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Abstract
We consider estimation of a causal effect of a possibly continuous treatment when treatment as-

signment is potentially subject to unmeasured confounding, but an instrument is available. Our
semiparametric structural equation for the outcome as a function of treatment and covariates as-
sumes that the effect of treatment is linear, conditional on the observed baseline covariates. This
weakens the commonly made linearity assumption. The structural equation also assumes that the
conditional mean of its error, given the instrument and baseline covariates, equals zero, which is the
typical instrumental variable assumption. We establish identifiability of marginal causal effects of
the treatment as defined by projections of the true causal dose-response curve onto a user supplied
working marginal structural model. We derive the efficient influence curve of the resulting statis-
tical parameter/estimand, and develop a targeted minimum loss-based estimator of this estimand.
The TMLE can be viewed as a generalization of the two-stage regression method in the instrumen-
tal variable methodology to semiparametric models. The asymptotic efficiency and robustness of
this substitution estimator is outlined. Finally, we implement this new estimator and evaluate its
performance through a simulation study.

Keywords: Asymptotic linearity of an estimator, causal effect, efficient influence curve,
empirical process, confounding, influence curve, instrument, loss function, semiparametric
statistical model, targeted maximum likelihood estimation, targeted minimum loss based
estimation (TMLE).

1. Introduction

2. Formulation of statistical estimation problem

We observe n i.i.d. copies O1, . . . , On of a random variable O = (W,R,A, Y ) ∼ P0,
where P0 is its probability distribution. Here W denotes the measured baseline-covariates,
R denotes the subsequent (in time) realized instrument that is believed to only affect the
final outcome Y through the intermediate treatment variable A. The goal of the study is
to assess a causal effect of treatment A on outcome Y . We consider the case in which it
would be inappropriate to assume that W denotes all confounders: i.e., it is believed that
A is a function of both the measured W , but also unmeasured confounders. As a con-
sequence, methods that rely on the no unmeasured confounding assumption would most
likely be biased. In order to deal with the unmeasured confounding, the instrumental vari-
able assumption is absolutely crucial. To formally define the causal quantity of interest and
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establish its identifiability from the observed data distribution P0, we assume the follow-
ing structural equation model: W = fW (UW ), R = fR(W,UR), A = fA(W,R,UA),
Y = Am0(W ) + θ0(W ) + UY , where U = (UW , UR, UA, UY ) ∼ PU,0 is an exogenous
random variable, fW , fR, fA, m0, and θ0 are all unspecified. In addition, it is assumed
that E(UY | R,W ) = 0, which holds in particular if UR is independent of UY , given
W . In other words, even though we did not assume that A is randomized conditionally on
W , we are assuming that R is randomized conditionally on W . In addition, we made an
important exclusion restriction assumption by not including R in the equation for Y : thus,
it is assumed that R does not have a direct effect on Y . In a later section, we will also
consider the more restrictive model that assumes that m0 satisfies a particular parametric
form m0(W ) = mα0(W ) for some model {mα : α ∈ Rk}.

This structural equation model allows one to define counterfactuals Y (a) = am0(W )+
θ0(W ) + UY for all possible values a ∈ A, where A denotes a support of A. We can
now define marginal causal effects E0(Y (a) − Y (0)) = aEm0(W ) or adjusted causal
effects E0(Y (a)− Y (0) | V ) = aE(m0(W ) | V ) conditional on a user supplied covariate
V ⊂W . These causal effects are functions ofm0 and the distribution ofW . Identification
of m0: Let Π0(R,W ) ≡ E0(A | R,W ) be the conditional mean of A, given R,W . The
instrumental variable assumption E(UY | R,W ) = 0 implies

E0(Y | Π0(R,W ),W ) = Π0(R,W )m0(W ) + θ0(W ).

This demonstrates that our structural equation model implies a semiparametric regression
model for the conditional mean of Y , given W,Π0(R,W ). As a consequence, we can
identify the regression Q̄0(R,W ) = E0(Y | Π0(R,W ),W ), or, equivalently, (m0, θ0) that
identifies this regression, by minimizing the risk of the squared error loss Lπ0(m, θ)(O) =
(Y −Π0(R,W )m(W )− θ(W ))2:

(m0, θ0) = argmin
m,θ

E0(Y −Π0(R,W )m(W )− θ(W ))2.

For a pair of values r and r1, we have

E0(Y | R = r,W )− E0(Y | R = r1,W ) = {Π0(r,W )−Π0(r1,W )}m0(W ).

Thus, for each w in the support of W , if there exist at least two values r = r(w) and
r1 = r1(w) in the support of the conditional distribution gR,0 of R, given W = w, for
which Π0(r, w)−Π0(r1, w) ̸= 0, then m0(w) is identified by

m0(w) =
E0(Y | R = r,W = w)− E0(Y | R = r1,W = w)

Π0(r, w)−Π0(r1, w)
.

We state this identifiability result for m0 as a formal lemma.

Lemma 1 Let Π0(R,W ) ≡ E0(A | R,W ). Let gR,0 be the conditional probability
distribution of R, given W . Let W be a support of the distribution PW,0 of W . Let
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w ∈ W . If there exists two values (r, r1) in a support of gR,0(· | W = w) for which
Π0(r, w)−Π0(r1, w) ̸= 0, then

m0(w) =
E0(Y | R = r,W = w)− E0(Y | R = r1,W = w)

Π0(r, w)−Π0(r1, w)
,

which demonstrates that m0(w) is identified as a function of P0.

Statistical model: The above stated causal model implies the statistical model M con-
sisting of all probability distributions P of O = (W,R,A, Y ) satisfying EP (Y | R,W ) =
Π(P )(R,W )m(P )(W )+θ(P )(W ) for some unspecified functionsm(P ), θ(P ), and Π(P )(R,W ) =
EP (A | R,W ).

Causal parameter: Let {amβ(v) : β} be a working modeln for E0(Y (a) − Y (0) | V ).
We define our target parameter as a projection of the true E0(Y (a) − Y (0) | V ) =
aE0(m0(W ) | V ) on this working model. Specifically, given some weight function h(A, V ),
let

β0 = argmin
β
E0

∑
a

h(a, V ){aE(m0(W ) | V )− amβ(V )}2

= argmin
β
E0

∑
a

h(a, V )a2{E(m0(W ) | V )−mβ(V )}2

= argmin
β
E0

∑
a

h(a, V )a2{m0(W )−mβ(V )}2

≡ argmin
β
E0h1(V ){m0(W )−mβ(V )}2,

where we defined h1(V ) ≡
∑

a h(a, V )a2.
For example, if V is empty, and mβ(v) = β, then β0a = E0(Y (a) − Y (0)). We can

also select V = W and mβ(w) = βw, in which case β0w is the projection of m0(w) on
this linear working model {βW : β}.
Statistical Target parameter: Our target parameter is ψ0 = β0. We note that Ψ(P0) =
Ψ(m0, PW,0) only depends on P0 through m0 and PW,0, while m0, as statistical parameter
of P0, is identified as a function of Q̄0 = E0(Y | R,W ) under the semiparametric regres-
sion model Q̄0 = E0(Y | R,W ) = π0(R,W )m0(W ) + θ0(W ). We will also use notation
Ψ(Q̄0, PW,0) or Ψ(π0,m0, θ0, PW,0).

Let Ψ : M → IRd be the target parameter mapping so that Ψ(P0) = β0, which exists
under the identifiability assumptions stated in Lemma 1. The mapping P → Ψ(P ) is de-
fined by first evaluating Π(P ), then minimizing the squared-error riskE0(Y−Π(P )m(W )−
θ(W ))2 over the semiparametric model Π(P )(W )m(W ) + θ(W ) with m, θ unspecified,
resulting in m(P ), and finally, evaluating Ψ(P ) = Ψ(m(P ), PW ).

The statistical estimation problem is now defined. We observe n i.i.d. copies of O =
(W,R,A, Y ) ∼ P0 ∈ M, and we want to estimate ψ0 = Ψ(P0) defined in terms of the
mapping Ψ : M → IRd.
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3. Efficient influence curve of target parameter

We determine the efficient influence curve of Ψ : M → IRd in a two step process. Firstly,
we determine the efficient influence curve in the model in which Π0 is assumed to be known.
Subsequently, we compute the correction term that yields the efficient influence curve in our
model of interest in which Π0 is unspecified.

3.1 Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(R,W ) = E0(A | R,W )
is known. For the sake of the derivation of the canonical gradient, let W ∈ IRN be discrete
with support W so that we can view our model as a high dimensional parametric model, al-
lowing us to re-use previously established results. That is, we represent the semiparametric
regression model as E0(Y | R,W ) = Π0(R,W )

∑
wm0(w)I(W = w) + θ0(W ) so that

it corresponds with a linear regression fm0(R,W ) = Π0(R,W )
∑

wm0(w)I(W = w) in
whichm0 represents the coefficient vector. Define theN -dimensional vector h(Π0)(R,W ) =
d/dm0fm0(R,W ) = (Π0(R,W )I(W = w) : w ∈ W). By previous results on the
semiparametric regression model, a gradient for the N -dimensional parameter m(P ) at
P = P0 ∈ M(π0) is given by

D∗
m,Π0

(P0) = C(π0)
−1(h(Π0)(R,W )−E(h(Π0)(R,W ) |W ))(Y−fm0(R,W )−θ0(W )),

where C(π0) is a N ×N matrix defined as

C(π0) = E0{d/dm0fm0(R,W )− E0(d/dm0fm0(R,W ) |W )}2

= E0{(I(W = w){Π0(R,W )− E0(Π0(R,W ) |W} : w}2

= Diag
(
E0{I(W = w){Π0(R,w)− E0(Π0(R,W ) |W = w)}2} : w

)
= Diag

(
PW,0(w)E0

(
{Π0(R,W )− E0(Π0(R,W ) |W )}2 |W = w

)
: w

)
.

For notational convenience, given a vector X , we used notation X2 for the matrix XX⊤.
We also used the notation Diag(x) for the N ×N diagonal matrix with diagonal elements
defined by vector x. Thus, the inverse of C(π0) exists in closed form and is given by:

C(π0)
−1 = Diag

(
1

PW,0(w)E0({Π0(R,W )− E0(Π0(R,W ) |W )}2 |W = w)
: w

)
.

This yields the following formula for the efficient influence curve of m0 in model M(π0):

D∗
m,Π0,w

(P0) =
1

PW,0(w)E0({Π0(R,W )−E0(Π0(R,W )|W )}2|W=w)

I(W = w)(Π0(R,W )− E0(Π0(R,W ) |W ))(Y −Π0(R,W )m0(W )− θ0(W )),

where D∗
m,Π0

(P0) is N ×1 vector with components D∗
m0,Π0,w

(P0) indexed by w ∈ W . We
can further simplify this as follows:

D∗
m,Π0,w

(P0)(W,R, Y ) = 1
PW,0(w)E0({Π0(R,W )−E0(Π0(R,W )|W )}2|W=w)

I(W = w)(Π0(R,w)− E0(Π0(R,W ) |W = w))(Y −Π0(R,w)m0(w)− θ0(w)).
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This gradient equals the canonical gradient of m0 in this model M(π0), if E0((Y −
E0(Y | Π0,W ))2 | R,W ) is only a function of W . For example, this would hold if
E(U2

Y | R,W ) = E0(U
2
Y |W ). This might be a reasonable assumption for an instrumental

variable R. The general formula for the canonical gradient is given in [?]. For the sake of
presentation, we work with this gradient due to its relative simplicity. and the fact that it
still equals the actual canonical gradient under this assumption.

We have that ψ0 = ϕ(m0, PW,0) for a mapping

ϕ(m0.PW,0) = argmin
β
E0

∑
a

h(a, V )a2 (m0(W )−mβ(V ))2 ,

defined by working model {mβ : β}. Let dϕ(m0, PW,0)(hm, hW ) = d
dm0

ϕ(m0, PW,0)(hm)+
d

dPW,0
ϕ(m0, PW,0)(hW ) be the directional derivative in direction (hm, hW ). The gradi-

ent of Ψ : M(Π0) → IRd is given by D∗
ψ,Π0

(P0) = d
dm0

ϕ(m0, PW,0)D
∗
m,Π0

(P0) +
d

dPW,0
ϕ(m0, PW,0)ICW , where ICW (O) = (I(W = w) − PW,0(w) : w). We note that

β0 = ϕ(m0, PW,0) solves the following d× 1 equation

U(β0,m0, PW,0) ≡ E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )(m0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = ϕ(m0, PW,0) is given
by

dϕ(m0, PW,0)(hm, hW ) = −
{

d
dβ0

U(β0,m0, PW,0)
}−1{

d
dm0

U(β0,m0, PW,0)(hm) +
d

dPW,0
U(β0,m0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hm, hW ) = (D∗
m,Π0

(P0), ICW ). Recall we
assumed that mβ is linear in β. We have

c0 ≡ − d

dβ0
U(β0,m0) = E0

∑
a

h(a, V )a2
{

d

dβ0
mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj , then this reduces to

c0 = E0

∑
a

h(a, V )a2V⃗ V⃗ ⊤,

where V⃗ = (V1, . . . , Vd). We have

d

dPW,0
U(β0,m0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2
d

dβ0
mβ0(v)(m0(w)−mβ0(v)).

Thus, the latter expression applied to ICW (O) yields c−1
0 D∗

W (P0), where

D∗
W (P0) ≡

∑
a

h(a, V )a2
d

dβ0
mβ0(V )(m0(W )−mβ0(V )).
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In addition, the directional derivative d
dϵ U(β0,m0 + ϵhm, PW,0)|ϵ=0 in the direction of the

function hm is given by

d

dm0
U(β0,m0, PW,0)(hm) = E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )hm(W ).

We conclude that

dϕ(m0, PW,0)(hm, hW ) = D∗
W (P0) + c−1

0

{
E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )D∗

m,W (P0)

}
.

We conclude that the canonical gradient of Ψ : M(Π0) → IRd is given by

D∗
ψ,Π0

(P0)(O) = D∗
W (P0)(O)

+c−1
0 E0

∑
a h(a, V )a2 d

dβ0
mβ0(V )D∗

m,W (P0)

= c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(R,W )−E(Π0(R,W )|W )}2|W )

(Π0(R,W )− E0(Π0(R,W ) |W ))(Y −Π0(R,W )m0(W )− θ0(W )).

We state this result in the following lemma and also state a robustness result for this efficient
influence curve.

Lemma 2 The efficient influence curve of Ψ : M(Π0) → IRd is given by

D∗
ψ,Π0

(P0) = c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V )(m0(W )−mβ0(V ))

+c−1
0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) 1

E0({Π0(R,W )−E(Π0(R,W )|W )}2|W )

(Π0(R,W )− E0(Π0(R,W ) |W ))(Y −Π0(R,W )m0(W )− θ0(W )).

Assume the linear model mβ(V ) = βV⃗ . Let h1(V ) =
∑

a h(a, V )a2V⃗ . We have that for
all θ,

P0D
∗
ψ,Π0

(g0,m, θ) = 0 if E0h1(V )(m−m0)(W ) = 0,

or, equivalently, if ψ ≡ Ψ(m,PW,0) = Ψ(m0, PW,0) = ψ0.
If we represent D∗

ψ,Π0
(g0,m, θ, ψ) as an estimating function in ψ, then it follows that

P0D
∗
ψ,Π0

(g0,m, θ, ψ) = c−1
0 P0h1(V )(m0(W )− ψV ),

so that P0D
∗
ψ,Π0

(g0,m, θ, ψ) = 0 implies ψ = ψ0. In other words, the efficient influ-
ence curve yields an unbiased estimating function for ψ0 at correctly specified g0,Π0, but
possibly misspecified m.
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3.2 Canonical gradient in model in which Π0 is unknown

We will now derive the efficient influence curve in model M in which Π0 is unknown,
which is obtained by adding a correction term Dπ(P0) to the above derived D∗

ψ,Π0
(P0).

The correction term Dπ(P0) that needs to be added to D∗
ψ,Π0

is the influence curve of
P0{D∗

ψ,Π0
(πn)−D∗

ψ,Π0
(π0)}, where D∗

ψ,Π0
(π) = D∗

ψ,Π0
(β0, θ0,m0, g0, π) is the efficient

influence curve in model M(π0), as derived above with π0 replaced by π, and πn is the
nonparametric NPMLE of π0. Let h1(V ) ≡

∑
a h(a, v)a

2 d
dβ0

mβ0(v). Let π(ϵ) = π + ϵη.
We plug in for η the influence curve of the NPMLE Πn(r, w), which is given by

η(r, w) =
I(R = r,W = w)

P0(r, w)
(A−Π(R,W )).

We have
Dπ(P0) =

d
dϵP0D

∗
ψ(π(ϵ))

∣∣∣
ϵ=0

= P0c
−1
0 h1(V )

{
−2E0((π−E(π|W ))(η−E(η|W ))|W )

E0((π−E(π|W ))2|W )

(π − E(π |W )(Y − πm0 − θ0)}
+P0c

−1
0 h1(V )

{
(η−E(η|W ))(Y−πm0−θ0)
E0((π−E(π|W ))2|W )

}
−P0c

−1
0 h1(V )

{
(π−E(π|W ))ηm0

E0((π−E(π|W ))2|W )

}
.

By writing the expectation w.r.t. P0 as an expectation of a conditional expectation, given
R,W , and noting that E(Y − π0m0 − θ0 | R,W ) = 0, it follows that the first two terms
equal zero. Thus,

Dπ(P0) = −P0c
−1
0 h1(V )

{
(π−E0(π|W ))ηm0

E0((π−E0(π|W ))2|W )

}
.

This yields as correction term:

Dπ(P0) = −(A−Π0(R,W ))
∫
r,w P0(r, w)c

−1
0 h1(V )

{
(π−E(π|W ))

I(R=r,W=w)
P0(r,w)

m0

E0((π−E(π|W ))2|W )

}
= −(A−Π0(R,W ))c−1

0 h1(V )
{

(π(R,W )−E(π(R,W )|W ))m0(W )
E0((π(R,W )−E0(π(R,W )|W ))2|W )

}
.

This proves the following lemma.

Lemma 3 The efficient influence curve of Ψ : M → IRd is given by

D∗(P0) = D∗
W (P0)

+c−1
0

h1(V )
σ2(g0,π0)(W )

(π0(R,W )− E0(π0(R,W ) |W ))(Y − π0(R,W )m0(W )− θ0(W ))

−c−1
0

h1(V )
σ2(g0,π0)(W )

{(π0(R,W )−E0(π0(R,W ) |W ))m0(W )} (A− π0(R,W ))

≡ D∗
W (P0) + CY (g0, π0)(R,W )(Y − π0(R,W )m0(W )− θ0(W ))

−CA(g0, π0,m0)(A− π0(R,W ))
≡ D∗

W (P0) +D∗
Y (P0)−D∗

A(P0),
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where

σ2(g0, π0)(W ) = E0({Π0(R,W )− E(Π0(R,W ) |W )}2 |W )

h(g0, π0)(W ) = c−1
0

h1(V )

σ2(g0, π0)(W )

CY (g0, π0)(R,W ) = h(g0, π0)(W )(π0(R,W )− Eg0(π0(R,W ) |W ))

CA(g0, π0,m0)(R,W ) = CY (g0, π0)(R,W )m0(W ).

Double robustness of efficient influence curve: We already showed P0D
∗(π0, g0,m, θ) =

0 if ϕ(m,PW,0) = ϕ(m0, PW,0). If ϕ(m,PW,0) = ϕ(m0, PW,0) (i.e., ψ = ψ0), then,

P0D
∗(π, g0,m, θ) = P0

h1
σ2(g0, π)

(π − Pg0π)(π0 − π)(m0 −m),

where we used notation Pg0h = Eg0(h(R,W ) | W ) for the conditional expectation opera-
tor over R, given W . In fact,

P0D
∗(π, g0,m, θ) = P0

h1
σ2(g0, π)

(π − Pg0π)(π0 − π)(m0 −m)

+ϕ(m,PW,0)− ϕ(m0, PW,0),

This is thus second order in (m − m0)(π − π0). In particular, it equals zero if m = m0

or π = π0, and ψ = ψ0. We can thus also state the following double robustness result: if
m = m0, then P0D

∗(π, g,m0, θ) = 0 if g = g0 or if π = π0.
Double robustness of TMLE: If we represent D∗(Π0, g0,m, θ, ψ) as an estimating

function in ψ, then it follows that

P0D
∗(Π0, g0,m, θ, ψ) = c−1

0 P0h1(V )(m0(W )− ψV ),

so that P0D
∗(Π0, g0,m, θ, ψ) = 0 implies ψ = ψ0. In other words, the efficient influence

curve yields an unbiased estimating function for ψ0 at correctly specified g0,Π0, but possi-
bly misspecified m. As a consequence, the TMLE will be consistent for ψ0 if both g0 and
Π0 are consistently estimated. It will also be consistent for ψ0 if g0 and m0 are consistently
estimated, or if Π0 and m0 are consistently estimated.

4. Targeted minimum loss based estimation

4.1 Squared error loss and linear fluctuations.

Let L(π)(O) = (A − π(R,W ))2 and Lπ(Q̄)(O) = (Y − π(R,W )m(W ) − θ(W ))2

be the squared error loss functions for π0 and Q̄0 = π0m0 + θ0, respectively. Note that
the latter loss function is indexed by π. Let Lπ(g)(O) = (π(R,W ) − Eg(π(R,W ) |
W ))2 + (π(R,W )2 − E(π2(R,W ) | W ))2 be a loss function for Eg0(π(R,W ) | W )
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and Eg0(π
2(R,W ) | W ), two parameters of g0. Let π0n be an initial estimator of π0.

Let Q̄0
n be an initial estimator of Q̄0 based on loss function Lπ0

n
(Q̄). Let g0n be an initial

estimator of g0, or the relevant part thereof, based on Lπ0
n
(g). We can now define the

fluctuations π0n(ϵ2), Q̄
0
n(ϵ1), defined by π0n(ϵ2) = π0n + ϵ2CA(g

0
n, π

0
n,m

0
n) and Q̄0

n(ϵ1) =
Q̄0
n + ϵ1CY (g

0
n, π

0
n). We note that these fluctuations Q̄(ϵ) = πmϵ + θϵ stay within the

semiparametric regression model for Q̄0. We fit ϵ = (ϵ1, ϵ2) with the minimum loss-based
estimators ϵ02n = argminϵ PnL(π

0
n(ϵ)) and ϵ01n = argminϵ PnLπ0

n
(Q̄0

n(ϵ)). This results
in updates Q̄1

n = Q̄0
n(ϵ

0
1n) and π1n = π0n(ϵ

0
2n). One can now re-estimate g0 based on the

updated loss Lπ1
n
(g), which results in an update g1n. The above procedure describes an

updating process mapping (π0n, g
0
n, Q̄

0
n) into (π1n, g

1
n, Q̄

1
n). This process can be iterated till

convergence. Let Q̄∗
n be the resulting final estimator of Q̄0. This corresponds with a m∗

n

and θ∗n. The TMLE of ψ0 is now defined by the plug-in estimator ψ∗
n = ϕ(m∗

n, PW,n). The
TMLE solves the efficient influence curve equation

PnD
∗(g∗n, π

∗
n,m

∗
n, θ

∗
n) = 0.

If g∗n consistently estimates g0, and either m∗
n or π∗n is consistent for their target m0 and

π0, then, under regularity conditions, the TMLE ψ∗
n is asymptotically linear with an in-

fluence curve that can be approximated by D∗(g0, π,m, θ), where π,m, θ are the limits
of π∗n,m

∗
n, θ

∗
n. This would be an asymptotically correct or conservative influence curve if

g∗n and m∗
n are consistent. Therefore we propose to estimate the asymptotic covariance

matrix of ψ∗
n with Σn = 1

n

∑n
i=1{D∗(gn, π

∗
n,m

∗
n, θ

∗
n)(Oi)}2, and statistical inference for

confidence intervals and testing can be based on the asymptotically valid working model
ψ∗
n ∼ Nd(ψ0,Σn/n).

4.2 Squared error loss and logistic fluctuations.

Suppose that we know that A ∈ [0, 1] that m0 ∈ (a1, b1), and θ0 ∈ (a2, b2).

• Let Π0
n be an initial estimator of Π0. Let m0

n, θ
0
n be an initial estimator of m0, θ0

respecting the above mentioned bounds. We use the relations m = a1+(b1−a1)m∗

and θ = a2 + (b2 − a2)θ
∗, where m∗, θ∗ are functions of W that are in (0, 1). This

defines corresponding m∗,0
n and θ∗,0n of m∗

0 and θ∗0, respectively. Let LΠ(g)(O) =
(π(R,W ) − Eg(π(R,W ) | W ))2 + (π(R,W )2 − E(π2(R,W ) | W ))2 be a loss
function for Eg0(π(R,W ) | W ) and Eg0(π

2(R,W ) | W ), two parameters of g0.
Let g0n be an initial estimators of these two parameters of g0, where we are abusing
notation. Let k = 0.

• As loss function for Π0 we can use L(Π)(O) = −A log Π(R,W )− (1−A) log(1−
Π(R,W )), and as fluctation of Πkn, we can use LogitΠkn(ϵ2) = LogitΠkn+ϵ2CA(g

k
n,Π

k
n,m

k
n).

• For a given Π, as loss function for Q̄0 = (m0, θ0) we use LΠ(Q̄)(O) = (Y −
Π(R,W )m(W )− θ(W ))2. We use as fluctuation of mk

n:

mk
n(ϵ) = a1 + (b1 − a1)m

k,∗
n (ϵ),
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where
Logitmk,∗

n (ϵ) = Logitm∗,k
n + ϵhk1.

As fluctuation of θkn, we use

θkn(ϵ) = a2 + (b2 − a2)θ
∗,k
n (ϵ),

where
Logitθk,∗n (ϵ) = Logitθ∗,kn + ϵhk2.

This defines a fluctuation

Q̄kn(ϵ) = Πknm
k
n(ϵ) + θkn(ϵ).

The choice h1, h2 that defines this least favorable submodel through the initial esti-
mator Q̄kn will be defined below.

• We have

d
dϵLΠk

n
(Q̄kn(ϵ) = Πknm

∗,k
n (1−m∗,k

n )(b1 − a1)h
k
1 + (b2 − a2)θ

∗,k
n (1− θk,∗n )hk2.

Recall that CY (g, π)(R,W ) = Π(R,W )CY,1(g,Π)(W ) +CY,2(g,Π)(W ) for spec-
ified functions CY,1, CY,2. Thus we need to select (h1, h2) so that

h1 =
CY,1(g,Π)

m∗(1−m∗)(b1−a1)

h2 =
CY,2(g,Π)

θ∗(1−θ∗)(b2−a2) .

Thus,
hk1 =

CY,1(g
k
n,Π

k
n)

m∗,k
n (1−m∗,k

n )(b1−a1)

hk2 =
CY,2(g

k
n,Π

k
n)

θ∗,kn (1−θ∗,kn )(b2−a2)
.

With this choice, we have that

d

dϵ
LΠ(Q̄(ϵ))

∣∣
ϵ=0

= CY (g,Π)(Y − Q̄(R,W )).

• We note that these fluctuations Q̄(ϵ) = πmϵ + θϵ stay within the semiparametric
regression model for Q̄0. We fit ϵ = (ϵ1, ϵ) with the minimum loss-based estimators
ϵk1,n = argminϵ PnL(Π

k
n(ϵ)) and ϵkn = argminϵ PnLΠk

n
(Q̄kn(ϵ)). This results in

updates Q̄k+1
n = Q̄kn(ϵ

k
n) and Πk+1

n = Πkn(ϵ
k
1,n). One can now re-estimate g0 based

on the updated loss LΠk
n
(g), which results in an update gkn. The above procedure

describes an updating process mapping (Πkn, g
k
n, Q̄

k
n) into (πk+1

n , gk+1
n , Q̄k+1

n ). This
process can be iterated till convergence: i.e., set k = k+1, repeat the above updating
process till convergence defined by ϵkn ≈ 0.

Section on Nonparametric Statistics – JSM 2012

2214



• Let Q̄∗
n be the resulting final estimator of Q̄0. This corresponds with targeted estima-

tors m∗
n and θ∗n of m0 and θ0, respectively. The TMLE of ψ0 is now defined by the

plug-in estimator ψ∗
n = ϕ(m∗

n, PW,n).

By construction the TMLE solves the efficient influence curve equation

PnD
∗(g∗n, π

∗
n,m

∗
n, θ

∗
n) = 0.

If g∗n consistently estimates g0, and either m∗
n or π∗n is consistent for their target m0 and

π0, then, under regularity conditions, the TMLE ψ∗
n is asymptotically linear with an in-

fluence curve that can be approximated by D∗(g0, π,m, θ), where π,m, θ are the limits
of π∗n,m

∗
n, θ

∗
n. This would be an asymptotically correct or conservative influence curve if

g∗n and m∗
n are consistent. Therefore we propose to estimate the asymptotic covariance

matrix of ψ∗
n with Σn = 1

n

∑n
i=1{D∗(gn, π

∗
n,m

∗
n, θ

∗
n)(Oi)}2, and statistical inference for

confidence intervals and testing can be based on the asymptotically valid working model
ψ∗
n ∼ Nd(ψ0,Σn/n).

5. Efficient influence curve of target parameter when assuming a parametric form
for effect of treatment as function of covariates

We now assume m0 = mα0 for some model {mα : α}, which implies the semiparamet-
ric regression model E0(Y | R,W ) = Π0(R,W )mβ0(W ) + θ0(W ). Let fβ(R,W ) =
Π0(R,W )mβ(W ). Letmα(W ) = α⊤W ∗, whereW ∗ is k-dimensional vector of functions
of W . Note that α is d-dimensional and d

dαmα(W ) =W ∗.

5.1 Efficient influence curve in model in which Π0 is known.

First, we consider the statistical model M(π0) ⊂ M in which Π0(R,W ) = E0(A | R,W )
is known. Define the k-dimensional vector

h(Π0)(R,W ) = d/α0mα0(R,W ) = Π0(R,W )d/dα0mα0(W ) = Π0(R,W )W ∗.

By previous results on the semiparametric regression model, a gradient for the k-dimensional
parameter α(P ) at P = P0 ∈ M(π0) is given by

D∗
α,Π0

(P0) = C(π0)
−1(h(Π0)(R,W )−E(h(Π0)(R,W ) |W ))(Y−fα0(R,W )−θ0(W )),

where C(π0) is a k × k matrix defined as

C(π0) = E0{d/dα0fα0(R,W )− E0(d/dα0fα0(R,W ) |W )}2

= E0{(W ∗W ∗⊤{Π0(R,W )− E0(Π0(R,W ) |W}2}.

Let C(π0)−1 be the inverse of C(π0).
This gradient equals the canonical gradient of α0 in this model M(π0), if E0((Y −

E0(Y | Π0,W ))2 | R,W ) is only a function of W . For example, this would hold if
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E(U2
Y | R,W ) = E0(U

2
Y |W ). This might be a reasonable assumption for an instrumental

variable R. The general formula for the canonical gradient is given in [?]. For the sake of
presentation, we work with this gradient due to its relative simplicity. and the fact that it
still equals the actual canonical gradient under this assumption.

We have that ψ0 = ϕ(α0, PW,0) for a mapping

ϕ(α0.PW,0) = argmin
β
E0

∑
a

h(a, V )a2 (mα0(W )−mβ(V ))2 ,

defined by working model {mβ : β}. Let dϕ(α0, PW,0)(hα, hW ) = d
dα0

ϕ(α0, PW,0)(hα)+
d

dPW,0
ϕ(α0, PW,0)(hW ) be the directional derivative in direction (hβ, hW ). The gradient of

Ψ : M(Π0) → IRd is given byD∗
α,Π0

(P0) =
d
dα0

ϕ(α0, PW,0)D
∗
α,Π0

(P0)+
d

dPW,0
ϕ(α0, PW,0)ICW ,

where ICW (O) = (I(W = w)− PW,0(w) : w) is the influence curve of the empirical dis-
tribution of W . We note that β0 = ϕ(α0, PW,0) solves the following d× 1 equation

U(β0, α0, PW,0) ≡ E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )(mα0(W )−mβ0(V )) = 0.

By the implicit function theorem, the directional derivative of β0 = ϕ(α0, PW,0) is given
by

dϕ(α0, PW,0)(hα, hW ) = −
{

d
dβ0

U(β0, α0, PW,0)
}−1{

d
dα0

U(β0, α0, PW,0)(hα) +
d

dPW,0
U(β0, α0, PW,0)(hW )

}
.

We need to apply this directional derivative to (hα, hW ) = (D∗
α,Π0

(P0), ICW ). Recall we
assumed that mβ is linear in β. We have

c0 ≡ − d

dβ0
U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2
{

d

dβ0
mβ0(V )

}2

,

which is a d× d matrix. Note that if mβ(V ) =
∑

j βjVj , then this reduces to

c0 = E0

∑
a

h(a, V )a2V⃗ V⃗ ⊤,

where V⃗ = (V1, . . . , Vd). We have

d

dPW,0
U(β0, α0, PW,0)(hW ) =

∑
w

hW (w)
∑
a

h(a, v)a2
d

dβ0
mβ0(v)(mα0(w)−mβ0(v)).

Thus, the latter expression applied to ICW (O) yields the contribution c−1
0 D∗

W (P0), where

D∗
W (P0) ≡

∑
a

h(a, V )a2
d

dβ0
mβ0(V )(mα0(W )−mβ0(V )).
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In addition,

d

dα0
U(β0, α0, PW,0) = E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )

d

dα0
mα0(W ).

We conclude that

dϕ(α0, PW,0)(hα, hW ) =

D∗
W (P0) + c−1

0

{
E0

∑
a h(a, V )a2 d

dβ0
mβ0(V ) d

dα0
mα0(W )D∗

α,Π0
(P0)

}
.

We conclude that the canonical gradient of Ψ : M(Π0) → IRd is given by

D∗
ψ,Π0

(P0) = D∗
W (P0)(O)

+c−1
0

{
E0

∑
a

h(a, V )a2
d

dβ0
mβ0(V )

d

dα0
mα0(W )

}
D∗
α,Π0

(P0)(O)

= D∗
W (P0)(O) +

c−1
0

{
E0h1(V )V⃗ W⃗ ∗⊤

}
C(π0)

−1(h(Π0)(R,W )− E(h(Π0)(R,W ) |W ))×

(Y − fα0(R,W )− θ0(W )).

We state this result in the following lemma and also state a robustness result for this efficient
influence curve.

Lemma 4 Let h1(V ) =
∑

a h(a, V )a2V⃗ .The efficient influence curve of Ψ : M(Π0) →
IRd is given by

D∗
ψ,Π0

(P0) = c−1
0 h1(V ) d

dβ0
mβ0(V )(mα0(W )−mβ0(V ))

+c−1
0

{
E0h1(V )V⃗ W⃗ ∗⊤

}
C(π0)

−1(h(Π0)(R,W )− E(h(Π0)(R,W ) |W ))×
(Y − fα0(R,W )− θ0(W )).

We have that
P0D

∗
ψ,Π0

(g,mα0 , θ) = 0, if either g = g0 or θ = θ0.

5.2 Canonical gradient in model in which Π0 is unknown

We will now derive the efficient influence curve in model M in which Π0 is unknown,
which is obtained by adding a correction term Dπ(P0) to the above derived D∗

ψ,Π0
(P0).

The correction term Dπ(P0) that needs to be added to D∗
ψ,Π0

is the influence curve of
P0{D∗

ψ,Π0
(πn) −D∗

ψ,Π0
(π0)}, where D∗

ψ,Π0
(π) = D∗

ψ,Π0
(β0, θ0, α0, g0, π) is the efficient

influence curve in model M(π0), as derived above with π0 replaced by π, and πn is the
nonparametric NPMLE of π0. Let h1(V ) ≡

∑
a h(a, v)a

2 d
dβ0

mβ0(v). Let π(ϵ) = π + ϵη.
We plug in for η the influence curve of the NPMLE Πn(r, w), which is given by

η(r, w) =
I(R = r,W = w)

P0(r, w)
(A−Π(R,W )).
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We have

Dπ(P0) =
d

dϵ
P0D

∗
ψ(π(ϵ))

∣∣∣∣
ϵ=0

= −
{
P0c

−1
0 h1(V )V⃗ W ∗⊤

}
C(π0)

−1P0

{
W ∗W ∗⊤(π0 − E(π0 |W ))η(R,W )

}
.

This yields as correction term:

Dπ(P0)(O) = −(A−Π0(R,W )){
P0c

−1
0 h1(V )V⃗ W ∗⊤

}
C(π0)

−1
{
W ∗W ∗⊤(π0(R,W )− E(π0 |W ))

}
.

This proves the following lemma.

Lemma 5 The efficient influence curve of Ψ : M → IRd is given by

D∗(P0) = D∗
W (P0)

+c−1
0

{
E0h1(V )V⃗ W⃗ ∗⊤

}
C(π0)

−1W ∗(Π0 − E(Π0(R,W ) |W ))(Y − fα0(R,W )− θ0(W ))

−
{
P0c

−1
0 h1(V )V⃗ W ∗⊤

}
C(π0)

−1
{
W ∗W ∗⊤(π0(R,W )− E(π0 |W ))

}
(A−Π0(R,W ))

≡ D∗
W (P0) + CY (g0, π0)(R,W )(Y − π0(R,W )mα0(W )− θ0(W ))

−CA(g0, π0,m0)(A− π0(R,W ))
≡ D∗

W (P0) +D∗
Y (P0)−D∗

A(P0),

where

CY (g0, π0)(R,W ) = c−1
0

{
E0

∑
a h(a, V )a2V⃗ W⃗ ∗⊤

}
×

C(π0)
−1(h(Π0)(R,W )− E(h(Π0)(R,W ) |W ))

CA(g0, π0,m0)(R,W ) =
{
P0c

−1
0 h1(V )V⃗ W ∗⊤

}
C(π0)

−1
{
W ∗W ∗⊤(π0(R,W )− E(π0 |W ))

}
.

Double robustness of efficient influence curve: We already showedP0D
∗(π0, g, α0, θ) =

0 if g = g0 or θ = θ0. We also have that P0D
∗(π, g0, α0, θ) = 0 for all θ and π.

The TMLE is analogue to the TMLE presented for the nonparametric model form0(W ).

6. Extension to structural equation for outcome that is non-linear in treatment.

Consider the structural equation model Y =
∑J

j=1A
jmj,0(W ) + θ0(W ) + UY , where

the functions mj,0, j = 1, . . . , J , are unspecified, and E(UY | R,W ) = 0. Under this
assumption, we have the following semiparametric regression model:

E(Y | R,W ) =

J∑
j=1

E0(A
j |W )mj,0(W ) + θ0(W ) ≡

J∑
j=1

Π0,j(W )mj,0(W ) + θ0(W ),

where we defined Π0,j(W ) = E0(A
j | W ). The counterfactuals are defined as Y (a) =∑J

j=1 a
jmj,0(W )+θ0(W )+UY , andE0(Y (a)−Y (0) | V ) =

∑J
j=1 a

jE(mj,0(W ) | V ).
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Given a working model {mβ : β}, and weight function h, we can define the target parameter
as

β0 = argmin
β
E0

∑
a

∑
v

h(a, v)(
∑
j

ajE0(mj,0(W ) | V = v)−mβ(a, v))
2.

Analogue to above, we can now compute the efficient influence curve, and develop the
TMLE of β0 = Φ((mj0 : j), PW,0).
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