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Abstract
When the approximate size of a population is of primary interest and the cost of an exhaustive enu-
meration is prohibitive, capture-recapture models can be used to estimate the size of the population
using only incomplete lists. Log-linear models that express the probability of each capture pattern
in terms of the relative sizes of list-intersections tend to be biased by heterogeneity of capture prob-
abilities across population units. We introduce a smooth generalization of post-stratification that
allows the full suite of log-linear modeling tools to be applied at the unit level for closed popula-
tions. We illustrate the generality and simplicity of our novel approach by estimating bird species
richness in continental North America.

Key Words: Capture-recapture; Continuous Covariate; Post-stratification; Closed Population;
Species Richness.

1. Introduction

In many statistical applications, it is important to know the total size of a population when
only samples are available; that is, to estimate how much of the population was not seen.
Capture-recapture methods attempt to estimate population size from multiple samples and
their patterns of overlap, an undertaking which requires careful modeling of the sampling
process. Populations studied using capture-recapture are diverse, including various animal
species (Odum & Pontin, 1961; Pollock et al., 1984), human populations (Chen et al.,
2010), and the set of errors in a body of computer code (Runeson & Wohlin, 1998). This
paper gives a new approach to the underlying statistical problem of estimating the size of a
population from multiple incomplete lists or samples.

We review some basic capture-recapture concepts before introducing our new approach.
In the simplest setting, there are two lists. Assume that units can be perfectly matched
across lists, so it is possible to cross-classify units by list membership as in Table 1. Here

Table 1: A two-list cross-classification array

List 2
yes no

List 1
yes c11 c10

no c01 c00 =?

cij is the count of units with capture pattern ij. For example, c10 is the number of units on
List 1 but not on List 2. The unknown number of units that are not observed on either list is
denoted c00, and estimating the population size amounts to estimating c00. With three lists,
the task is to estimate c000, and so on.

The Petersen estimator is ĉ00 = c10c01/c11, which can be formalized as a maximum-
likelihood estimator under certain assumptions (Pollock, 1976). Perhaps the strongest of
these assumptions is that the lists are independent; the event that a unit is captured on
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the first list is independent of the event that a unit is captured on the second list. Depen-
dence between lists has two sources. The first source is unit-level list dependence, such
as respondent fatigue, in which previous capture directly reduces the probability of sub-
sequent capture. The second source of dependence arises indirectly as a consequence of
heterogeneity, or variability in capture probabilities across units (Fienberg et al., 1999). In
particular, when the capture probabilities are positively (negatively) correlated across lists,
the Petersen estimator tends to be biased downwards (upwards).

Both sources of dependence may vary with covariates such as age. Post-stratification
is an old method of accounting for covariates by partitioning the observed units into a
finite collection of post-strata. For example, in a human population, observed individuals
may be classified by age as younger than 30, between 30 and 60, or older than 60. Based
on these post-strata, three separate classification arrays (as in Table 1) may be analyzed
separately, resulting in estimates for the three missing cells, which can be summed to get an
estimate of the total number of unobserved units. Post-stratification allows models that rely
on homogeneity to perform reasonably well if each of the chosen post-strata is relatively
homogeneous.

We present a smooth generalization of post-stratification with two stages. The first
stage is to regress the conditional probability of each capture pattern as a smooth function
of the covariates. The second stage is to impute the relative frequency of the unobserved
capture pattern (no captures) by fitting a separate log-linear model for each observed pop-
ulation unit. The log-linear models imply an estimate of the number of unobserved units
corresponding to each observed unit.

Some existing approaches are closely related. Huggins (1989) and Alho (1990) devel-
oped logistic regression models for capture probability heterogeneity in the two-list sce-
nario, and Yip et al. (2001) extended logistic regression to k lists with a simple respondent
fatigue effect. A semi-parametric regression model was developed by Hwang & Huggins
(2011). See also Chen & Lloyd (2002), Zwane & van der Heijden (2004), and Stoklosa &
Huggins (2012). Our approach is more general than these previous approaches, admitting
both parametric and nonparametric estimation of the conditional probability of the cap-
ture pattern. More importantly, we allow the selection of a separate log-linear model for
each observed unit. Throughout, we assume that the population is closed, precluding the
possibility of births, deaths, and migration.

2. Methods

2.1 Notation and general framework

Suppose k lists L1, ..., Lk are drawn from a population of unknown size n. Let i = 1, ..., nc
index the units that are on at least one list. For each unit i and list Lj , let yij = I(i ∈ Lj)
be the indicator that the ith population unit appears on the jth list. Then yi· = (yi1, ..., yik)
, and y·· is the n× k matrix with ith row yi·. The vector yi· is called the capture pattern of
the ith unit. Let xi· denote a 1× q vector of covariates associated with the ith unit, and x··
is the n × q matrix with ith row xi·. For each i > nc, the pair (xi·, yi·) is not observed. If
xc·· is the matrix formed by the first nc rows of x··, and yc·· is the matrix formed by the first
nc rows of y··, then the observable data is the pair of matrices (xc··, y

c
··). We refer to the pair

(x··, y··) as the extended data.
Let Yk denote the set of binary row vectors of length k, so each yi· is an element

of Yk. Let cy := |{i : yi· = y}|. The array c := {cy : y ∈ Yk} is the contingency
table of counts of units in the lists. In particular, let c0 := c~0 = n − nc, the number of
units that are not observed on any list. Assume that yi· is a realization of a random vector
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Yi·. Let p(i, y) = pr(Yi· = y), the probability that unit i has capture pattern y. Then
p(i, yi·) = pr(Yi· = yi·).

We state a key assumption that is necessary for auxiliary-covariate models of hetero-
geneity that has often been left unstated in the literature. Namely, we assume that a smooth
function r(y, x) exists such that p(i, yi·) = r(yi·, xi·) (i = 1, ..., n). This is a rather strong
assumption, requiring that the covariates x fully explain any variation in the capture prob-
abilities.

Let ~0T denote the zero vector of length k. Define the detection function
ψ(x) = 1− r(~0, x), which is the probability that a unit with covariates x appears in at least
one of the lists. The Horvitz-Thompson estimator of the population size n can be written
as

ñ =

nc∑
i=1

1

ψ(xi·)
. (1)

The estimator ñ relies on the detection probabilities for only the units that are observed. To
use (1), we must estimate the detection function ψ. If ψ is known, then ñ has some nice
asymptotic properties. It is easy to verify that E(ñ) = n. Moreover, ñ is consistent and
asymptotically normal if ψ(xi·) is uniformly bounded away from 0 and 1 (Alho, 1990).

The Horvitz-Thompson estimator (1) has been applied using various estimators for the
detection function ψ. We propose a general way of framing these estimators. Define a
function

π(y, x) :=
r(y, x)∑
z 6=~0 r(z, x)

=
r(y, x)

ψ(x)
. (2)

For each nonzero y ∈ Yk, the function π(y, x) is the conditional probability that a unit
with covariates x will have capture pattern y, given that the unit is observed on at least one
list. Conditioning on observation means that these functions are estimable directly from the
data using any kind of binary regression. Holding y fixed, consider π(y, x) as a function of
x, and gather these functions into an array Π := {π(y, x) : y 6= ~0}.

Rearranging (2) as r(y, x) = ψ(x)π(y, x), it is easy to see that

ψ(x) =

∑
y 6=~0 r(y, x)∑
y r(y, x)

=

∑
y 6=~0 π(y, x)

π(~0, x) +
∑

y 6=~0 π(y, x)
=

1

π(~0, x) + 1
(3)

Equation (3) makes it seem natural to break the process of estimating ψ into two stages.
The first stage is to generate estimates Π̂ := {π̂(y, x) : y 6= ~0}, while the second stage
is to impute an estimator π̂(~0, x) from Π̂. We deal with these two in sections 3 and 4
respectively.

Plugging the final expression from (3) into (1) leads to estimators involving the sum of
the unit-level imputations:

n̂ := nc +

nc∑
i=1

π̂(~0, xi·), ĉ0 := n̂− nc =

nc∑
i=1

π̂(~0, xi·). (4)

Any estimator Π̂ is a post-stratifier, and any smooth estimator Π̂ is a smooth post-
stratifier. Finally, a smooth post-stratification estimator takes the form of (4), where π̂(~0, x)
is imputed from a smooth estimator Π̂ (see Section 4).

Although it has not been stated in such an explicit and general form, smooth post-
stratification is not new. An early version was derived under the title of local post-stratification
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(Chen & Lloyd, 2002). We advocate the term smooth rather than local because post-
stratification is already (i.e., redundantly) an attempt at localization; the relevant feature
of the new framework is the assumption of a smoothness condition that ties post-strata
together.

3. Stage 1: Estimating Π

There are many ways to estimate the functions in Π, including local logistic multinomial
regression and other parametric regression models. We use a nonparametric conditional
density estimator by Hall et al. (2004). Let mi = 1 if the ith unit is captured at least once,
and mi = 0 otherwise. Assume that each mi is the outcome of a Bernoulli variable Mi.
From (2), we have π(y, xi·) = P (Yi· = y|Mi = 1, xi·) for each y 6= ~0. Suppose that each
vector xi· is a realization of some random variableX . Let fM (xi·) := P (X = xi·|Mi = 1)
and gM (y, x) := π(y, x)fM (x). Then,

gM (yi·, xi·) = P (Yi· = yi·|X = xi·,Mi = 1)P (X = xi·|Mi = 1)

= P (yi·, xi·|Mi = 1).

Each of gM and fM can be estimated directly from the observable data (i.e., units with
mi = 1), and the conditional density of any nonzero capture pattern y given X = x is

π(y, x) =
gM (y, x)

fM (x)
.

A nonparametric estimator of gM uses smoothing parameters for both x and for the
multinomial outcome y. However, we set the y bandwidth to zero (no smoothing), since
Stage 2 of our two-stage process smooths over y in a more comprehensive way (see Section
4). With no smoothing over y, we are interested in only the normalized vectors of weights
wi = (wi1, · · · , winc

) such that the fitted values for the functions in Π are

π̂(y, xi·) =

nc∑
t=1

witI(y = yt·) (i = 1, ..., nc; y 6= ~0). (5)

For example, if Π̂ is a Gaussian smoother, and f i(·, D) is the multivariate Gaussian density
centered at xi· with a covariance matrix D of bandwidth parameters, then
wit = f i(xt·, D)/

∑
t f

i(xt·, D) (i = 1, ..., nc; t = 1, ..., nc).
The array of estimated local cross-classification rates is Π̂i := {π̂(y, xi·) : y 6= ~0}. Let

a(y) denote the array of indicators {I(z = y) : z ∈ Yk}. By (5), Π̂i =
∑nc

t=1w
i
ta(yt·), a

weighted-average array which gives greatest weight to observations with covariates close
to xi·. For additional intuition about this notation, compare Π̂i with the cross-classification
c =

∑n
i=1 a(yi·). In particular, if all the weights were 1, then each Π̂i would be the same

as the observable part of c.

4. Stage 2: Imputing π(~0, x)

At a high level, Stage 2 involves fitting a log-linear modelMi to the local cross-classification
Π̂i, and then using the fitted model to project a value for the missing cell π(~0, xi·) (i =
1, ..., nc). Our framework permits maximal generality by allowing a separate model to be
selected for every distinct point that is observed in the covariate space.

Stage 2 builds on the result of Stage 1, taking as given the vectors of smoothing weights
wi (i = 1, ..., nc). Hence, a mixture of multinomials

∑nc
t=1w

i
ta(Yt·) with conditional

probabilities pr{a(Yi·) = a(yi·)|Mi = 1} = π(yi·, xi·) is assumed to generate Π̂i (i =
1, ..., nc). We now discuss the details of selecting and fitting a log-linear model for Π̂i.
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4.1 Short review of log-linear models

Log-linear models provide flexible ways to represent the cross-classification c as the out-
come of a multinomial random variable. Classical log-linear models formally assume ho-
mogeneity, which says that p(i1, y) = p(i2, y) =: p(y) for all i1, i2 ∈ {1, ..., n}. Inde-
pendence between units is also assumed, so that the array of counts c is a realization of a
multinomial random variable with n trials from the probability array {p(y)}y∈Yk . Given a
vector of parameters u = (u0, u1, u2, u12), a simple log-linear model is

log p(y;u) = u0 + u1y1 + u2y2 + u12y1y2 (y ∈ Yk), (6)

where yj denotes the jth element of the vector y (j = 1, ..., k). The parameters u1, u2 are
called list effects, and u12 represents the interaction between the first and second list. If
there are more than two lists, additional parameters may be included to describe the other
list interactions. For example, with k lists, the highest-order list interaction is denoted
u1···k.

Parameter estimates can be found by maximizing the multinomial conditional likeli-
hood

Lc(u|c \ c0) =
nc!∏
y 6=~0 cy!

∏
y 6=~0

π(y;u)cy , (7)

where π(y;u) := p(y;u)/(1 − p(~0;u)) (Sanathanan, 1972; Fienberg, 1972). Given a
maximum likelihood estimate p(~0; û), the marginal likelihood

n!

nc!(n− nc)!
p(~0; û)n−nc{1− p(~0; û)}nc

is maximized over n to obtain a population estimate n̂.
The cross-classification c has only 2k − 1 observable cells, and a unique maximizer of

(7) exists for a model with at most 2k − 1 parameters. Thus, a model with exactly 2k − 1
parameters is called saturated, providing a perfect fit for the observed relative frequencies
in the cells of c. With only two lists, one may take u12 := 0 in (6) to get a saturated
hierarchical log-linear model, and maximizing the conditional and marginal likelihoods
gives the Petersen estimator for the missing cell, ĉ00 := n̂− nc = c10c01/c11.

4.2 Local log-linear models

Recalling (2), the conditional multinomial probabilities may vary as a function of some
vector of unit-level covariates such as age or size. The Petersen estimator can be modi-
fied trivially to get the following unsurprising result: If π(y, x) is constant in x, then the
conditional maximum likelihood estimate of π(~0, x) = π{(0, 0), x} is

π̂{(0, 0), x} :=
π̂{(1, 0), x}π̂{(0, 1), x}

π̂{(1, 1), x}
, (8)

where π̂(y, x) := cy/nc (y 6= ~0) is the direct estimate for each observable capture pattern.
When π(y, x) is not constant in x, (8) may still give a consistent estimator. It is eas-

iest to see this when x can take on only S different values. Then the data can be par-
titioned into S classes, or post-strata, resulting in S separate cross-classification arrays
{c(s)}Ss=1 such that

∑
s c(s) = c. The saturated log-linear model may be fitted sep-

arately on each post-stratum; and the estimate of the missing cell is then of the form
ĉ00 =

∑
s ĉ00(s) =

∑
s c01(s)c01(s)/c11(s). In particular, (8) clearly applies if we take
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π̂S(y, x) := cy(sx)/nc(sx) where sx denotes the index of the post-stratum containing x,
and nc(s) is the number of observed units in post-stratum s.

The variability of π̂S tends to increase as the number S of post-strata grows, since
fewer observations are in each post-stratum. We can control the variance by imposing a
smoothness assumption across post-strata. For example, π̂S can be replaced with a ker-
nel regression or parametric regression estimator π̂. Assuming that π(y, x) is sufficiently
smooth to allow consistency of an estimator π̂(y, x), it follows that π̂(~0, x) as in (8) is con-
sistent. Hence, we localize the u-terms by allowing them to take a different value for each
covariate vector x, and (6) becomes

log π{y;u(x)} = u0(x) + u1(x)y1 + u2(x)y2 (y ∈ Y2)

for two lists. Similarly, for three lists, a saturated local log-linear model is

log π{y;u(x)} =u0(x) + u1(x)y1 + u2(x)y2 + u3(x)y3

+ u12(x)y1y2 + u13(x)y1y3 + u23(x)y2y3 (y ∈ Y3).
(9)

Various models are obtained as submodels of (9) by removing terms. For example, the
independence model for three lists leaves out the interaction terms to encode the assumption
that the probability of capture on each list is independent of the event of capture on any
other list:

log π{y;u(x)} =u0(x) + u1(x)y1 + u2(x)y2 + u3(x)y3. (10)

4.3 Estimating local log-linear parameters

Recalling from (5) and the discussion immediately thereafter, the likelihood of local log-
linear model parameters u(x) with respect to the smoothed data Π̂1, ..., Π̂nc is

nc∏
i=1

pr

{
nc∑
t=1

wita(Yt·) = Π̂i

∣∣∣∣∣u(xi·)

}
.

Since u(xi·) is allowed to vary over i = 1, ..., nc, maximizing the product above is equiva-
lent to maximizing each individual term separately. The ith term can be regarded as a local
conditional likelihood, given the data Π̂i, as

Li = Lc{u(xi·)|Π̂i} := P

{
nc∑
t=1

wita(Yt·) = Π̂i

∣∣∣∣∣u(xi·)

}
(i = 1, ..., nc).

Exact evaluation of Li is not straightforward. In the next few paragraphs, we describe a
method of approximating Li by assuming that Π̂i is distributed as a kind of continuous
generalization of a multinomial random variable, as follows.

Define the local degrees of freedom ηi of the estimate Π̂i as the sum of the conditional
regression weights for the ith unit:

ηi :=

∑nc
t=1w

i
t

maxt(wit)
. (11)

Note that ηi is controlled by the by the bandwidth of the kernel smoother underlying Π̂i, so
ηi tends to be small when the bandwidth is narrow. The general stability of Π̂i increases as
ηi, just as the stability of relative frequencies in a multinomial experiment increases with
sample size, by the law of large numbers.
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To see how Π̂i can reasonably be approximated by a multinomial likelihood, consider
first the special case for which (A) the weights wi come from a boxcar kernel, so that
observations within a certain distance of xi· all have the same weight, and all other obser-
vations have weight 0. Further, assume (B) that the capture pattern is homogeneous over
the support of the kernel. Then c(i) := ηiΠ̂i is precisely a multinomial array with ηi trials,
and

Li =
ηi!∏

y 6=0{ηiπ̂(y, xi·)}!
∏
y 6=0

π{y;u(xi·)}ηiπ̂(y,xi·). (12)

Here, Li is easily maximized to obtain the parameter estimate û(xi·).
Now, consider the implications of relaxing the assumptions (A) and (B). Relaxing (A),

the boxcar kernel may morph into something like a Gaussian kernel, and the sampling
distribution of Π̂i is no longer exactly multinomial. In particular, ηi might not even be
integer-valued, and evaluating (12) requires invoking a smooth generalization of the facto-
rial function, the Gamma function. Relaxing (B) allows for some heterogeneity in capture
probabilities over the support of the kernel. However, provided that the covariates explain
the heterogeneity, and provided that the bandwidth of the smoother is sufficiently narrow,
the corrupting effects of heterogeneity may be limited.

Thus, if (A) and (B) are not crucial assumptions, one can obtain parameter estimates
û(xi·) by maximizing (12) subject to the constraint that the multinomial probabilities sum
to 1. We refer to this method as pseudo-multinomial maximum likelihood (PMML) es-
timation. Given the estimated log-linear parameters, we have the estimate π̂(0, xi·) :=
π{0, û(xi·)} of the unknown π(0, xi·) (i = 1, ..., nc) to be plugged into (4) for a popula-
tion estimate.

It is worth reiterating that estimation by PMML is essentially a sliding-window version
of post-stratification if the weights wi correspond to a boxcar-like kernel. The traditional
method of post-stratification, fitting log-linear models to disjoint post-strata, and our new
approach, PMML on overlapping kernels, may both incur bias if π(y, x) is particularly
variable with respect to x over the support of any given post-stratum or kernel evaluated at
a fixed xi·. Also, population estimates have high variance if the post-strata are too small or
if the smooth post-stratifier Π̂ undersmooths.

The fact that parameter estimation is done separately for each population unit allows us
select a separate model at each x. A more rigorous notation for u(x) in (12) could be some-
thing like u{M(x)} to reflect that u is the parameter vector corresponding to whichever
modelM is selected at x. Specifically, for distinct points in the covariate space x1 and x2,
parameter vectors u(x1) and u(x2) may differ in length. This expanded notation is omitted
for brevity.

4.4 Local Model Selection

Several old strategies for log-linear model selection exist (Benedetti & Brown, 1978). Fien-
berg (1972) recommended a nuanced and somewhat ad hoc method centered around likeli-
hood ratio tests, and stepwise regression based on an information criterion has seen recent
use in capture-recapture applications (Aaron et al., 2003; Murphy, 2009). Each of these ap-
proaches can be applied for the local log-linear model selection problem with appropriate
modifications.

For smooth post-stratification, we are particularly interested in simple selection strate-
gies such as the Schwarz’s Bayesian information criterion (BIC) and the “corrected” AIC,
or AICc (Sugiura, 1978). These heuristic methods facilitate the rapid model selection that
is needed when selecting a separate model for each case. For example, for the ith unit, we
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have
BICi = −2 logLi(û(xi·)) + qi log ηi,

where û(xi·) is the PMML estimate, q is the number of parameters in û(xi·), and ηi is
defined in (11). Similarly, define

AICci = −2 logLi(û(xi·)) + 2qi +
2(qi + 1)(qi + 2)

ηi − qi − 2
.

The AICc is preferred over the AIC in several recent studies (Anderson et al., 1994; Burn-
ham et al., 1995; Burnham & Anderson, 2004). Note that the AICc formula provided in
Burnham & Anderson (2004) differs slightly from the earlier references above, and we
have not found an explanation for the discrepancy.

5. Variance estimation

The multi-stage structure of our method makes it difficult to compute the variance directly.
Instead, we simulate the sampling distribution of our estimator using a method that is sim-
ilar to the parametric bootstrap described by Zwane & van der Heijden (2003).

Let (xc··, ·) denote the covariates of the nc observed units. The fraction 1/ψ̂(xi·) in (1)
is the number of units that are represented by the ith unit. That is, the contribution of the ith
unit in the Horvitz-Thompson sum n̂ can be decomposed as the sum of 1, representing the
ith unit, and oi := 1/ψ̂(xi·) − 1 additional units that were not captured. Let ointi and odeci
denote the integer and fractional components of oi, respectively, such that oi = ointi + odeci ,
where all quantities are non-negative. Let o′i denote the sum of ointi with the outcome of a
Bernoulli random variable with success probability odeci .

For each i ∈ {1, ..., nc}, we insert o′i new units with the covariate xi·. With the in-
sertions, the set of covariates represents the population that is assumed by our model, and
this set is denoted as (x··, ·)sim. Replacing oi with its random perturbation o′i introduces an
element of randomness that is not included in our model, and this should slightly inflate the
variance of our simulation outcomes, leading to conservative confidence intervals.

Finally, the capture pattern for the ith individual yi· is simulated as a multinomial ran-
dom variable with unit-level multinomial probabilities r̂(yi·, xi·) := ψ̂(xi·)π̂(yi·, xi·). The
result is a simulated population (x··, y··)

sim with covariates and capture patterns observed
for all units. Deleting all units with capture pattern ~0 gives the simulated data (xc··, y

c
··)
sim,

and applying a smooth post-stratification methods gives an estimate ĉsim0 of the number of
units not observed. Replicating this procedure leads to bootstrap confidence intervals.

6. Several important local log-linear models

Our adaptation of the Schwarz information criterion for model selection in Section 4.4 is
intended as a first-generation solution to the local model selection problem. In this section,
we take a small step backwards to discuss several specific log-linear models that are inter-
esting due to interpretability or historical significance in the capture-recapture literature.

The independence model (10) can be further constrained by requiring that the list effects
are all equal to a single parameter, uΣ := u1 = · · · = uk. This leads to a local model of
independence with equal catch-ability across lists, an extremely sparse model with only
one free parameter:

log π{y;u(x)} =u(x) + uΣ(x)

k∑
j=1

yj . (13)
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For basic local log-linear models with no highest-order interaction term (i.e.,
u1···k(x) := 0) such as (9), (10) , and (13), eliminating all of the explicit u(x)-terms from
the model equations leads to

π(~0;u(x)) =

∏
y∈O π(y;u(x))∏
z∈E π(z;u(x))

, (14)

where O is the set of capture patterns with entries summing to an odd number, and E is the
set of nonzero capture patterns summing to an even number (Fienberg, 1972). The saturated
model (9) is particularly convenient to implement in conjunction with (14) because the
model always fits the observable data exactly. For example, Zwane & van der Heijden
(2004) directly estimated π(~0, x) by substituting the Stage-1 function estimates π̂(y, x) in
place of π(y;u(x)) in the right-hand side of formula (14) without giving attention to the
log-linear equations.

The saturated model (9) is appealing in its convenience and flexibility, but the resulting
estimates can be extremely unstable due to overfitting. We propose a way to stabilize the
estimates by averaging the saturated model (9) with the two-parameter model (13), as fol-
lows. Let Πi(û) = [π{y; û(xi·)} : y 6= ~0] denote the conditional multinomial probabilities
implied by model (13) given parameter estimates û = (û0, ûΣ). Let νi = miny 6=0π̂(y, xi·).
Recalling that ni denotes the effective degrees of freedom for Π̂i, define a mixing constant
αi ∈ (0, 1) as

αi =
niνi

1 + niνi
,

and define a weighted average Πi(û, α) := (1− αi)Πi(û) + αiΠ̂i (i = 1, ..., nc), where
the linear combination of arrays is evaluated element-wise. Plugging Πi(û, α) into the
right-hand side of (14) gives an estimate for π(~0;u(x)). Heuristically, the constant αi is
small, putting greater weight on the sparse fit Πi(û), when the effective degrees of freedom
is not large enough to stabilize the smallest element of the saturated fit Π̂i. We call this the
adjusted saturated model.

Finally, we mention a non-hierarchical log-linear model with a single list-interaction
parameter that was inspired by the Rasch model for educational testing. The quasi-symmetry
model is derived from log-normal unit-level random effects and takes the form

log π(y;u) = u+ u1y1 + u2y2 + u3y3 + uΣ

 k∑
j=1

yj

2

, (15)

with moment restrictions that constrain uΣ to be greater than zero (Darroch et al., 1993).
The random effects interpretation of the quasi-symmetry model has been invoked to model
populations with heterogeneous capture probabilities without controlling for covariates x.
Any such random-effects model for heterogeneity must be approached with caution after
the non-identifiability studies of Link (2003) and Mao (2008).

Like any other log-linear model, the quazi-symmetry model (15) may be replaced with
its localized analogue, in which the u-terms are functions of x. Suppose that the covariates
x do not fully explain the heterogeneity in a population, in contradiction with our assump-
tion that a smooth function r(y, x) exists with p(i, yi·) = r(yi·, xi·) (i = 1, ..., n). The
localized quasi-symmetry model then can be used to model any unexplained heterogeneity
at each level of x.
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7. A Simple Application

7.1 How Many Birds Species Can be Observed in the U.S. and Canada?

We estimate the number of bird species using the North American Breeding Bird Survey
for continental North America north of Mexico (Sauer et al., 2011). Table 2 displays c,
the cross-classification of species observed in the years 2009 - 2011, treating each year as
a separate list. For example, exactly 581 species were observed in all three years, and 18
species were observed only in 2009.

Table 2: Cross-classification of species observed over three years

In 2011 Not in 2011

In 2010
In 2009 581 13

Not in 2009 10 10

Not in 2010
In 2009 11 18

Not in 2009 21 c0

Define a covariate x as the reverse of the rank ordering of the observed species based
on the total number of times that each species was observed. For example, the species
that was observed most often over the three years has covariate x = 664, as 664 distinct
species were observed. The obvious interpretation of x is that species with a high value of
x are easy to observe. Compared to covariates uses previously to model heterogeneity in
the detectability of birds, such as wingspan, our covariate appears to be a relatively direct
proxy for species detectability.

We estimate the conditional probability functions Π using the np package (Hayfield &
Racine, 2008) in the R statistical software (R Core Team, 2012). The estimated functions
Π̂, the result of Stage 1, appear in each panel of Figure 1 in a stacked form. These seven
curves sum to the horizontal line at height 1, labeled “010”, reflecting the identity that
the conditional multinomial capture pattern probabilities must sum to 1 at each x. We
subsequently impute π(0, xi) by four different methods, plotting the results as 664 points
in each of the panels of Figure 1.

The estimates for the independence model (10) were obtained using pseudo-multinomial
maximum likelihood. The result is displayed as the top curve in panel (a), labeled “000”.
For example, near x = 1 the distance between the top curve and the horizontal line below
it is nearly 0·5. This indicates that the independence model imputes nearly 0·5 unobserved
units corresponding to each observed unit. For all units with x ≥ 100, the independence
model imputes approximately zero unobserved units, as the top curve is nearly coincident
with the next-to-top curve.

The independence model is valid if the event that a species is observed in one year is
independent of the event that this species is observed in another year. However, a positive
dependence between years is plausible if the experience that a bird watcher gains in sighting
a certain rare species in one year increases the probability of similar sightings in years
following. Therefore, it may be appropriate to include interaction terms.

The adjusted saturated model in panel (b) was described in Section 6. Applying the sat-
urated model (14) directly is not practical because some of the denominator terms approach
zero for x > 150, causing the formula to become highly unstable or undefined.

Panel (c) in Figure 1 shows the result of applying a stepwise local log-linear model
search using the Schwarz information criterion. The discontinuities in the imputation curve
(labeled “000”) mark the points at which the choice of local log-linear model changed. One
could easily smooth across adjacent models to remove the discontinuities, using something
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Figure 1: The four panels each display the result of a separate estimation method. In
each panel, the horizontal axis is the species rank x. The relative frequencies of the capture
patterns (i.e., “111”, “001”, ...) are plotted as functions of x in a stacked form. For example,
the curve labeled “001” represents the sum π{(1, 1, 1); û(x)}+ π{(0, 0, 1); û(x)}. The
relative frequencies of observable capture patterns sum to 1, the horizontal line, labeled
“010”. Above the horizontal line, the imputed values are plotted as π̂{(0, 0, 0), xi}+1 (i =
1, ..., 664). The seven relative frequency curves plotted in panel (d) are much straighter than
they appear in the other panels due to intentional oversmoothing in the Stage-1 smoothing
process.

like local linear regression. A more-fundamental issue is that the selected models are ex-
tremely sparse. For example, the short horizontal section of the imputation curve corre-
sponds to the 0-free-parameter model, which has only an intercept term, assigning equal
weight (1/7) to all capture patterns.

The small sizes of the models preferred by the Schwarz information criterion reflect
the unfortunate reality that the effective degrees of freedom is small, on the order of 50,
providing limited information for a multinomial with seven outcomes. A natural reaction
is to try over-smoothing the conditional density estimate Π̂ to increase the degrees of free-
dom. Panel (d) shows the outcome of over-smoothing, with the regression bandwidth (in x)
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increased to 250 from the cross-validation-selected bandwidth of only 27. The estimate of
724 missing species is implausibly high, although it is encouraging that the model imputed
no missing species for x > 400. Excessive over-smoothing clearly defeats the purpose of
local model fitting; choosing an optimal degree of over-smoothing in this context remains
an open problem.

As a point of reference from the existing capture-recapture literature, we fit the quasi-
symmetry model (15). Following Darroch et al. (1993), we ignore the restriction uΣ > 0
during parameter estimation (nevertheless, we obtained ûΣ > 0 for the point estimate),
resulting in an implausibly large estimate ĉ0 = 1744. An alternative is to apply the quasi-
symmetry model locally, since regression smoothing and latent covariates may leave sig-
nificant unexplained heterogeneity at each level of x. Applying the quasi-symmetry model
locally is not straightforward in this application due to numeric instability in the estimates
where x > 150 (here, most of the functions in Π̂ approach 0). However, if we assume that
a negligible number of species is missing for x > 150 and consider imputed values only
for x < 150, we arrive at a more reasonable point estimate of ĉ0 = 85. Broadly applying
this model may require mixing with a simpler model as in the adjusted saturated model,
and we save this for future work.

Bootstrapped 90% confidence intervals and standard errors for the number of unob-
served species are summarized for several models in Table 3.

Table 3: Bootstrapped estimates of variability of ĉ0 in several models

Model se(ĉ0) 90% Confidence Interval for c0

Independence 3·8 (4·3, 16)
Adjusted Saturated 48 (42, 181)
Schwarz information criterion 4·4 (7·8, 16)
Quazi-symmetry (non-local) 1940 (640, 4900)

The application of capture-recapture methods to three years of data raises the obvious
question: Why not extend the model to incorporate all available years of data? Indeed,
the Breeding Bird Survey data goes back to 1965. However, the assumption of a closed
population may fail over long spans of time, as certain species go extinct, and new species
evolve or change their geographic region of preference. Effective population size estima-
tion on a 3-year moving window could, in principle, reveal changes in species richness over
time. A separate consideration is that not using data earlier than 2009 allows us to use the
previous years of data as a partial validation of our method. The data collection format
was standardized in 1997; the data from 1997 to 2011 reveals 704 distinct species, strongly
suggesting that the independence model (a) and Schwarz information criterion model (c)
are suboptimal in their current form.

In applying the Horvitz-Thompson estimator (1) or (4), we ignored the point made
by Alho (1990) that the estimator is not consistent if the detection probability ψ(x) ap-
proaches 0, even if ψ(x) were known. In application, ψ(x) must be estimated, and the
necessary condition is arguably much more strict: ψ(x) must be substantially greater than
zero if an estimate π̂(~0, x) is to have a useful level of precision. Specifically, the detection
probabilities in the left tail of the distribution of x in Figure 1 may be too low to estimate
accurately. This point deserves more attention in many capture-recapture studies, includ-
ing previous studies using Breeding Bird Survey data such as Boulinier et al. (1998) and
Dorazio & Royle (2003).
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8. Discussion

The capture-recapture problem is fundamentally a missing data problem. The missing
quantity of interest is n, the population size, but, perhaps more relevantly, the covariate
values xi· are missing for i > nc. The nature of this missingness is arguably of the worst
possible kind, because it is reasonable to suppose that the units which are not observed
are not observed precisely because they are different from the observed units, not only in
the distribution of covariates but also in how capture probabilities depend on covariates.
Differences between the training data and the test data plague every prediction problem,
but it is not generally the case that the prediction data is different from the training data by
default. This difference sets apart capture-recapture as an exceptionally difficult and risky
estimation task.

Controlling for covariates is effective only if the observable covariates explain much
of the heterogeneity in capture probabilities, and this condition is not always attainable.
Regardless, at least attempting to use available covariates is a necessary first step to under-
standing heterogeneity. The necessity of modeling heterogeneity on covariates has been
controversial. Much of the capture-recapture literature attempts to incorporate heterogene-
ity effects without using covariates (Pledger & Phillpot, 2008). However, Link showed
that the population size n is often not identifiable across alternative heterogeneity models
(Link, 2003). Pledger countered that model misspecification is a relatively minor concern
if several different kinds of models all lead to similar estimates (Pledger, 2005), a position
that was rejected by Link (2006).

Smooth post-stratification points to several avenues of future work. One key question
stems from our two-stage approach. The first stage is estimating the functions in Π, and
this involves a variable selection and/or bandwidth selection problem. The second bias-
variance tradeoff occurs in the local selection of log-linear models for imputing π(0, x),
which may emphasize parsimony to a greater or lesser degree. Each of these stages has its
own bias-variance tradeoff. Currently, the two trade-offs are optimized separately, perhaps
by using cross-validation in the the first stage and by some information criterion in the
second stage. Aesthetically, and perhaps more substantively, it is desirable to unify these
two modeling problems.

Local log-linear models enable a high degree of specificity; model selection (not only
model fitting) may be performed separately for each observed population unit. While the
flexibility to select a separate model for each population unit raises the specter of overfit-
ting, the smoothed nature of Π̂ ensures that the models are highly correlated across units.
Therefore, it is unclear how to count degrees of freedom globally for the proposed multi-
stage estimation, and a penalty on the flexibility of the model selection procedure may be
appropriate.
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