatsos & Walker,
2012) for causal inference in non-randomized studies. It is an infinite-mixture model
which allows for the entire probability density of the outcome variable to change
flexibly as a function of the covariate(s), including the treatment assignment vari-
able. For non-randomized studies, we propose the model for regression discontinuity
(RD) designs (Thistlewaite & Campbell, 1960; Cook, 2008). This is because under
a RD design, estimates of causal effects can be identified under assumptions that are
weaker and thus more realistic than the joint assumptions of SUTVA, overlap, and
unconfoundedness. The RD design employs a continuous-valued assignment vari-
able (Lee & Lemieux, 2010). Each subject of the design is assigned to the treatment
(non-treatment, respectively) when her/his observed value of the assignment vari-
able equals or exceeds a cutoff value (is less than the cutoff, respectively)1. The RD
design provides a "locally-randomized experiment", such that the causal effect of
treatment versus non-treatment can be identified and estimated at the cutoff, under
mild conditions, including the condition that every subject of the design has impre-
cise control over the assignment variable (Lee, 2008). As proven earlier (Goldberger,
2008/1972), the RD design can empirically produce causal effect estimates that are
similar to those estimates of a randomized study (Aiken et al., 1998; Buddelmeyer
& Skoufias, 2004; Black, et al. 2007; Berk et al. 2010; Shadish, et al., 2011).

Even though the RD design has existed for more than 50 years, it initially re-
ceived limited interest from the fields of education, psychology, and statistics (Cook,
2008), and from the economics, political science, criminology, and health science
fields. But between 1997 through 2013, a surge of at least 74 RD-based empiri-
cal studies emerged in these fields (Lee and Lemieux, 2010; Bloom, 2012; Wong et
al. 2013; Li et al., 2013). There are at least three reasons why (van der Klaauw,
2008; Lee & Lemieux, 2010). First, many non-randomized studies employ treat-
ment assignment rules that can be easily conceptualized as RD designs. Second, the

1The assignment variable and cutoff value may also be vector-valued (Imbens & Lemieux, 2008).
The model proposed in this paper easily extends to vector-valued assignment variables and cutoffs.
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empirical results of RD designs are intuitive and can be easily conveyed, say, via a
plot of the outcomes against the assignment variable. Third, for non-randomized
studies, causal effect identification and estimation in a RD design requires weaker
and hence more credible assumptions, compared to the stronger assumptions (e.g.,
unconfoundedness, overlap) that are required by popular causal models. Therefore,
the design gives the researcher the flexibility to consider from a range of different
causal estimation methods.

The mainstream causal models that are used for non-randomized studies, includ-
ing those involving RD designs, have primarily based causal inferences on compar-
isons of the mean of the treatment outcomes, and the mean of the non-treatment
outcomes (Imbens, 2004; Lee & Lemieux, 2010). However in many causal infer-
ence settings, it may also be of interest to base causal inferences on comparisons of
other features of the outcomes. Our Bayesian nonparametric regression model can
provide inferences of causal effects in terms of how the treatment variable impacts
the mean, variance, distribution function, a quantile, probability density, hazard
function, and any other functional of the outcome variable. Finally, for either a
randomized or a non-randomized study, the accurate estimation of causal effects
relies on an appropriate model for the data. Karabatsos and Walker (2012) showed
that their Bayesian nonparametric regression model tended to have better predictive
performance than other parametric and flexible nonparametric regression models of
common usage, over many real data sets. The other outperformed models include
BART (Chipman et al., 2010) which has been proposed for causal inference (Hill,
2011). Moreover, we show how our Bayesian nonparametric model can be extended
to handle causal inferences from a fuzzy RD design (Trochim, 1984), where there is
imperfect treatment compliance among the subjects.

In Section 2, using the potential outcomes framework of causal inference (e.g.,
Neyman 1923), we review the assumptions that data from a RD design needs to
meet in order to identify and estimate causal effects. In Section 3, we review the
current models that are used to estimate causal effects from a RD designs. Then we
describe our Bayesian nonparametric causal model for such designs. In Section 4,
we illustrate our model through the analysis of two data sets, which were recently
collected under a partnership between four Chicago university schools of education.
The partnership collaborated to institute a new teacher education curriculum, that
aims to graduate teachers who would improve Chicago public school education.

2 Identifying Causal Effects in a RD Design

The theory of potential outcomes (Neyman 1923; Rubin, 1974; Rubin, 1978; An-
grist, et al., 1996) is arguably the most useful framework of causal inference, for
either a randomized or a non-randomized study. The theory states that a study
involves: a sample of subjects, indexed by i = 1, . . . , n, and each described by pre-
treatment characteristics (covariates) xi = (x1i, . . . , xpi)

ᵀ that the study recorded;
a treatment receipt variable T (A) ∈ {t = 0, 1}, where for a given subject, Ti(A) = 0
indicates receipt of non-treatment (e.g., control), and Ti(A) = 1 indicates receipt
of the treatment, when assigned treatment A ∈ {t = 0, 1}; potential outcomes
Yi(An,T n) defined at a common point in time, for all (An,T n) ∈ {0, 1}n × {0, 1}n
with An = (A1, . . . , An)> and T n = (T1, . . . , Tn)>. Under SUTVA, which implies
no interference between all n subjects and no versions of treatments (e.g., Cox, 1958;
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Rubin, 1990), and under perfect treatment compliance (i.e., (Ti(1), Ti(0)) = (0, 1),
i = 1, . . . , n), the 22n potential outcomes Yi(An,T n) can be reduced to the pair
Yi(t), t = 0, 1. Then the causal effect of T on Y is defined by a comparison of poten-
tial outcomes, such as Y (1) − Y (0). The fundamental problem of causal inference
is that at least one of the potential outcomes (Yi(1), Yi(0)) is missing, and thus the
causal effect (e.g., Yi(1)− Yi(0)) is unobservable, because each subject can only be
exposed to only one of the treatment conditions at a given time point (Holland,
1986).

In the non-randomized, regression discontinuity (RD) design (Thistlewaite &
Campbell, 1960; Cook, 2008), causal effects can be identified under mild and ar-
guably realistic assumptions. In a RD design, each subject is assigned to a treatment
(non-treatment, respectively) if the subject’s value of an assignment variable2 (Berk
& Rauma, 1983) equals to or exceeds a known and meaningful threshold (is less than
the threshold, respectively). Specifically, if Ri is the treatment variable of a subject,
and r0 is the given threshold, then the treatment assignment mechanism is defined
by A(Ri)r0 = 1(Ri ≥ r0), corresponding to realization a

(ri)
r0 = 1(ri ≥ r0) and ri,

where 1(·) denotes the indicator function. In the sharp RD design (Thistlewaite &
Campbell, 1960), the treatment receipt probability is Pr(T = 1|R = r) = 1(r ≥ r0),
and it thus jumps discontinuously from 0 to 1 at the cutoff r0. In a fuzzy RD
design (Trochim, 1984), the treatment receipt probability Pr(T = 1|R = r) has a
discontinuous jump that is less than 1, at r0, as a result of imperfect treatment
compliance. Imperfect compliance can occur in settings where the assignment vari-
able R measures the eligibility to receive a treatment, and some ineligible subjects
(with Ri < r0) decided to receive treatment (i.e., Ti = 1), and some eligible sub-
jects (with Ri ≥ r0) decided receive the non-treatment (i.e., Ti = 0). Now, let
Lεn0(r0) = {i : |ri− r0| < ε} be the subset of n0 subjects whose assignment variables
ri are in a neighborhood of size ε > 0 around r0.

The identification of causal effects in a RD design, sharp or fuzzy, relies on data
meeting the following five assumptions.

1. Assumption (RD) (Hahn, et al. 2001): limr↑r0 E(T |r) 6= limr↓r0 E(T |r).

2. Local SUTVA (LS) (Cattaneo et al. 2013). There exists a ε > 0 such that

Ti(A
(Rn0 )
r0 ) = Ti(A

(Ri)
r0 ) and Yi(A

(Rn0 )
r0 ,T n0(A

(Rn0 )
r0 )) = Yi(A

(Ri)
r0 , Ti(A

(Ri)
r0 )) for

all i ∈ Lεn0(r0) and all Rn0 , i.e., the potential outcomes are unrelated to the
treatment status of the other subjects within Lεn0(r0). Then for all i ∈ L

ε
n0(r0),

(Ti(0), Ti(1)) are the potential treatment receipt outcomes; Ti(1)−Ti(0) is the
causal effect of A on T ; a complier is a subject with (Ti(1), Ti(0)) = (1, 0), for
all ε > 0 of (Ti(A

(r0−ε)
r0 ), Ti(A

(r0+ε)
r0 )); and ITT = Yi(1, Ti(1)) − Yi(0, Ti(0)) is

the Intention-to-Treat (ITT) causal effect of A on Y .

3. Local Exclusion Restriction (LER) (Hahn, et al. 2001): There exists a
ε > 0 such that for all subjects i ∈ Lεn0(r0), any effect of A on Y must be via

an effect of A on T, in the sense that Yi(A
(Rn0 )
r0 ,T n0) = Yi(A

(R′n0 )
r0 ,T n0) for

all Rn0 ,R
′
n0 and all T n0 ∈ {0, 1}

n0 .

2Also called the forcing variable (Imbens & Lemieux, 2008), or the running variable (McCrary,
2008).
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4. Local Monotonicity (LM) (Hahn, et al. 2001): Ti(A
(r0+ε)
r0 ) ≥ Ti(A

(r0−ε)
r0 )

for some ε > 0 and all i ∈ Lεn0(r0).

5. Local Randomization (LR) (Lee, 2008): Every subject has "imprecise con-
trol" over the assignment variable R, in the sense that the c.d.f. FR(r|w) =
Pr(R ≤ r|w) is continuous in r at r0, and 0 < FR(r0|w) < 1, for every subject
that is uniquely identified by a value w of the latent variable W. Then, the
treatment assignments A(Ri)r0 are "as good as randomized" in a region around
the cutoff (r0), in the sense that Fx(x|r) and FW (w|r) are each the same just
below and just above r0, and that conditional expectations E[h{Y (0)}|r] and
E[h{Y (1)}|r] are continuous in r at r0, for all h{·} (Imbens & Lemieux, 2008).

Since in a sharp RD design, E(T |R = r) = Pr(T = 1|R = r) = 1(r ≥ r0) =

A
(r)
r0 = T (A

(r)
r0 ), the design trivially satisfies RD, LER, and LM, with treatment or

non-treatment receipt determined by a step function (implying assumption RD),
and with full treatment compliance (implying LER and LM). With LS, a RD design
only requires that SUTVA hold for only for the subset of subjects located around
the cutoff, i.e., Lεn0(r0) for some ε > 0, as opposed to SUTVA holding for all subjects
in a given study. LS and LER, together, imply that exists some ε > 0, such that

for the subset of subjects in Lεn0(r0), the potential outcomes Yi(A
(Rn0 )
r0 ,T n0) can

be re-written as Yi(t), t = 0, 1, so that Yi(1) − Yi(0) gives the causal effect of
T on Y ; imply that ITTi = Yi(1, Ti(1)) − Yi(0, Ti(0)) = Yi(Ti(1)) − Yi(Ti(0)) =
(Yi(1)−Yi(0))(Ti(1)−Ti(0)), meaning that for a complier, ITTi = Yi(1, 1)−Yi(0, 0) =
Yi(1) − Yi(0) (Angrist, et al. 1996). Assumptions RD, LS and LM together imply
that around the cutoff r0, the treatment assignment A has a positive causal effect on
treatment receipt T , with E[Ti(1)− Ti(0)|r0] = limr↓r0 E(T |r)− limr↑r0 E(T |r) > 0.
The LR assumption also implies that the viability of a RD design can be evaluated
through a test of the null hypothesis that the marginal density f(r) of the running
variable, over all subjects, is continuous at r0, against the alternative hypothesis
of discontinuity (McCrary, 2008). Though, for each data set we analyze for the
present study, the assignment variable is not precisely manipulable by any one of
the subjects. In the first data set, time is the assignment variable. In the second
data set, the assignment variable is a test score. Arguably, each examinee does not
know exactly how many correct item responses s/he obtained on the test, and how
many are needed in order to attain the minimum (cutoff) passing score on the test.

All five assumptions, together, imply that, for the compliers around a cutoff (r0),
the causal effect (τ) of treatment (T = 1) versus non-treatment (T = 0) is:

τ = E[Yi(1)− Yi(0)|r0 and i is a complier] =
E[Yi(1, Ti(1))− Yi(0, Ti(0))|r0]

Pr[Ti(1)− Ti(0)|Ri = r0]
(1a)

= lim
ε↓0

E[Yi(1)− Yi(0)|Ti(A(r0+ε)r0 )− Ti(A(r0−ε)r0 ) = 1] (1b)

=
limε↓0 E[Yi(A

(r0+ε)
r0 , Ti(1))− Yi(A(r0−ε)r0 , Ti(0))]

limε↓0 Pr[Ti(A
(r0+ε)
r0 )− Ti(A(r0−ε)r0 ) = 1]

(1c)

=
limr↓r0 E[Y |r]− limr↑r0 E[Y |r]

Pr[i is a complier |r0]
=

limr↓r0 E[Y |r]− limr↑r0 E[Y |r]
limr↓r0 E[T |r]− limr↑r0 E[T |r] . (1d)

For ε > 0 suffi ciently small, the conditioning event Ti(A
(r0+ε)
r0 ) − Ti(A(r0−ε)r0 ) = 1 in
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(1) refers to the subgroup of subjects, the compliers, for whom treatment changes
discontinuously at the cutoff r0. The numerator of (1) is the average ITT causal
effect of A on Y , for the subgroup of subjects located at r0. RD and LM together
ensure that the denominator of (1) is positive, and therefore is the probability that
a given subject is a complier at r0 (Hahn, et al. 2001). In a sharp RD design that
involves perfect compliance, the denominator in (1) becomes 1. Then the causal
effect of T on Y at r0 coincides with the average ITT causal effect of A on Y at
r0, with τ = limr↓r0 E[Y |R = r]− limr↑r0 E[Y |R = r]. The two real data sets of the
present study involve sharp RD designs.

All five assumptions together, also imply that equation (1) provides an estimator
of the causal effect of T on Y , for any chosen of functional h{·} of Y (Imbens &
Lemieux, 2008). So causal effects not become only identifiable in terms of differences
in mean outcomes as in (1) (i.e., when h{Y } = Y ), but also in terms of the difference
in the variances of the outcomes Var[Yi(1)|r0; i complier]−Var[Yi(0)|r0; i complier];
the difference in the c.d.f.s of the outcomes FY (1)(y|r0; i complier)−FY (0)(y|r0; i complier)
at any chosen point y (corresponding to the choice h{Y } = 1(Y < y)); the differ-
ence in their quantiles F−1Y (1)(u|r0; i complier)−F

−1
Y (0)(u|r0; i complier) at any chosen

point u ∈ [0, 1] (i.e., a c.d.f. inverse at a probability point); the difference in the
probability densities fY (1)(y|R = r) − fY (0)(y|R = r) at any chosen point y (i.e., a
c.d.f. derivative at y); and so on for any other functional of Y .

3 Estimating Causal Effects In a RD Design

The early work on estimating causal effects from a sharp RD design relies on least-
squares, linear polynomial modeling of observed outcomes y on observed values of
the assignment variable r, which allows for a discontinuity at a cutoff r0 (e.g., Cook,
2008). Such a linear model has the general form:

yi = β0 + β1(ri) + τa(ri)r0 + β2(ri)a
(ri)
r0 + εi, εi ∼ n(0, σ2), (2)

where the coeffi cient τ represents the average causal effect at r0; while βk(r) =∑qk
l=1 βklr

l is the polynomial term of integer order q ≥ 1; and n(·|0, σ2) is a density of
the normal distribution. The (strictly) linear model corresponds to the assumption
that q1 = 1 and β2(r) = 0; a more general polynomial model corresponds to a choice
of integer q1 ≥ 1 and assumes β2(r) = 0; whereas a model that allows for separate
linear or polynomials for either side of the cutoff r0 allows for non-zero β1(r) and
β2(r) with general choices of positive integers q1 and q2, respectively (Bloom, 2012).

During the 1960s and 1970s it was recognized that the linear model (2) can
produce biased estimates of the causal effect τ , even due to outliers of yi that cor-
respond to observations ri that are located far away from a cutoff r0 (Cook, 2008).
Therefore, for estimating the causal effect τ from a sharp RD design, the local linear
model (Fan & Gijbels, 1996) has been proposed, using a bandwidth parameter that
assigns relatively higher weights to observations (yi, ri) corresponding to ri values
close to the cutoff r0 (Hahn et al. 2002; Imbens & Lemieux, 2008). This model
can be extended to outcome indicators h{Y } = 1(Y < y), in order to provide a
quantile regression and estimates of causal effects in terms of Y quantile compar-
isons (Frandsen et al., 2008). Also, these local linear models can be extended to
estimate the causal effect τ in a fuzzy RD design. This estimation, equivalent to a
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2-stage least-squares estimation of an instrumental variable model, involves a local
linear regression for the outcome Y on R to estimate the limits in the numerator
(1), and a separate local linear regression for the outcome T on R estimate the
limits in the denominator of (1) (Imbens & Lemieux, 2008; Frandsen et al., 2008).
Though, for either a sharp or a fuzzy RD design, while the accuracy of causal effect
estimates from a local-linear model depends critically on the choice of bandwidth
parameter, only large-sample justifications have been provided for such choices (Im-
bens & Kalyanaraman, 2012). Moreover, the quantile regression local linear model
suffers from the "quantile crossing" problem (Bassett & Koenker, 1982), and relies
on a large-sample ad-hoc resorting correction as a solution. Finally, methods have
been proposed to estimate and perform randomization tests of causal effects, for the
subset of locally-randomized subjects in Lεn0(r0). The subset is based on the largest
value of ε > 0 that leads to a non-rejection of the null hypothesis of zero effect of T
on Xk, for subject pre-treatment variables k = 1, . . . , p (Cattaneo, et al. 2013; Sales
& Hansen, 2013; Li et al. 2013). However, the presence of hidden bias can affect
the estimate of ε, and thus, affect the estimates and tests of the causal effect τ .

Our Bayesian nonparametric regression model (Karabatsos & Walker, 2012) can
be extended to RD settings, in order to provide estimates of causal effects, in terms
of how changes in the treatment variable impact the mean, variance, quantiles, c.d.f.,
p.d.f., hazard function, and other functionals of the potential outcome variables. For
the sharp RD design, our Bayesian nonparametric model is given by:

f(yi|ri, a(ri)r0 ) =
∞∑

j=−∞
n(y|µj , σ2j )ωj(ηω(ri), σω(ri)), i = 1, . . . , n, (3a)

ωj(ηω(r), σω(r)) = Φ({j − ηω(r)}/σω(r))− Φ({j − 1− ηω(r)}/σω(r)) (3b)

ηω(r) = β0ω + βω1r + βω2a
(r)
r0 (3c)

σω(r) = λ0ω + λω1r + λω2a
(r)
r0 (3d)

(µj , σ
2
j ) ∼ n(µj |µµ, σ2µ)ig(σ2j |1, bσ) (3e)

(µµ, σ
2
µ) ∼ n(µµ|µ0, σ20)un(σµ|0, bσµ) (3f)

(bσ,βω,λω) ∼ ga(bσ|a0, b0)π(βω,λω) (3g)

where the mixture weights ωj(ηω(r), σω(r)) sum to 1, at every value of r; ga(·|a, b) is
the density of the gamma distribution with shape and rate parameters (a, b); ig(·|a, b)
is the inverse gamma density; and un(·|0, b) is the uniform distribution density. The
model allows the entire probability density of the outcome variable to change flexibly
as a function of covariates. Also, the model has a discontinuity at r0 due to the
presence of a(ri)r0 in both (3c) and (3d). The effect, controlled by the coeffi cients
(βω,λω), is to reallocate the weights either side of r0, resulting in different densities
either side of this value. Obviously, there is a discontinuity if and only if each of the
coeffi cients (λ2ω, β2ω) are non-zero. Moreover, when prior information is limited, we
may specify vague prior hyper-parameters µ0 = 0, σ20 →∞, a0 → 0, b0 → 0, with a
large-variance multivariate normal prior density π(βω,λω) = n(βω,λω|0, 105Ip+1),
along with a choice of prior parameter bσµ corresponding to prior knowledge about
the range of Y . Alternatively, given that in order to create a discontinuity we only
need λω2 = βω2 = 1, we may assign a β ∼ Bernoulli(1/2) prior to β = λω2 = βω2.

Our model (3) has infinite-dimensional parameter, Γ = ((µ, σ2j )
∞
j=−∞, µµ, σ

2
µ,
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bσ, βω, λω). A set of data Dn = {yi, ri, a(ri)r0 }ni=1 updates the joint prior density
π(Γ) to a posterior density, given by π(Γ|Dn) ∝

∏n
i=1 f(yi|ri, a(ri)r0 ; Γ)π(Γ) up to a

proportionality constant. Then:

En(y|r, a(r)r0 ) =

∫ {∫
yf(y|r, a(r)r0 ; Γ)dy

}
dΠ(Γ|Dn)

gives the posterior predictive expectation of the outcome y, conditionally on the as-
signment variable (r) and on the treatment assignment (a(r)r0 ). If all five assumptions
hold for the sharp RD design, then a posterior predictive estimate of the causal ef-
fect of T on Y is given by τ̂h = En(h{y}|r0, 1)−En(h{y}|r0, 0), for any given choice
of functional h{·}. The posteriors π(Γ|Dn) and En(h{y}|r, a(r)r0 ) can be estimated by
using the existing Markov Chain Monte Carlo (MCMC) Gibbs sampling methods
(Karabatsos & Walker, 2012), along with a Metropolis sampling step for σ2µ.

Our model (3) can be easily extended to analyze data from a fuzzy RD design,
where the key identifying LM and ER assumptions do not necessarily hold. This
extension involves estimating bounds of the causal effects τh, with respect to a range
of violations of these unverifiable (untestable) assumptions (Angrist et al., 1996).
The Appendix provides more details and motivations.

4 Illustrative Applications

Here we report the analysis of two data sets, using our Bayesian model under the
prior specification bσµ = 5, and under the vague prior specifications for all other
model parameters. For each data set, the reported posterior estimates are based
on 40K MCMC samples, obtained by retaining every 5th sample of a 200K MCMC
sample run after a 2K sample burn-in. As a result, univariate trace plots showed
good mixing of all model parameters, and parameter estimates had 95% MCMC
confidence intervals of size near .00.

For the first data set, the aim is to estimate the effect of the new teacher ed-
ucation curriculum on math teaching ability, among teacher education students
attending one of the four Chicago universities. This data set involves a sharp RD
design, specifically an interrupted time-series design (Cook & Campbell, 1979, Ch.
5), where time is the assignment variable, ranging from fall semester 2007 through
spring semester 2013. Fall semester 2010 is the cutoff that represents the first
time that the new curriculum (treatment) was instituted into the university. Thus,
the old teacher curriculum (the non-treatment) was active before that time point.
The outcome variable is the number-correct score on a 25-item, Learning Math for
Teaching (LMT) test (University of Michigan). The LMT score was obtained from
each undergraduate teacher education student, who had just completed a course in
teaching algebra. A total of n = 347 undergraduate students completed the LMT
test. Among all these students, the test has a Cronbach’s alpha reliability estimate
of .63; 135 students completed the test during the old curriculum, and 212 students
completed the test during the new curriculum; most were female (89.9% female;
94.1% female pre-Fall 2010 intervention; 87.3% female post intervention), and the
average LMT score was 12.9 (s.d.= 3.44; pre-Fall 2010 intervention: mean=13.53,
s.d.=3.26; post-Fall 2010 intervention: mean=12.49, s.d.=3.49).

Using the Bayesian model, we analyze the data to estimate the effect of the new
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Figure 1: Posterior predictive density estimates of Y (1) (red) and of Y (0) (blue).

curriculum, on student ability to teach math (LMT assessment score), at the cutoff
time of Fall 2010. For the model, we specified the z-transformed score on the LMT
assessment, as the outcome (dependent) variable, and we specified covariates of the
assignment variable TimeF10 = (Year − 2010.9)/10 and the treatment assignment
variable CTPP = 1(Year ≥ 2010.9), with time point 2010.9 referring to Fall semester
2010. Our model displayed good fit to these data. Over all 347 observations, the
standardized residuals ranged from −0.84 to 0.77, and the posterior mean estimate
of R-squared was .92. From our model, Figure 1 presents the posterior predictive
density estimate of the LMT outcome, for the new curriculum (treatment) and
for the old curriculum (non-treatment), at Fall 2010. There, we see that the new
curriculum, compared to the old curriculum, tended to increase the LMT scores, in
terms of shifting the density of LMT scores to the right. This shift corresponds to
an increase in the mean (from .17 to .20), the 10%ile (−1.43 to −1.35), the median
(.07 to .15), and to a variance decrease (1.78 to 1.69).

The second data set, from another sharp RD design, involves n = 205 under-
graduate teacher education students, each of whom entered into one of the four
Chicago area schools of education during either the years of 2010, 2011, or 2012.
It is of interest to investigate whether or not basic skills has an impact on teacher
performance (e.g., Gitomer & Brown, 2011). This is because nearly all U.S. schools
of education base their undergraduate admissions decisions on each applicant’s abil-
ity to pass basic skills tests. Here, the assignment variable is defined by the score
on an Illinois test of reading basic skills, with minimum cutoff passing score of 240.
The outcome variable is the score on the 50-item Haberman (2008) Teacher Pre-
screener assessment of urban school teaching dispositions. A score in the 40-50 range
indicates a very effective teacher. Haberman assessment scores have a test-retest
reliability of .93, and have a 95% accuracy rate in predicting which teachers will
stay and succeed in the teaching profession (Haberman, 2008). Many urban schools
currently use the Haberman Pre-screener to score individuals who are applying for
teaching positions. Among all the 205 students of the RD design, 90% were female;
the average age is 22.5 (s.d.=5.35; min=19.1, max=56.6; n = 203); 47%, 21%, 10%,
and 22% attended the four universities, respectively; 49%, 41% and 10% were re-
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spectively in the 2010, 2011, or 2012 cohort; the average reading basic skills score
is 204.69 (s.d.=33.7; min=137; max=293); and the average Haberman Pre-screener
score is 29.82 (s.d.=4.32, min=14, max=42).
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Figure 2: Posterior predictive density estimates of Y (1) (red) and of Y (0) (blue).

Using the Bayesian nonparametric regression model, we analyze the data to es-
timate the effect of passing the reading basic skills exam on students’ ability to
teach in urban schools. For the model, we specified the outcome (dependent) vari-
able as the z-score-transformed Haberman score, and we specified covariates of the
assignment variable Rd240 = (Read − 240)/10 and reading score passing (assign-
ment) indicator ReadPass = 1(Read ≥ 240), where Read is the basic skills reading
score with minimum passing cutoff score of 240. Our model displayed good fit to
these data. Over all 205 observations, the standardized residuals ranged from −1.7
to 1.22, and the posterior mean estimate of R-squared was .98. From our model,
Figure 2 presents the posterior predictive density estimates of the Haberman score,
for passing the basic skills reading test (treatment) and for not passing the test
(non-treatment), at basic skills score 240. There is a bimodal density of Haberman
scores, for passing the test, and for not passing the test, with the two modes in-
dicating groups of students who scored below and above average, respectively. For
the Haberman score, the densities correspond to an increase in mean (from .13 to
.26), median (.05 to .28), 75%ile (.97 to 1.43), 90%ile (1.66 to 2.21), 95%ile (2.13 to
2.82), and variance (1.60 to 3.36); and to a decrease in 5%ile (−1.74 to −2.38) and
10%ile (−1.30 to −1.70).
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Appendix: Bayesian Nonparametric Modeling of a Fuzzy RD Design

Our model (3) can be extended for the analysis of data arising from a fuzzy
RD design, involving imperfect treatment compliance among the subjects. This
extension involves estimating bounds of the causal effect τ , with respect to a range
of violations of the LM and ER assumptions (Angrist et al., 1996). There are two
compelling motivations to using this approach for a fuzzy design. First, the causal
effect estimator (1) does not identify the subset of compliers around the cutoff
r0 (e.g., Angrist et al., 1996). Thus, it is not possible to empirically verify the
accurate estimation of Pr[i is a complier|r0] in the denominator of the estimator
(1). Second, the identifying local monotonicity (LM) and local exclusion restriction
(LER) assumptions are questionable, and not even empirically verifiable in such a
design. Therefore, it seems more useful to estimate upper and lower bounds for
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the effect τ , instead of obtaining specific estimates of the causal effect τ under such
explicit unverifiable assumptions (Robins & Greenland, 1996; Balke & Pearl, 1997).
The methods for estimating such bounds are described as follows.

Recall that under LS, we may define for all ε > 0 of the potential treatment re-
ceipt outcomes (Ti(A

(r0−ε)
r0 ), Ti(A

(r0+ε)
r0 )), a complier as a subject with (Ti(1), Ti(0)) =

(1, 0); but also we may define a defier as a subject with (Ti(1), Ti(0)) = (0, 1), a
never-taker as a subject with (Ti(1), Ti(0)) = (0, 0), and an always-taker as a sub-
ject with (Ti(1), Ti(0)) = (1, 1) (Imbens & Lemieux, 2008). Also, recall that LS
and LER, together, imply that there exists some ε > 0 such that for all subjects
i ∈ Lεn0(r0), the following relation holds between ITT causal effect A on T , and
the causal effect Yi(1) − Yi(0) of T on Y : ITTi = Yi(1, Ti(0)) − Yi(0, Ti(0)) =
Yi(Ti(1))− Yi(Ti(0)) = (Yi(1)− Yi(0))(Ti(1)− Ti(0)). Then by using the preceding
formula, it is easy to show that for the same set of subjects, the ITTi effect for a
complier coincides with the causal effect Yi(1)−Yi(0) of T on Y ; the ITTi effect for
a defier is equal to the negative causal effect of T on Y, i.e., −(Yi(1) − Yi(0)); and
for either a never-taker or an always-taker, the ITTi effect and the causal effect of
T on Y are equal zero. Also, the average ITT effect of A on T , and the average
causal effect of T on Y , have the relationship:

E[Yi(1, Ti(1))− Yi(0, Ti(0))|r0] = E[(Yi(1)− Yi(0))(Ti(1)− Ti(0))|r0]
= E[Yi(1)− Yi(0)|r0, Ti(1)− Ti(0) = 1] Pr[ Ti(1)− Ti(0) = 1|r0]
−E[Yi(1)− Yi(0)|r0, Ti(1)− Ti(0) = −1] Pr[Ti(1)− Ti(0) = −1|r0]

= E[Yi(1)− Yi(0)|r0 and i is a complier] Pr[i is a complier|r0]
−E[Yi(1)− Yi(0)|r0 and i is a defier] Pr[i is a defier|r0],

with Pr[i is a complier|r0] + Pr[i is a defier|r0] + Pr[i is a never-taker|r0] + Pr[i is an
always-taker|r0] = 1 (e.g., Angrist et al. 1996).

Given these facts, we may estimate the bounds of the causal effect of τ with
respect to a plausible range of violations of the LER assumption. We have that
under assumptions RD, LS and LM, E[Ti(1) − Ti(0)|r0] > 0, and also the causal
effect of T on Y at r0 becomes:

τ(c) = E[Yi(1, Ti(1))− Yi(0, Ti(0))|r0]/c

+
1− c
c

E[Yi(1, Ti)− Yi(0, Ti)|r0 and i is a non-complier],

where c = Pr[i is a complier|r0], and (1 − c) = Pr[i is an always-taker|r0] + Pr[i is
a never-taker|r0] < 1/2, since Pr[i is a defier|r0] = 0 under LM. Then under the
same assumptions, and for any functional h{·} of Y of interest, these bounds are
estimated by evaluating:

τ̂h(c) = [En(h{y}|r0, 1)− En(h{y}|r0, 0)]/c

+
1− c
c

E[h{Yi(1, Ti)} − h{Yi(0, Ti)}|r0 and i is a non-complier]

over a range of plausible hypothetical values for the probability c = Pr[i is a
complier|r0] ≥ 1/2, given a hypothetical ITT effect E[h{Yi(1, Ti)} − h{Yi(0, Ti)}|r0
and i is a non-complier] for the always-takers and never-takers at r0, and given
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posterior predictive estimates En(h{y}|r0, a) (a = 0, 1) of the Bayesian model (3).
We may also estimate the bounds of the causal effect of τ with respect to a

plausible range of violations of the LM assumption. Let

λ = Pr[i is a defier|r0]/{Pr[i is a complier|r0]− Pr[i is a defier|r0]} = c/(c− d).

Then under RD, LS, and LER, and for any functional h{·} of Y of interest, these
bounds are estimated by evaluating:

τ̂h(c, d) = (1 + λ)E[h{Yi(1)} − h{Yi(0)}|r0 and i is a complier]
−λE[h{Yi(1)} − h{Yi(0)}|r0 and i is a defier]

= (1 + λ)([En(h{y}|r0, 1)− En(h{y}|r0, 0)]/Pr[i is a complier |r0])
−λ([En(h{y}|r0, 1)− En(h{y}|r0, 0)]/Pr[i is a defier |r0]),

over a range of plausible hypothetical values of the probabilities 0 < Pr[i is a
defier|r0] < Pr[i is a complier|r0] ≤ 1 (Angrist et al., 1996), given the posterior
predictive estimates En(h{y}|r0, a) (a = 0, 1) of our model (3).
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