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Abstract 
This is a summary of comments I made about four papers presented in the JSM Session 

on nonnegative matrix factorization (NMF). 
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1. Principal Components Analysis (PCA) 

 
Hotelling’s famous paper on PCA was published 80 years ago this year.  (Hotelling 

1933).  I will begin my discussion by recalling some of the key properties of PCA 

because of its close ties to nonnegative matrix factorization (NMF) and its importance in 

multivariate statistical analyses. 

 

PCA is based on elegant well understood mathematics.  It possesses useful theoretical 

properties.  The computations are straightforward and are usually based on the spectral 

decomposition of the covariance or correlation matrix or on the singular value 

decomposition (SVD) of a data matrix, X (n x p), after appropriate centering and scaling 

of the p variables.  Data-based PCs are unique apart from sign, except in special cases.  

They come nicely ordered in terms of importance.  Users usually focus on a few of the 

leading PCs.  Fortunately, these do not change if it is decided to consider additional ones 

later. 

 

PCA has its awkward points.  PCs based on the covariance matrix typically have nothing 

to do with those based on the correlation matrix.  This is a reminder that scaling really 

does matter with PCA.  While there are various ad hoc methods for determining how 

many PCs to retain, none of them is fail-safe.  Furthermore, those that are retained are 

often very hard to interpret.  Attempts to make them understandable can lead to charges 

of reification.  Unless the number of observations, n, is large enough relative to p, the 

PCs can be unstable, which will only increase the possibility of reading too much into 

them.   

 

PCA is basically a least squares method and as such is well known to be highly sensitive 

to outliers.  Indeed, the sensitivity is great enough that it can be used as an effective 

vehicle for detecting multivariate outliers.  Robustly centering and scaling the data prior 

to PCA can help to establish the core of the data and enhance the detection process. 

Hotelling developed PCA against the backdrop of multivariate normal distributions or 

data.  The PCs were designed to capture orthogonal directions of greatest variability.  

However, the most common usage of PCA is to find clusters, a consideration that 

Hotelling does not even mention.  The fuzzy logic for doing this is that directions of 
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largest variability may also correspond to directions where clusters reveal themselves 

most clearly.  Fortunately for those who take this cheap road to cluster analysis, it often 

works.  Little attention is paid to the fact that clear-cut, albeit more subtle, cluster 

structure can easily be missed, and might only show up among the smaller PCs if at all. 

 

There have been numerous attempts to improve PCA.  A very simple idea is to reduce the 

number of variables in the analysis using subject-matter knowledge or purely statistical 

considerations, as discussed in Jolliffe (1972, 1973).  Some of his empirical work with 

real data even suggests that the number of variables can sometimes be cut in half without 

loss.  The CUR matrix decomposition approach, developed in Mahoney and Drineas 

(2009), uses a leverage statistic to decide which variables to retain.  Sparse PCA (Zou, 

Hastie, and Tibshirani, 2006) is a lasso-based methodology for picking modified PCs 

with hopefully many zero coefficients to ease interpretation.  Several approaches to 

robust PCA are mentioned by Candes et al. (2009), who also offer a recent perspective on 

the topic. 

 

While Hotelling assumed that the data for PCA are multivariate normal, the modern 

assumption is murkier.  A scan of the applied literature would reveal that the (usually 

unstated) assumptions are only that the data are multivariate, “reasonably” continuous, 

and possibly grouped. 

 

2. Nonnegative Matrix Factorization (NMF) 

 
There are several very nice overview papers on NMF.  They can help to introduce the 

topic to statisticians, which is one of the goals of this session.  The opening paper 

presented by Luta et al. is the most current of the batch and contains helpful examples 

and insights.  I would also recommend Lee and Seung (1999) and Devarajan (2008).  The 

paper by Brunet et al. (2004) shows how NMF can be used to reduce the dimensionality 

and cluster gene expression data. 

 

The assumptions behind NMF are about as fuzzy as those for PCA.  The basic one is that 

the data to be modeled are nonnegative (apart possibly from some contamination or 

random noise).  

 

 NMF is performed by factoring X without any centering.  The factorization is into the 

product of two non-negative rank k matrices, with an error term left over.  The model is 

often described as consisting of “additive parts” plus error in contrast to the less 

constrained SVD-based model. 

Whether fitting the additive parts by least squares or another criterion, iterations are 

required to search for a local optimum.  Checking whether the solution is also global will 

be necessary.  In brief, there will be a lot of computing to do, and this may prove quite a 

challenge for large or massive datasets.  

  

Luta et al. mention the lack of uniqueness of the basic NMF decomposition.  This is a 

very important point with practical implications.  At best the decomposition is 

determined only up to an arbitrary k x k scaling matrix, where k is the rank of the 

factoring matrices.  Since subsequent computations, e.g., for cluster analysis, may be 

based on the individual matrices in the decomposition, it is essential that a rational way 

be found for settling the indeterminancy.  (This point seems not to have received much 

attention.)  Donoho and Stodden (2004) ask: under what conditions is NMF well defined 
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and correct.   Rules of thumb to guide practitioners considering the use of NMF would be 

very helpful.  

 

The choice of the rank parameter k is a critical step in NMF.  Unlike PCA, the additive 

parts of the NMF can vary fundamentally with k.  Luta et al. argue that picking k 

correctly is not as important for NMF as it is for PCA or SVD.  I am not so sure about 

that! 

3. Robust NMF 

Keeping in mind the sensitivity of PCA to outliers, it is not surprising that NMF has the 

same issue.  The question is how to effectively robustify the fitting process.  The 

presentation by Sun et al. offers some promising ideas on how to do this.  My suggestion 

for this work is to connect it as much as possible to existing ideas, methods, algorithms, 

and theory from the field of robust estimation.  Ideas such as influence functions and 

breakdown points should be explored, for example. 

 

4. Contingency Tables 

The presentation by Das et al. offers an NMF approach to two-way count data.  They title 

their paper “Contingency Table Analysis via Matrix Factorization”, but not all two-way 

count data is of this type.  Specifically, contingency tables capture the association 

between two variables.  The usual goals are to measure the strength of this association 

and to test for independence.  

 

Das et al. use an idea of I. J. Good’s (1969) for testing the independence of the rows and 

columns in such a table.  Independence implies the contingency table matrix has rank 

equal to one. If it is not of rank one, then maybe it is of rank 2, etc.   Good proposed to 

use chi-squared tests for these hypotheses which are based on the SVD of the 

contingency table matrix.  Das et al. suggest using an NMF factorization instead of the 

SVD.  This may be helpful in some types of two-way data, but it is not clearly so for 

standard contingency tables.   

 

Another of Hotelling’s great contributions is relevant here: canonical correlation analysis 

(CCA).  If each row-column pair of observations involved in the contingency table is 

represented by a pair of 0-1 indicator vectors, then the table can be analyzed by CCA.  

This is a well known fact (see, e.g., Kendall and Stuart, 1961).  Testing for independence 

is usually done using a chi-squared test statistic which is proportional to the sum of 

squares of the canonical correlations.  These correlations in turn are the singular values 

not of the raw contingency table but a modified version of it, which may have negative 

values.  In my opinion this makes more sense than Good’s approach.  One last note:  the 

CCA could be modified to force the coefficients which define the canonical variables to 

be nonnegative, in the spirit of NMF. 

 

5. Nonnegative Data 

Both Luta et al. and Das et al. assert that when the data matrices are constrained to be 

nonnegative, then the matrix factors should “arguably” be nonnegative as well.  This 

need not be the case.  The standard contingency table discussed above is a prominent 

example. 
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Another example is latent semantic indexing (LSI) or analysis (Deerwester et al., 1990).  

The data for LSI is a term-by-document matrix of word counts for an electronic 

collection of documents.  Hence all of the entries are nonnegative.  Nevertheless, while 

NMF may be a logical method to apply, LSI utilizes the SVD to decompose the matrix.  

The leading terms, which may be large in number, are used in the document searching.  

LSI has proved to be remarkably successful even for very large collections.  One reason 

is no doubt its speed and efficiency.  Another is that users don’t typically pause to 

analyze the unwieldy singular vectors involved.  Success, instead, is measured by the end 

quality of the search process—whether or not the documents identified as most relevant 

turn out to be just that.  Indeed, black box approaches do have their place! 

 

Taking the LSI discussion one step further, it may make sense to consider both “additive” 

and “subtractive” parts in the modeling of term-by-document matrices.  For example, I 

might want to retrieve from a collection of multivariate analysis papers all those 

pertaining to NMF but omit those written by Stan Young because I already have those.  

Or maybe I want to search a library of travel documents for information about Miami, 

Florida but not Miami, Ohio. 

 

6. Cluster Analysis 

Luta et al. point out that “NMF factors can be used in much the same way as those 

coming from PCA” for cluster analysis.  There is related literature on this including the 

paper by Brunet et al, 2004.  The number of clusters is assumed equal to the rank number, 

k.  One issue that looms large is how to scale the relevant factoring matrix, given its 

indeterminancy, and the potential effect this may have on the clustering.  Special care 

seems warranted given that the clustering is being performed on approximating factor 

matrices rather than the raw data or their exact derivatives such as interpoint distances. 

 

7. Theoretical Developments 

 

There has been excellent theoretical progress on the NMF topic but more is needed.  The 

paper by Devarajan et al. (2011) develops a unified algorithm for NMF and provides an 

elegant treatment of divergence measures to assess goodness-of-fit.  They offer a 

probabilistic LSI model invoking the assumptions that word counts are independent and 

follow a Poisson distribution.  The independence assumption is convenient although it 

may be hard to justify in practice.  The question is how much impact it has on the 

analysis. 

 

8. Conclusion 

The papers in this session have been excellent for introducing NMF to the statistical 

community.  Clearly, NMF has appealing advantages for certain types of problems 

involving nonnegative data.  This is important because nuances and complexities 

associated with NMF suggest that there is more to worry about with this methodology 

than with traditional methods such as PCA. 

 

As more is learned about NMF, it will be crucial to obtain a better understanding of its 

strengths, weaknesses, and limitations.  The review paper by Devarajan mentions that 

“normalization of the observed data prior to NMF analysis is an important problem and 
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one that has not been systematically studied.”  This is a reminder that NMF has some of 

the same issues as PCA.  Another, no doubt, is the impact of small samples sizes, when n 

<< p, which can cause havoc with PCA.  As more evidence is accumulated we should 

reach a better understanding of both the pros and the cons of NMF. 

 

Acknowledgements 

 
Many thanks to Stan Young of NISS and the authors of the papers presented in this 

session for shining light on this important and timely topic. 

 

 

References 
 

Brunet, J-P., Tamayo, P. Golub, T. R., and Mesirov, J. P. (2004.  Metagenes and    

molecular pattern discovery using matrix factorization.  P NATL ACAD SCI USA 101, 

4164-4169. 

Candes, E. J., Li, X., Ma, Y., and Wright, J., (2009).  Robust principal component  

analysis? J ASSOC COMP MACH 58, 1-37. 

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman, R. (1990).  

Indexing by latent semantic analysis.  J AM SOC INFORM SCI 41, 391-407. 

Devarajan, K. (2008).  Nonnegative matrix factorization: an analytical and interpretive 

tool in computational biology.  PLOS COMPUT BIOL 4, 1-12. 

Devarajan, K., Wang, G., and Ebrahimi, N. (2011). A unified approach to non-negative 

matrix factorization and probabilistic latent semantic indexing. COBRA Preprint Series,  

Working Paper 80. 

Donoho, D. and Stodden, V. (2003).  When does non-negative matrix factorization give a 

correct decomposition into parts?  ADV NEUR IN. 

Good, I. J. (1969).  Some applications of the singular decomposition of a matrix.  

TECHNOMETRICS 11, 823-831. 

Hotelling, H. (1933).  Analysis of a complex of statistical variables into principal 

components.  J EDUC PSYCHOL 24, 417-441, 498-520. 

Hotelling, H. (1936).  Relations between two sets of variates.  BIOMETRIKA 28, 321-

377. 

Huber, P. J. (1981).  Robust Statistics.  Wiley, New York. 

Jolliffe, I. T. (1972).  Discarding variables in a principal component analysis. I. Artificial 

Data.  J ROY STAT SOC C-APP 21, 160-173. 

Jolliffe, I. T. (1973). Discarding variables in a principal component analysis. II. Real 

Data.  J ROY STAT SOC C-APP 22, 21-31. 

Kendall, M. G. and Stuart, A. (1961).  The Advanced Theory of Statistics, Vol. 2.  Hafner, 

New York. 

Lee, D. D. and Seung, H. S. (1999).  Learning the parts of objects by non-negative 

matrix factorization.  NATURE 401, 788-791 

Mahoney, M. W. and Drineas, P. (2009). CUR matrix decompositions for 

improved data analysis.  P NATL ACAD SCI USA 106, 697-702. 

Zou, H., Hastie, T., and Tibshirani, R. (2006).  Sparse principal component 

analysis.  J COMPUT GRAPH STAT 15, 265-286. 
 

JSM 2013 - Section on Statistical Learning and Data Mining

31


