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Abstract 

Telmar Group Inc. has created and made available for the first time a single respondent 

database Telmar-Centab based on the most reliable source of demographic information – 

annual Public-Use Microdata Samples (PUMS) data by the US Census Bureau. It has 3 

million of respondents, distributed across 3,000 counties and 150 demographic variables, 

covering all traditional metrics used in advertising media planning. It could be merged on 

a fly (by Telmar’s “multibasing” technique) with other major sources of marketing 

information. Telmar-Centab provides the explorer with unique opportunity to cross-tab a 

huge number of variables and make further analysis. It also opens the opportunities for 

implementation of the new promising analytical approaches (in particular, the recently 

proposed coefficients of structural association, CSA). It is shown, that CSA bear 

important features, not observed in traditional coefficients of association, and in 

particular situations - for binary variables - coincide with phi-coefficients (which are 

equal to Loevinger’s coefficients in this case). 

Kew words: advertising; media planning; demographic database; Telmar; Census; 

Loevinger and phi coefficients of correlation   

   

1. Introductions 

         In (Mandel 2011) was shown how many new analytical possibilities are open in 

Centab with three millions of respondents. Also, there were proposed a special measure 

of association between qualitative and quantitative variables, based on estimation of the 

differences between shares of values exceeding some typical level (like median) between 

groups determined by qualitative variable. These ideas were elaborated much further in 

(Lipovetsky, Mandel 2012), referred below as LM12, where general concept of the 

coefficients of structural association was developed. This article overviews results from 

LM12; all proofs could be found there.  

Various measures of correlation and association between statistical variables had 

been introduced about a century ago by F. Galton, K. Pearson, C. Spearman, and over the 

time many other authors have brought their input into the development of numerous other 

measures and their interpretation (see, for instance, E. Pearson, 1928; Sheskin, 1997; 

Rodgers and Nicewander, 1988; Mirkin, 2001; Warrens, 2008). Such measures comprise 

an essential part of any statistical data analysis and modeling. The current work considers 

a new measure of a y variable dependence upon another variable x, and this measure is 

based on the distribution of y along the segments formed by x. These segments are 

defined due to the structure of the data in x, for instance, if it is a nominal variable the 

segments naturally correspond to its categories. The profiling of y across x yields an 

index of association similar to the coefficient of determination, or correlation ratio, well 

known in the linear and nonlinear regressions and in the analysis of variance. 

Constructing such a coefficient of association also requires a setup of an appropriate 

target which can be reached in the best case. For instance, in regression modeling, such a 

target is presented by a theoretical model which yields the maximum of the estimated 
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theoretical variance (minimum of the residual variance) so the coefficient of multiple 

determination will be close as possible to one. In this problem the target can correspond 

to the maximum possible variance, and quotient of the empirical and the target variances 

yields a characteristic which called in LM12 the Coefficient of Structural Association 

(CSA). The term structural association reflects that CSA expresses 

internal correspondence between the variables via accounting for the structure of the 

dependent variable distribution by the segments of the independent one. 

 

     2. The Measures of Structural Association  

     For explicitness of the explanation, at first let us present the suggested approach on a 

simple example of measuring income dependence on the level of education. Table 1 

presents some descriptive statistics based on a sample of 189,771 respondents taken from 

the data on 2009 Census for people of the age 25 or older, with income above $1,000 per 

year, and having some level of education. The data is taken from the American 

Community Survey (see detail in Mandel, 2011). The median income equals $30,000. 

Table 1 shows proportion of the respondents by the four levels of education, the mean 

income in each level, and percent of those with income equal or above the median 

income within each level of education (the total of the last proportion is slightly above 

50% because of the cases with values equal the median). 

Table 1. Income by level of education 

Characteristic 

Graduated 

College and 

Higher 

Attended 

College 

 

Graduat

ed High 

School 

Did Not 

Graduate 

High 

School Total 

Respondents, % 11.4 47.1 28.5 13.0 100.0 

Average income, $ 87,721 47,970 29,445 20,073 43,611 

Earning more or equal 

to the median income 

($30K), % 

82.6 

 

60.1 

 

37.6 

 

18.3 

 

50.8 

 

    

Considering how strong a person’s education determines the level of income, one can 

apply a common measure of the so-called correlation ratio
2 (Eta-squared) estimated as 

a quotient of the weighted between groups variance to the total variance. Similarly to the 

well-known coefficient of determination R2 for regression, 
2 belongs to [0, 1] interval, 

is closer to one for a stronger dependence, and reduces to the pair linear correlation 

squared for the simple case of two groups. For the data in the example above, the Eta-

squared estimated by the four groups of education is 125.02  . It seems to be a 

rather low value to justify a general claim that “Studies by the US Census Bureau and 

many other agencies have consistently shown that people with a higher level of education 

make more money than those with less education”(Education and Income, 

www.education-online-search.com/articles/special_topics/education_and_income).  
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     Actually, one can see by Table 1 that there is a substantial difference between the 

groups, and a qualitative analysis can be straightforward as follows: nationwide, a half of 

all people has annual income less and a half has more than $30,000; if you had not 

completed high school you would fall into the group where only 18% have income more 

than that level; but if you had got a college degree or higher education you would belong 

to the group where 83% of people have income higher than the median level. The 

association between the two variables is visible and strong (and reminding roughly 80/20 

Pareto rule- see (Lipovetsky, 2009)). Thus, the low value of 
2 does not seem to be an 

adequate measure for expressing the relation between income and education levels, and 

in such situation suggested in LM12 the simple and reliable measure of a coefficient of 

structural association, CSA could be a good alternative (I will return to this example 

later in the Section 3).  

     Suppose there is a dependent variable y structured by K groups of the independent 

variable x. Taking y at the mean level, or median, or another percentile important as a 

target value, one can find the frequency value pi of x reached within each i-th group 

(i=1,2,…,K). For instance, such frequencies are presented in the last row of Table 1 for 

K=4 where the target value is the median. Than one can calculate the average value and 

sample unbiased variance Vsample of these empirical frequencies. For K frequencies one 

may consider a theoretical maximum possible variance which can be reached if these 

frequencies could have any values on the [0, 1] interval. Having the maximum possible 

value for the unbiased sample variance Vmax one can estimate a new convenient 

measure of the dependence of y by x as a quotient of the variance Vsample to the 

maximum variance Vmax. Let us define this CSA via the relative maximum variance:  

                                 

10, 2
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V
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                                            (1) 

If the frequencies pi are close one to another, then Vsample is small, and CSA is close to 

zero. If the frequencies vary by groups and are maximally different, then of course CSA 

reaches one. It is proved in LM12 that the maximum variance corresponds to the 

frequencies tending to the margins of the interval [0, 1], with about a half of them at each 

border. The solution can be presented as: 

                         




































.,
1

1
1

4

1

,,
1

1
4

1

)(max

evenKfor
K

oddKfor
K

KV

                  (2) 

 It is clear that for large K the variance (2) has the asymptote value 0.25, and the 

maximum standard deviation reaches 0.5. Table 2 presents for several K the unbiased 

estimate for the maximum variance and the standard deviation (STD). It is interesting to 

note that the variances for an odd number of points and the next even number of the 

points are the same. By the pattern of a sequence for the variances given as quotients it is 

evident how the table can be continued. 

 

Table 2. Maximum variance for independent frequencies by the numbers of groups. 

K 2 3 4 5 6 7 8 9 10 

Vmax 1/2 2/6 2/6 3/10 3/10 4/14 4/14 5/18 5/18 

STDmax 0.707 0.577 0.577 0.548 0.548 0.535 0.535 0.527 0.527 
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    The closed-form solution for two categories and q=0.5 (the median) proportion of the 

total sample can be expressed via the free parameter of the first weight 1 : 
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The maximum possible variance across all 1  can be reached for 5.1  , when it equals 

V=0.25 that coincides for the asymptote to the result (2). Table 3 the estimates (3) for the 

maximum variance and the standard deviation. 

Table 3. Maximum variance for two groups and different values of the weight 1 . 

1  
0 .100

0 

.200

0 

.300

0 

.400

0 

.500

0 

.600

0 

.700

0 

.800

0 

.900

0 

1 

Vmax 0 .027

8 

.062

5 

.107

1 

.166

7 

.250

0 

.166

7 

.107

1 

.062

5 

.027

8 

0 

STDma

x 

0 .166

7 

.250

0 

.327

3 

.408

2 

.500

0 

.408

2 

.327

3 

.250

0 

.166

7 

0 

 

 A general case of K weighted connected frequencies pi (i.e. when groups sizes are not 

equal to each other and respectively the maximal variance should be calculated based on 

that fact) is defined in (4):  

                            
qppp KK   ...2211                                                     (4) 

where i  are the weights of categories (groups), and q is equal to the total frequency 

targeted (for instance, q=0.5 for the median). The solution for the maximum possible 

variance can be obtained by means of the quadratic programming with linear restriction. 

Due to the Kuhn-Tucker theorem of the nonlinear programming, as shown in LM12,  the 

global maximum for the variance can be reached for the frequencies pi tending to the 

margins of [0, 1] domain of their possible values. 

     For a simple case of two connected frequencies the point of the maximum variance is 

reached for q=(p1+p2)/2, so for the equal weights. For equal weights ( 5.01  ) the 

maximum variance is defined by the maximum of two values, q2 and (1-q)2, which 

presents a maximum squared distance of p1 and p2 from their center, q. If the value q is 

close to the median, so approximately equals 0.5, then both side distances q2 and (1-q)2 

are similar, and the two frequencies are located in the vicinity of zero and one, and the 

maximum variance value corresponds to the points at the margins of their domain. Even 

being restricted by (4) the frequencies pi in the point of optimum are far from their center 

and close as possible to 0 or 1. Thus, for similar weights i  and q about 50%, the 

maximum variance obtained in the point of optimum pi by the nonlinear programming 

can be roughly approximated by the closed-form solution (2).   It is important to indicate 

that in a case of the variables of a special nature the CSA can be related to some other 

measures of the dependence between them. For instance, in the case of two binary 

variables x and y, the so-called Loevinger’s H-coefficient presents a better measure of 

their correlation than Yule’s association coefficient or Pearson’s phi-coefficient of 

correlation because it also takes into account the range of the possible marginal values of 
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frequencies (see Loevinger, 1948; Warrens, 2008). The Loevinger coefficient can be 

obtained after normalization of the phi-coefficient by its maximum value. The relation 

between these coefficients can be written as: 

                      

22

MLoevingeradj Hr 
.                                               (5) 

It shows that in a simple case of two binary variables CSA actually coincides with the 

classical measure of the variables relation. 

     In another important case of the numerical y and the ordinal x variables, the CSA 

characteristic can be defined by a more adequate measure. For an ordinal x variable, the 

reached frequencies by categories are concentrated not at the borders, but rather equally 

distantly on the interval [0, 1] (for instance, see the last row in Table 1). See details of 

this scenario in LM12. 

     Concerning a possibility of the statistical comparison of a sample variance with the 

maximum variance, there could be suggested the following approach. Let us take a 

characteristic of the inverted CSA (1) which is defined as the larger (maximum) variance 

divided by a smaller sample variance, so it is the F-statistics with both degrees of 

freedom equal K-1 in unbiased estimation of both variances: 

                                 

2max
1,1 /1 M

sample

KK
V

V
F 

 .                                          (6) 

Similarly F-statistics can be defined for the 
2

E  index (6) as its reciprocal value. Table 5 

presents examples of such F-statistics for several degrees of freedom K-1 and levels of 

significance  . If a calculated F-value (6) is larger than the corresponding critical value 

from Table 5, then with the confidence probability 1  the sample variance is 

significantly less than the maximum possible variance, so in this case the sample 

distribution of the frequencies by categories differs much from the pattern corresponding 

to the maximum variance. 

 

Table 5. Critical values of FK-1,K-1 statistics for several degrees of freedom K-1 

and levels of significance   

           K-1 

   1 2 3 4 5 6 7 8 9 

0.1 39.9 9.0 5.39 4.11 3.45 3.05 2.78 2.59 2.44 

0.05 161.4 19.0 9.28 6.39 5.05 4.28 3.79 3.44 3.18 

0.025 647.8 39.0 15.44 9.6 7.15 5.82 4.99 4.43 4.03 

     Thus, the dependence of y on x in this case is not substantial. And vice versa, if the 

sample F-value is smaller than the one given in Table 5, then one cannot distinguish the 

sample and maximum variance, so the relation between y and x can be considered as a 

strong dependence. 

3. Numerical examples 

     Let us return to the example presented in Table 1. The unbiased estimation of the 

sample variance by the four frequencies by categories shown in the last row equals 

7.74%, and the maximum variance from Table 2 for K=4 equals 33.3%, so 
2

M  (1) 

equals 23.2%. Considering the maximum variance with the weights of the groups (those 
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are in the first row of Table 1) and solving the nonlinear programming problem for it I 

obtain the value Vmax=18.4% (reached at the point p1=0.02, p2=0.16, p3=0.99, p4=1.0, 

so with values close to the margins of the 0-1 interval), so 
2

M equals 42.1%., almost 

twice than in the estimation without accounting for the groups’ weights.  

       Another example using a subsample from the data on income and education is 

considered in Table 6. It presents data on income and its cumulative frequency, together 

with frequencies by the categories of education. Each level of income cumulative 

frequency grows faster for the lower than for a higher education. In each row of Table 6, 

by the attained values of the four frequencies by categories the unbiased variance is 

calculated. Due to Table 2, the maximum variance for K=4 equals 2/6, so the relative 

variance (1) shown in Table 6 is three times higher than the sample variance, and the 

corresponding values of the sample F-statistics are given too. The last two columns in 

Table 6 present the index (7) and the corresponding F-values. Incomes up to and above 

60 $K define the median of the total distribution. At the same time this level comprises 

about 80% and 20% for the “no school” and “college” education, respectively. 

     Therefore, a half of population earns up to $60K, and a four fifth of uneducated 

population belong to this half. And another half of population earns above $60K, and a 

four fifths of educated population belong to this other half. At the level of $60K income, 

the maximum 
2

M = 21.1%, and the statistics (8) hits its minimum F=4.75. Also at this 

level, 
2

E = 37.9%, and F=2.64. Due to Table 5 for K-1=3 degrees of freedom, the critical 

value for 1.0  is F=5.39, and it is even more for a smaller alpha. Thus, the sample F-

statistics are smaller than the critical one, and one can conclude that the sample and 

maximum variances in the frequency distributions across the categories of education are 

undistinguishable, so the income is strongly related to the level of education in the 

vicinity of the median income frequency. Scanning by the rows of Table 6 shows that this 

relation diminishes for the lower and higher values of income. 

 Behavior of these characteristics is illustrated in Figure 1 which shows that maximum 

values of indices are reached around the target value, the median.  

 

Figure 1. Distribution of coefficients of the relative structural dependence 
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Table 6. Cumulative distributions by education categories, and their statistical 

characteristics 

 Income 

Cumulative frequency Relative to 

maximum 

variance by education category 

$K 

Cumulative 

frequency college 

some 

college school 

no 

school 

Unbiased 

variance CSA 

F-

statistic 

10 0.050 0.012 0.036 0.059 0.125 0.002 0.007 142.42 

20 0.143 0.033 0.101 0.179 0.346 0.018 0.054 18.35 

30 0.246 0.061 0.182 0.322 0.525 0.040 0.119 8.38 

40 0.345 0.101 0.273 0.451 0.653 0.056 0.169 5.93 

50 0.438 0.151 0.364 0.566 0.751 0.067 0.200 5.00 

60 0.523 0.210 0.451 0.665 0.820 0.070 0.211 4.75 

70 0.596 0.273 0.531 0.742 0.872 0.068 0.205 4.87 

80 0.662 0.337 0.607 0.806 0.904 0.063 0.188 5.32 

90 0.718 0.397 0.673 0.854 0.929 0.056 0.168 5.95 

100 0.766 0.462 0.730 0.891 0.949 0.048 0.143 7.01 

110 0.805 0.521 0.778 0.918 0.961 0.039 0.118 8.47 

120 0.837 0.572 0.816 0.936 0.972 0.033 0.098 10.20 

130 0.863 0.619 0.848 0.950 0.978 0.027 0.080 12.52 

140 0.883 0.659 0.873 0.960 0.982 0.022 0.065 15.33 

150 0.900 0.699 0.893 0.968 0.985 0.017 0.052 19.34 

160 0.914 0.733 0.909 0.974 0.988 0.014 0.041 24.31 

170 0.926 0.760 0.923 0.978 0.990 0.011 0.034 29.64 

180 0.935 0.785 0.933 0.981 0.991 0.009 0.027 36.75 

190 0.942 0.807 0.942 0.984 0.992 0.007 0.022 45.48 

200 0.949 0.825 0.949 0.986 0.993 0.006 0.018 55.19 

210 0.954 0.841 0.955 0.988 0.994 0.005 0.015 66.30 

220 0.959 0.855 0.96 0.989 0.994 0.004 0.013 79.40 

230 0.963 0.867 0.964 0.990 0.995 0.004 0.011 94.08 

240 0.966 0.877 0.967 0.991 0.995 0.003 0.009 109.28 

250  0.969 0.885 0.970 0.992 0.995 0.003 0.008 125.29 

 

4. CSA Simulation Results for Nominal-Numerical and Two Numerical Variables 

     The case when x and y are the nominal and numerical variables, respectively, is the 

most appealing for motivating CSA. Let us start with x as a binary variable when the 

correlation ratio Eta-squared 
2 equals the squared coefficient of linear correlation. The 

maximum weighted variance between two groups is defined via the weight of the first 

group and a targeted frequency q of the whole sample. In LM12 we have conducted the 

simulation experiment using generated datasets to study CSA calculated via the 
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maximum variance (3) in comparison with
2 . Data simulation and experimental design 

are as follows. The data for numerical y was generated as uniform random values for two 

groups corresponding to 1 and 0 values of the binary x, respectively. The proportion of y-

values in the 1st group for x (those equal 1) was taken as 20%, 40% and 90% of the total 

sample size of 500 values. Values of y in the 1st group are distributed in the interval [1, 

2]. Values of y in the 2nd group for x (those equal 0) are distributed in the interval [a, b] 

with different margins a and b, and different width of b-a =1, 3, and 5 (which also 

corresponds to different variances (a-b)2/12).  The y-values in the 1st and 2nd are either 

overlapped or distanced. The overlapping was taken at 70%, 50%, or 0% of the width of 

the 1st group (which equals one). A distance between groups (measured as a gap between 

the right margin of the 1st interval and the left margin of the 2nd interval) was taken 

equal to one or three widths of the 1st group.  

     For example, Figure 2A presents a scatterplot of the dataset with the 20% proportion 

of y-values in the 1st group, overlapping 50%, and the width of the 2nd group equals 1 

(so a=1.5 and b=2.5). Figure 2B shows the dataset with the 90% proportion of y-values in 

the 1st group, with width a-b=5, and the gap of 3 units (so a=5 and b=10). 

 

Figure 2. A: Overlapping groups of the same widths; B: gapped groups of different 

widths.   

 
For each of the mentioned combinations of experimental parameters were compared the 

three measures of association: 
2

, CSA (2), and also the un-weighted CSA (discussed 

below). Due to (2), the maximum variance for the case of two groups, K=2, equals 0.5. 

The results of the experiments are summarized in Figure 3 where each panel consists of 

estimations by six datasets. For instance, Figure 2A dataset’s results are presented at the 

second point in the abscissa in the left upper panel, and Figure 2B dataset’s results are 

reflected at the last 6th abscissa point in the right lowest panel of Figure 3. Actually, with 

ten random drawings for each of the six types of datasets, each panel in Figure 3 presents 

results evaluated by sixty numerical simulations. Several observations can be made by 

the experiments. 

 1. Eta squared 
2 increases monotonically, but the slope and interval of its change 

varies. For instance, 
2  for the data in the upper left panel and in the lower right panel 

of Figure 3 are about 0.25 and 0.87, respectively. 

2. Looking at the graphs in Figure 3 from the upper left to the lower right corner 
2

ended up at about the same value 0.9 though starting from very different initial values 

from about 0.1 to about 0.6. Thus, for 
2 comparison the relative size of the groups 

should be taken into account. For two partitions of the similar relative sizes (20-80% like 
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in Figure 2A, and 90-10% like in Figure 2B) with the same gap between groups (the 

lowest row in Figure 3) the value of 
2 could be as different as 0.3 versus 0.6. 

 

Figure 3. Comparison of Eta-squared and CSA for different data settings. 

 

Eta squared – solid line; CSA – dashed line; CSA un-weighted – dashed-dotted line. 

  

 3. CSA typically shows values higher than
2 for any datasets; they become both 

close to zero when groups have the same sizes and variances, i.e. CSA is more sensitive 

to deviations from symmetry in the distribution of y-variable within groups.  

 4. When variances in groups are similar, the CSA reacts to the level of overlapping 

more steeply than
2 regardless of the relative sizes of the groups (see the curves in the 

1st row of the panels in Figure 3, and to a lesser degree in the 2nd row there). But in 

contrast to
2 , CSA reaches the maximum value when groups are not overlapped at all, 

while 
2 grows further if the gap between the groups widens. 

 5. When variance within the group with larger y-values is noticeably greater than 

variance for the group with smaller y-values (those of x=0 and x=1, respectively) CSA is 
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almost always very high (rows 2 and 3 in Figure 3), with a slight dependence on the 

degree of overlapping. It holds until the share of the 1st group becomes larger than 50% 

when a slight decrease in CSA can be seen with overlapping (the curves in the lower right 

corner in Figure 3). 

 6. CSA is defined by the proportions and weights, not by the actual numerical values, 

and for this reason it is a robust statistics. While 
2 may be severely affected by 

outliers, the CSA remains intact that makes it a good tool for data analysis. 

 7. The un-weighted CSA is useful in situations when the relative sizes of the groups 

are not available, and only proportions of the exceeding target’s values in each group    

are given. Behaving similarly to the regular CSA, the un-weighted CSA is defined by the 

unbiased variance of the proportions and the maximal variance (2). The correlations 

between these two estimates of CSA are very high (see any panel in Figure 3) that 

suggests a possibility to estimate the CSA without the original data, only by usually 

available proportions, but it needs additional investigation. 

     For a general case of many groups, K>2, it is possible to use evaluation without 

weights (2), but there is no analytical closed-form solution for the maximum variance 

estimated by weighted proportions. The latter can be obtained by means of quadratic 

programming or by maximization algorithms available in modern mathematical and 

statistical software packages. 

     Let us consider now the case of two numerical variables x and y, with x sorted in the 

ascending order. The entire interval [xmin , xmax] is divided into K roughly equal groups 

(so each group has about N/K values where N is a sample size); the target statistics for y 

within each of these groups is calculated together with CSA estimation. It is clear that if 

the variables are highly correlated the CSA would be high as well. For example, if one 

considers the median of y as the target, about a half of the groups should have zero 

frequencies    (because almost all values in these groups are less than median after 

sorting by x), and about half would have frequencies of the value one. Then the variance 

of frequencies should be close to its theoretical maximum, CSA is close to 1, and in this 

case one can use the formula for maximum variance (2). 

     To look closer at this estimation, it were designed the following experiment (LM12). 

Data by x was generated as a normally distributed variable (N=4,000) and sorted. Data by 

y equals x plus a random normal noise of zero mean and different levels of variance. 

Then the data was divided into different number of groups: 2, 4, 5, 10, and 20 groups, and 

the CSA were calculated with (2) for the maximum variance (let’s denote them CSA-

2,…, CSA-20, by to the number of groups). For each level of noise, ten random draws 

were taken, and the average CSA, Pearson linear, and Spearmen rank correlations were 

calculated. The noise variance varied so that the linear correlation between variables 

changed from 0 to 1, which allowed us to observe the related CSA values. To evaluate 

the CSA robustness data were distorted y by various kind of outliers and their clusters to 

create different situations which show comparative behavior of the three considered 

measures of association. The experiment demonstrated that CSA reveals certain features 

in the data which cannot be detected by the traditional measures. 

     Let us consider results of comparison between CSA and Pearson’s correlation 

(Spearman’s rank correlation behaves very closely to Pearson’s, so is not shown). Figure 

4, A and B, presents characteristics profiled by the noise’s standard deviation , and 

shows the following. 

1. In general, CSA behaves similarly to the linear correlation squared. The 

correspondence between the Pearson’s r2 coefficient and CSA-20 is shown in Figure 4A 

on the scatter-plot. They are closely related, with the coefficient of determination equals 
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0.99 for the quadratic model, so CSA provides with essentially the same information on 

the strength of the relationship as r2 does. 

2. Linear correlation squared is usually higher than CSA. For CSA-20 a typical difference 

lays within 0.1-0.2 (see Figure 4B). 

3. CSA value grows with increase of the number of groups – the difference between the 

CSA-2 and CSA-20, with 2 and 10 groups, respectively, is especially noticeable. 

 

Figure 4. Correlation and CSA:  A. CSA-20 versus r2; B. r
2
 and CSA profiled by 

noise. 

 

     The most interesting observations obtained by the variety of experiments with 

different datasets are summarized in Table 7 which is also illustrated by Figure 5 with 

some specific data patterns. Each of these patterns shows that two or three of the used 

coefficients disagree.  

 By Table 7 and Figure 5 one can conclude the following. 

 1. The CSA rather corresponds to the rank than to the linear correlation. If the rank 

correlation is noticeably different from the linear correlation, the CSA would also differ 

from the linear correlation. For instance, the rank correlation is high but the linear 

correlation is low (the 1st row of Table 7), which indicates that a strong non-linearity or a 

large impact of the outliers reduce the linear but retain the rank correlation. Another 

common situation is when a single outlier (or a small group of outliers) makes a high 

linear correlation to become low, while the rank correlation and CSA remain high (the 

2nd in Table 7). The CSA and rank correlation are powerful indicators of the deviation 

from the linear relationship. 

 2. There are situations when CSA outperforms the rank correlation. Two such 

examples are given in Table 7, row 3 (B1 and A2 in Figure 5).  They occur when both 

Spearman and Pearson coefficients are low but CSA is high in the presence of some large 

groups of intermixed data: there is a strong non-monotonicity when the rank correlation 

does not work in B1; in A2 is a mixture of clusters. Another case is shown in B2 with 

three large clusters: data in the middle one has a strong positive correlation, but in two 

others do not. Yet their remote locations and sizes (25% of the sample in each one) 

guarantee that the share of values exceeding median varies substantially in the direction 

of x values, resulting in a high CSA. 
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Figure 5. Data patterns detected differently by CSA, linear and rank correlations. 

 

Columns (A, B) and rows (1, 2, 3) are named for a convenient referencing. 

     3. Another type of the relation is shown in row 4 of Table 7 (A3 in Figure 5). A small 

rank correlation occurs together with a high negative linear correlation which is explained 

by the mutual locations of two clusters that produces a completely misleading impression 

about the data structure. But a high CSA shows that the data is ideally aligned in a sense 

that a vertical shift between the clusters does not affect the distribution of y-values 

exceeding the median while moving along the x-axis. This example is especially 

interesting because both the rank and linear correlations give a distorted view of the data, 

although by completely different reasons (due to the shift in values and due to the mutual 

location), while the CSA captures the important fact that the variables are strongly (yet 

piecewise) correlated. It may happen in situations when a data trend changes abruptly 

(like after a financial crisis), and then continues in the same fashion as before but starting 

from a lower point. 
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Table 7. CSA, Pearson and Spearman coefficients as indicators of anomalies in data. 

 

Data structure (reference to panels in 

Fig. 4) 

Numerical values Correlation pattern 

Rank Linear CSA Rank Linear CSA 

1 

Two groups of 5% outliers, positive 

dominant correlation (A1) 0.61 0.07 0.70 + 0 + 

2 

5% of outliers with highly correlated 

data (B3) 0.60 -0.38 0.69 + - + 

3 

Highly non-monotone relation (B1), 

messy data with large intermixed 

correlated cluster (A2), or two 

uncorrelated large clusters with 

correlated main dataset (B2) 0.16 0.02 0.89 0 0 + 

4 

Two positive within-group (25%-

75% shares) correlations vs. 

negative total correlation (A3) -0.13 -0.72 0.89 0 - + 

 

5. Summary 

     There are considered new types of the measures for estimation of the variable 

dependence on another one. The suggested Coefficients of Structural Association, CSA, 

are based on the distribution of one variable across the segments formed by another one. 

The quotient of the sample variance of the frequencies across the segments by the 

maximum possible variance constitutes the index of relative maximum variance. This 

index has features similar to the coefficient of determination in regression modeling, or in 

the analysis of variance. Finding of the maximum possible variance is considered in the 

cases of independent and dependent shares of the segments. 

Coefficients of Structural Associations have powerful interpretational capability, and 

serve as viable indicators in data analysis for detecting the abnormalities which cannot be 

found by the traditional measures of correlation. They also demonstrate a close 

relationship with other measures of association, showing in certain cases equivalence 

with them (the Loevinger’s coefficient for binary variables). 

The considered methods enrich both theoretical and practical estimations for 

identifying variables relations hidden in the data. Future studies are needed, both 

theoretical and experimental, to clarify the CSA abilities in data analysis with different 

scales, and for multivariate data and its modeling.   
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