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Graph-Theoretic Analysis of Complex Stochastic Networks

David H. Collins* Aparna V. Huzurbazar

Abstract

We describe the use of graphs to represent Markovian and semi-Markovian stochastic networks,
and how the interplay of visual and algebraic properties of the graphs aids in the determination of
quantities such as first passage times. We also show how Markovian stochastic processes are special
cases of generalized flowgraphs, with other special cases ranging from transportation networks to
representations of finite automata. This leads to the formulation of general algorithms for graph
reduction that can be expressed in terms of either visual or matrix-algebraic properties of the graph.
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1. Introduction

In this paper we survey the use of graphs to represent networks of entities which are, in
some sense, stochastic. Emphasis is on the use of several complementary representations of
graphs to aid in conceptualizing problems and determining quantities such as first passage
times. We use the terms “graph” and “network” interchangeably.!

We consider finite graphs § with vertex sets V' (9) = {1,2,...,n} and edge sets E(9)
with elements (i, j) (ordered pair) if G is a directed graph, and {7, j} (unordered pair) if it
is undirected. Unless otherwise indicated, we assume that G has no self-loops, and there is
at most one edge joining any two vertices ¢, j.

Stochastic networks imply the existence of mappings that associate graph vertices and
edges with random variables (RVs). Specifics of the association may vary—e.g., in the
graph of a stochastic process, vertices represent states, with the associated random variables
being probabilities of occupying a given state; edges represent transitions between states,
with the associated RVs being waiting times prior to the transitions. For simplicity, where
no confusion will result, we will talk about relations (e.g., independence) between edges
and vertices as a shorthand for the corresponding relations between RVs.

The interplay of topological, algebraic, and visual properties of graphs provides a pow-
erful set of tools for guiding intuition and solving problems that can be represented using
graphs. This is illustrated by a huge variety of stochastic graph applications: multistate pro-
cess analysis (Markov and semi-Markov models) (Huzurbazar (2005)); communications
and computer networks (Satyanarayana and Hagstrom (1981)); reliability analysis, using
representations such as reliability block diagrams and cut/path sets (Rausand and Hgyland
(2004)); electrical and electronic circuits represented as signal flow graphs (Mason (1953),
Doyle and Snell (1984)); social network analysis (Wasserman and Faust (1994)); epidemi-
ology (Marathe and Vullikanti (2013)); project planning graphs (Pritsker (1977)); causal
graphical models (Pearl (2009); Markov random fields (Koller and Friedman (2009)); and
many others. In addition to inherently discrete graph models, discrete graph models may be
useful analogues of models in continuous spaces; e.g., a diffusion process is the continuum
limit of a discrete random walk (Ghez (2010)).

*dcollins@lanl.gov; both authors are with the Statistical Sciences Group, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA.

!'Some authors distinguish the two, but we have not found any definition of “network” that is used consis-
tently.
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Figure 1: The graphs G; and Go.

1.1 Power of graph representations

As a mathematical discipline, graph theory is quite abstract, and many important results
have no obvious physical interpretation. Yet two leading mathematical graph theorists,
Hartsfield and Ringel (2003), say “[Graph] vertices are elements of an abstract set, and
the edges are pairs of elements of the set. However, every graph theorist in the world
visualizes the graphs as structures where the vertices are points and the edges are lines.” As
an example of this point, consider the following two graphs: G, with vertex set V(G;) =
{1,2,3,4} and edge set £(G1) = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}; and G, with
V(92) = {a,b,c,d} and E(92) = {(a,b), (a,c), (a,d), (b,c), (b,d), (c,d)}. Now, is G; a
planar graph? Are G; and Go isomorphic? These are not difficult questions to answer from
the abstract set representations, but verifying the answers is certainly not trivial. Yet the
answers are immediately apparent from a visual representation (see Figure 1). One can see
that both graphs are projections of the tetrahedron onto the plane, thus planar (of course
planarity, the ability to be drawn on the plane with no line crossings, is an inherently visual
property). It is also obvious that both §; and G5 are complete graphs on four vertices, thus
isomorphic.

In Section 3 we discuss other representations of graphs, using matrices. The ability to
select the representation(s) that best allow reasoning about properties of interest is a key
reason why graph theory has such a wide range of applications.

2. Stochastic networks

Stochastic networks are directed or undirected, possibly cyclic, graphs in which vertices
represent states or entities, and edges represent transitions between states or relations be-
tween entities. Edges may be temporal or spatial, representing the time/distance for a
transition between states, or a property of the relation between entities. Entity graphs may
be temporally static, e.g., a graph representing road distance between cities. States may be
vector- or graph-valued; e.g., in a graph representing the evolution of a social networks,
each vertex may be a graph representing the state of the network at a given point in time.

Edges in a stochastic network are, in some sense, stochastic; for example, an edge may
represent the random waiting time to make a transition between states, or the random dis-
tance (or cost) to traverse space between destinations represented as graph vertices. As ex-
amples, consider communications networks, social networks, epidemic maps, or reliability
block diagrams, in which the vertices represent entities; and disease progression, hardware
degradation, language parsing, and wildfire progression, where edges may be thought of as
transitions between states of a progress, or (for disease and wildfire progression) movement
between spatial points to which the process has advanced.
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Figure 2: The Markov property.

2.1 Markovian networks

The most desirable stochastic network representations are those that are reasonably faith-
ful to the problem domain, while remaining mathematically tractable. In most cases, the
property characterizing such networks is that they are Markovian.

The general property characterizing a Markovian network is that any two disjoint sets
of vertices are conditionally independent given a separating subset (a separating subset
8 C V(9) partitions V(9) into A, 8, B such that A N8 N'B = (), and every path between
a vertex in A and a vertex in B passes through 8). In a first-order Markovian network,
the smallest separating subset between any two disjoint sets of vertices contains a single
vertex. Unless stated otherwise, we assume the first-order property.

Figure 2 illustrates the first-order Markov property in a directed graph—given that the
system occupies, say, state j, its further evolution does not depend on the fact that the
previous state is ¢, or on any of the previous states; in this case the separating subset is
just {j}. Markov random fields (Koller and Friedman (2009)) are examples of undirected
Markovian networks.

A temporal statement of the Markov property is that the future is independent of the
past, given the present (a temporal network implies a directed graph, but many important
cases are reversible, i.e., the network has the same statistical characteristics if all the di-
rected edges (arrows) in the graph are reversed (Kelly (1979)). Though this property may
seem limiting, it has great power, as this well-known quote from Laplace illustrates: “We
may regard the present state of the universe as the effect of its past and the cause of its
future” Laplace (1951); all the deterministic dynamical systems of classical physics are
Markovian.

Important examples of Markovian multistate models include

e Discrete time Markov chain (DTMC): transition times identically constant = 1, com-
pletely determined by the transition probabilities p;;.

e Continuous time Markov chain (CTMC): transition times ~ exp(J;), completely
determined by transition rates \;j, ) y Nij = i3 Dij = Nij/ M.

e Semi-Markov process (SMP): transition times arbitrarily distributed ~ Fj;, com-
pletely determined by p;; and Fj;.

Note that the SMP class includes CTMCs, where F;; ~ exp();), which in turn includes
DTMCs, where Fj; ~ exp(d(0)). These may also be used to model spatial networks,
where instead of transition time distributions, we have spatial distance distributions.

3. Matrix representations of graphs

Kepner and Gilbert (2011) assert that “The duality between the canonical representation
of graphs as abstract collections of vertices and edges and a sparse adjacency matrix rep-
resentation has been a part of graph theory since its inception” (p. 3). This may not be
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Figure 3: A directed graph and its adjacency matrix.

strictly true (graph theory is usually held to date from Euler’s Kénigsberg bridge problem,
a century before the formal development of matrix algebra), but certainly in modern times,
matrices are indispensable for representing and solving large graph problems.

We summarize some of the important matrix representations of graphs. The adjacency
matrix A, where a;; = 1 if there is an edge ¢ — j expresses the (unweighted) connectivity
of the graph. For a graph with edge weights w;;, it is often convenient to define a;; = w;;.
Note that A is symmetric for an undirected graph. Figure 3 shows a directed graph and its
adjacency matrix. In a graph with n vertices, [Zzzl Ak] = 1 if ¢ is reachable from j,
where sums and products are taken in the Boolean sense. This can be used, for example,
to evaluate connectivity in a message-passing network. If graph edges are weighted to
represent, say, costs, then min,, <, [ka:1 Ak] ij > 0, where the product is taken in the
conventional matrix sense, is the minimum cost to get from ¢ to j.

The degree matrix D is a diagonal matrix, where d;; is the degree of ¢ (number of
incident edges). For a directed graph, d;; may be the in-degree, out-degree, or total incident
degree, depending on the application. For a weighted graph, d;; may be the total of weights
on incident edges, i.e., d;; = Y, w;; (or dy; = ; wji for in-weights).

The Laplacian matrix L = D — A is the discrete analogue of the continuous Lapla-
cian V? (Doyle and Snell (1984)). It is fundamental for solving discrete random walk and
resistance distance problems, among others (cf. Section 5.1). There are other fruitful analo-
gies to vector-calculus concepts as well: one can define discrete versions of the gradient,
divergence, curl, potential function, and harmonic function on graphs, with the standard
interrelationships; for example, the summed gradient of a potential is zero over any closed
path in the graph. Jiang et al. (2011) provide a detailed introduction to these vector-calculus
analogues.

Other useful matrix representations include the incidence matrix, where ¢;; = 1 if
edge e; is incident on vertex v;; the circuit matrix, relating circuits (closed paths with no
duplicated vertices or edges) to edges; the cut-set matrix, relating cut sets to edges, where a
cut set is a minimal set of edges that partitions the graph; and the path matrix, relating paths
to edges. See, e.g., Busacker and Saaty (1965), for more information on these matrices and
their applications to transportation networks, reliability analysis, etc.

3.1 Matrix representations of Markovian graphs

For a DTMC, the analogue of the adjacency matrix is the transition probability matrix
P = [pi;], where p;; is the one-step ¢ — j transition probability. [> ,_; P, = pz(?)
is the n-step ¢ — j transition probability. This matrix is fundamental to all Markovian

stochastic processes.
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For a CTMC the transition rate matrix is A = [\;;], where \;; is the ¢ — j transition
rate. P is derivable from this using p;; = \;; /> j Aij. It follows from the constant ex-
ponential hazard (intensity) that we can solve for P(¢), the matrix of time-dependent state
occupancy probabilities, with a simple system of constant-coefficient linear differential
equations (Ross (1996)):

dP(t)
= = AP()

P(t) = exp(tA).

The analogous formulation for an SMP is a system of integral renewal equations (Ross
(1992)); these can be solved using Laplace transforms (see Section 4.3).

For an SMP, the Semi-Markov kernel is Q = ¢;j, where ¢;; = p;;F;; and Fj; is the
1 — j waiting time distribution. [Q*(”)]ik is the n-step ¢ — k passage time distribution;
*(n) represents the n-fold convolution product whose Laplace transform is £", where £
is the elementwise Laplace transform of Q; see Warr and Collins (2012) and references
therein for matrix methods applied to Q and £]Q)].

4. Graph reduction in directed Markovian networks (flowgraphs)

The term “flowgraph” comes from electrical engineering, where these methods were orig-
inally developed (Mason (1953)). This is not the only productive electrical analogy for
stochastic networks; see Section 5.1, and also Kelly (1979), Doyle and Snell (1984), and
Grimmet (2010). Using the semi-Markov process as an example (Huzurbazar (2005),
Collins and Huzurbazar (2013)), in the electrical network analogy the transmittance of an
edge (7, 7) in the directed graph is p;;£;;(s), the Laplace transform of the corresponding
element in the semi-Markov kernel (see Section 3.1).

Given a transmittance for each transition (edge), the flowgraph can be reduced to a
single transmittance, the transform of the distribution of first passage times between any
two states, using the following three graph reduction rules.

For transitions ¢ — j — k in series, where the waiting time in ¢ before transition to
J is the random variable X;; and the j — k waiting time is X, the 7 — k waiting time
is X, = Xj; + X}, with probability density function f;; x fjx(x), the convolution of
the ¢ — j and j — k waiting time pdfs. Since the Laplace transform maps convolution
to multiplication, the first reduction rule is: The transmittance of transitions in series is
the product of the series transmittances. For example, in the graph in Figure 4, £;;(s) =

Lij(8)Ljk(s).

Figure 4: Flowgraph with serial transitions.

Figure 5 adds a second transition in parallel to the 7 — j transition. From the linearity
of the Laplace transform, the second reduction rule immediately follows: The transmittance
of transitions in parallel is the sum of the parallel transmittances. Applying Rule 2 to
Figure 5, the ¢ — j transmittance is p£;;(s) + (1 — p)£;;(s). Figure 6 shows the reduction
of a graph with both series and parallel transitions.

Figure 7, adding a loop to the series flowgraph of Figure 4, illustrates the third reduction
rule. The possible paths for a first passage from state ¢ to state k are: ¢ — j — k,
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Figure 5: Flowgraph with parallel transitions.
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Figure 6: Graph reduction with series and parallel transitions.

1= j—=1—=>j—k,i—>j—>1i—>j5—>1—j— k,..., (zero or more traversals
of the loop ¢ — 5 — ¢ followed by a direct passage to k). The third rule reduces this to
a single transmittance: The transmittance of a loop is the sum of infinitely many parallel
transmittances, one for each possible sequence of loop iterations.

£ »(7) Pk =@
pjigji

Figure 7: Flowgraph with feedback loop.

Applying this to Figure 7, the event of ¢ — k first passage occurs given one of the
events ‘4 — j — k occurs after n traversals of the ¢ — j — ¢ loop,” n = 0,1, ... Since
these are parallel paths, we have

Lii(8)pjrLin(s)

. 1
1 — £j(8)pjiLiiu(s) M

Lin(s) = Lij(s)pjnLin(s) (€45 (s)psiLyi(s)]" =

n=0

Since p;; < 1 (otherwise the loop would never be left), |£;;(s)p;i£i(s)| < 1 for s in some
open interval about 0, which justifies the summation of (1) as a geometric series.

For directed graphs of any complexity, these rules can be applied in the form of a gen-
eral algorithm called Mason’s rule (Mason (1953, 1956), Huzurbazar (2005)) to compute
the transform of the distribution of first passage times in Markovian graphs, or analogous
quantities in other types of graphs.
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This reduction algorithm generalizes to any graph whose edge weights combine with an
appropriate algebra. Other examples include finite automata for parsing regular expressions
(Kozen (1997), Csenki (2008), Csenki (2009)); software complexity analysis (McCabe and
Butler (1989)); and multiplicative flowgraphs (see Sections 4.2 and 4.3).

4.1 Matrix example - movement of corporate bond ratings

Figure 8 shows a flowgraph for the year-to-year movement of Standard & Poor’s ratings
of U.S. corporate bonds; state labels are S & P bond ratings, with “D” being default of the
obligation by its issuer. Markov transition rates for this graph were estimated from S & P
credit reviews by Jarrow et al. (1997); interest lies in the cumulative probability of default
for a bond with a given current rating. Given the number of states and transitions, solution
by matrix methods is an alternative to the topological analysis of Section 4. See Collins
and Huzurbazar (2013) for details of the solution, both by differential equations and by
flowgraph reduction. On the right in Figure 8 is a typical output from the analysis.
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Figure 8: Left: flowgraph for movement of corporate bond ratings; right: cumulative
probability of default for various initial ratings.

4.2 Multiplicative flowgraph example - circular arbitrage

Arbitrage, in finance, is the exploitation of a price imbalance between two or more markets
in order to turn a profit. Circular arbitrage is buying and selling the same commodity to take
advantage of a price imbalance (Ellerman (1984)). Figure 9 shows an example of circular
arbitrage in a currency exchange market: a trader might exchange U.S. dollars (USD) for
either British pounds (GBP) or Euros (EUR), then exchange that currency for Japanese yen
(JPY), then exchange yen for dollars, in hopes of exploiting some exchange-rate imbalance
to make a profit, which will occur if (p12712724 + p13713734)741 > 1, where the p;; are
probabilities of exchanging currency 4 for currency j and the r;; are stochastically varying
exchange rates. Solving this network requires a convolution algebra that maps multipli-
cation of random variables in the time domain to multiplication in the transform domain,
which is provided by Mellin transforms. See Collins (2011) for more details on this and
similar multiplicative networks.

4.3 Transform analysis of stochastic networks

In the additive flowgraph examples at the beginning of Section 4, the pdf of T1 + 15
is fr, * fr,(2) = ;" fr.(®) fr, (2 — x)dx; the convolution is mapped to multiplica-
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Figure 9: Multiplicative flowgraph for currency exchange arbitrage.

tion by the Fourier transform, discrete Fourier transform, Laplace transform, or moment
generating function (MGF), and accurate numerical transform inversion algorithms exist
to recover the pdf or CDF from the transform; see Huzurbazar (2005), Warr and Collins
(2012). In the multiplicative flowgraph of Section 4.2, the pdf of T} - Ty is fr, o fr,(2) =
fooo fr (z) fr, (%) idm, which is mapped to multiplication by the Mellin transform (Springer
(1979)). Analytic inversion of Mellin transforms is typically more difficult than inversion
of the additive transforms, but numerical inversion algorithms exist (e.g., Theocaris and
Chrysakis (1977)). As mentioned earlier, there are other possibilities as well, as long as
there is an edge weighting with the right algebraic properties—e.g., graphs for parsing reg-
ular expressions (Csenki (2008), Csenki (2009)). Formulation of these graphs in terms of
transforms is a future research topic.

5. Graph representations of complex systems

We present a few examples of modeling systems with potentially large numbers of states (or
entities), and complex behavior. Though representing such systems in their entirety with
visual graphs is often impossible, it is usually fruitful to begin with a graphic representation
of a portion of the system, or a simplified abstraction, and use that to guide construction of
a more complete model using, e.g., matrices.

5.1 Resistance distance in social networks

Social networks, recently prominent due to “social software” applications such as Face-
book, have been studied analytically by sociologists and anthropologists for decades; e.g.,
see Wasserman and Faust (1994). An important question for such networks is to determine
the strength of connections, or the “closeness” of network participants. If, for example, the
left-hand side of Figure 10 shows relations (e.g., “likes”) between actors in a network, Is
Sarah closer to Jennifer than Andy? The classical distance measure in a network is based
on the number of links in the shortest path between vertices. In this sense, the shortest path
(fewest links) is from Sarah is to Jennifer. On the other hand, there are more paths from
Sarah to Andy.

A measure that takes both factors into account is the resistance distance: replace each
edge in the graph with a fixed resistor, then solve by Ohm’s and Kirchoff’s laws for the net
resistance between any two edges (see the right side of the figure). By resistance distance,
Sarah is closer to Andy—it is easy to show that if all resistors are 12, the resistance distance
from Sarah to Jennifer is 2€2, and from Sarah to Andy is < 6/5€2. Note that this graph is
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drawn as undirected, but in general a social link may be directed because it is stronger in
one direction than the other. More generally, resistances can vary stochastically depending
on the closeness/strength of individual links.

Other applications of resistance distance include chemical structure analysis (Klein and
Randic (1993)), message routing in networks (Tizghadam and Leon-Garcia (2010)), simi-
larity measures for document search (Wang and Hauskrecht (2010)), and ecological mod-
eling (McRae et al. (2008))

Sarah Sarah
&mr Qﬂ
Andy Andy

Figure 10: Left: a simple social network; right: resistance distance model.

5.2 Stochastic Petri nets

50~ GO~ o

Figure 11: Left: state graph; center: Petri net, before firing; right: Petri net, after firing.

There are significant features of many complex systems that cannot be modeled eas-
ily by any of the graph formalisms discussed so far. For example, every sample path of a
Markov or semi-Markov process is a linear sequence of states, whereas in many systems
concurrent activities take place, which would require multiple simultaneous, perhaps inter-
acting, linear paths. Petri nets consists of places, explicit transitions, arcs and a marking
(a distribution of “tokens” over places). Places and transitions are vertices in a bipartite
graph in which arcs are the edges, and tokens represent entities whose presence in places
enable transitions. Conceptually, Petri nets can model multiple sample paths in a multistate
process simultaneously—for example, they can model synchronization, deadlock, etc. in
a parallel computer system, or the concurrent actions of attackers and defenders in a mili-
tary engagement. Reisig (1992) gives a detailed but non-technical introduction to modeling
systems and processes with Petri nets; Reisig (1985) and Murata (1989) provide details on
the mathematical properties of Petri nets.

Both temporal duration and probability are absent from the basic Petri net formalism.
Many extensions are possible: where multiple arcs leaving a place or entering a transition
are enabled (as in the middle of Figure 11), they can be assigned transition probabilities;
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waiting time distributions can be assigned to transitions or arcs, most often via a Markov
transition rate matrix A (Ajmone Marsan (1989)); semi-Markov transitions are also used
(e.g., see Ciardo and Lindemann (1994)). Balbo (2001) provides a detailed introduction to
all the “stochasticizing” possibilities in Petri nets.

Figure 12 shows three representations of a Markov process model for an M/M/1 queue
(Poisson arrivals with mean A, exponentially distributed service times with mean p). The
top shows a state transition diagram, the bottom left the Markov transition rate matrix, and
the bottom left a stochastic Petri net (from Ajmone Marsan (1989)). Note the simplicity of
the Petri net representation, though the underlying computations are the same in all cases.

Figure 12 illustrates a common tradeoff between representational power and mathemat-
ical tractability. The full machinery of stochastic Petri nets takes models well beyond what
can be analytically solved, so properties such as first passage times must be approximated
using simulation. In many cases, the main interest lies in determining qualitative charac-
teristics of systems, so the greater representational power of Petri nets is a key advantage;
see Reisig (1992) .

A A A A A A
olliollRo 0

H B H il 1 H
- A 0 0
p —(A+p) A 0 }_.< H
0 U —(A+u) A x m
0 0 uo (At

Figure 12: Top: state graph for M/M/1 queue; bottom left: Markov transition matrix A;
bottom right: stochastic Petri net representation.

5.3 Hierarchical composition/decomposition

Complex systems are often decomposable or “nearly decomposable” (Simon (1996)). In
terms of a graph model of system components or states, suppose the vertices of a directed
graph G can be decomposed into sets § and 8’ = G\S§ such that there is a small number
of directed edges 8 — 8’ and a small number of directed edges 8’ — 8. Then the sub-
graph consisting of & and all edges that do not leave 8 can be contracted to a single vertex
representing, for example, a subsystem. In the opposite direction, an initial model based
on subsystems and their interactions can be expanded by filling in components and their
interactions. This hierarchical decomposition of state or entity graphs may simplify analy-
sis by hiding unimportant details, and facilitate a “divide and conquer’” approach to system
analysis.

Examples may be found in reliability analysis and queueing network analysis, where
decomposition of the state space is a well-known technique (Lazowska et al.; 1984, Chapter
8). Decomposition of entity graphs has been widely applied in computer software design;
e.g., see Parnas et al. (1985). Figure 13 illustrates decomposition in a reliability example:
state 2 is decomposed into a set of states and transitions wherein subcomponents with
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Component

System failed o 3 ) System
working , N 4 failed

Figure 13: Decomposition of a graph vertex in a system reliability application.

redundancy, and subject to repair, are composed into the higher-level state “component
failed” (Collins and Huzurbazar (2012)). For examples of hierarchical composition and
decomposition of Petri nets, see Chapter 6 in Reisig (1992).

6. Summary

We have reviewed various applications of graph theory to stochastic problems, emphasiz-
ing the power of the interplay of topological, algebraic, and visual properties of graphs,
which provides a powerful set of tools for solving problems and guiding intuition. Tools
include matrix analysis, graph reduction algorithms, and hierarchical composition and de-
composition of graph models. The power of these tools is illustrated by many applications,
a few of which were surveyed here: Markov and semi-Markov models in finance, queueing,
and reliability analysis; Petri nets for queueing analysis; and resistance distance in social
networks. As the developers of the resistance distance concept state, “. . . possibilities for
the development of the field of graph theory are ever open for innovative ideas” (Klein and
Randic (1993)); many other applications await.
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