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TMLE for Marginal Structural Models Based on Instrument
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Abstract

We consider estimation of a causal effect of a possibly continuous treatment when treatment as-
signment is potentially subject to unmeasured confounding, but an instrument is available. Our
semiparametric structural equation for the outcome as a function of treatment and covariates as-
sumes that the effect of treatment is linear, conditional on the observed baseline covariates. This
weakens the commonly made linearity assumption. The structural equation also assumes that the
conditional mean of its error, given the instrument and baseline covariates, equals zero, which is the
typical instrumental variable assumption. We establish identifiability of marginal causal effects of
the treatment as defined by projections of the true causal dose-response curve onto a user supplied
working marginal structural model. We derive the efficient influence curve of the resulting statis-
tical parameter/estimand, and develop a targeted minimum loss-based estimator of this estimand.
The TMLE can be viewed as a generalization of the two-stage regression method in the instrumen-
tal variable methodology to semiparametric models. The asymptotic efficiency and robustness of
this substitution estimator is outlined. Finally, we implement this new estimator and evaluate its
performance through a simulation study.

Keywords: Asymptotic linearity of an estimator, causal effect, efficient influence curve,
empirical process, confounding, influence curve, instrument, loss function, semiparametric
statistical model, targeted maximum likelihood estimation, targeted minimum loss based
estimation (TMLE).

1. Introduction
2. Formulation of statistical estimation problem

We observe n i.i.d. copies Oy,...,0, of a random variable O = (W, R, A,Y) ~ P,
where F is its probability distribution. Here W denotes the measured baseline-covariates,
R denotes the subsequent (in time) realized instrument that is believed to only affect the
final outcome Y through the intermediate treatment variable A. The goal of the study is
to assess a causal effect of treatment A on outcome Y. We consider the case in which it
would be inappropriate to assume that W denotes all confounders: i.e., it is believed that
A is a function of both the measured W, but also unmeasured confounders. As a con-
sequence, methods that rely on the no unmeasured confounding assumption would most
likely be biased. In order to deal with the unmeasured confounding, the instrumental vari-
able assumption is absolutely crucial. To formally define the causal quantity of interest and
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establish its identifiability from the observed data distribution F, we assume the follow-
ing structural equation model: W = fyw (Uw), R = fr(W,Ugr), A = fa(W,R,Ua),
Y = Amog(W) + 6o(W) + Uy, where U = (Uw,Ug, Uy, Uy) ~ Py is an exogenous
random variable, fy, fr, fa, mo, and 8y are all unspecified. In addition, it is assumed
that E(Uy | R,W) = 0, which holds in particular if U is independent of Uy, given
W. In other words, even though we did not assume that A is randomized conditionally on
W, we are assuming that R is randomized conditionally on W. In addition, we made an
important exclusion restriction assumption by not including R in the equation for Y': thus,
it is assumed that 12 does not have a direct effect on Y. In a later section, we will also
consider the more restrictive model that assumes that mg satisfies a particular parametric
form mo (W) = mq, (W) for some model {m,, : a € R¥},

This structural equation model allows one to define counterfactuals Y (a) = amo(W)+
0o(W) + Uy for all possible values a € A, where A denotes a support of A. We can
now define marginal causal effects Ey(Y (a) — Y (0)) = aEmo(W) or adjusted causal
effects Eo(Y(a) — Y (0) | V) = aE(mo(W) | V') conditional on a user supplied covariate
V' C W. These causal effects are functions of mg and the distribution of 1. Identification
of mo: Let IIp(R, W) = Ep(A | R,W) be the conditional mean of A, given R, W. The
instrumental variable assumption E(Uy | R, W) = 0 implies

Eo(Y [ To(R, W), W) = IIg(R, W)mo(W) + 6o (W).

This demonstrates that our structural equation model implies a semiparametric regression
model for the conditional mean of Y, given W, IIy(R,W). As a consequence, we can
identify the regression Qo (R, W) = Eo(Y | Ilo(R, W), W), or, equivalently, (mg, o) that
identifies this regression, by minimizing the risk of the squared error loss L, (m, 0)(0) =
(Y = Ho(R, W)m(W) — 0(W))*:

(mo, 0p) = arg r7nni(191 Eo(Y —TIo(R, W)m(W) — 0(W))%.

For a pair of values r and r1, we have
Eo(Y [R=7W)—E(Y | R=r,W) ={Ilo(r, W) — Io(r1, W) }mo(W).

Thus, for each w in the support of W, if there exist at least two values » = r(w) and
r1 = ri1(w) in the support of the conditional distribution gr o of R, given W = w, for
which Iy (r, w) — I (ry, w) # 0, then mg(w) is identified by

mo(w) = E Y |R=r,W=w)—Ey(Y |R=r1,W =w)
S o(r, w) — Ho(r1, w) ’

We state this identifiability result for mg as a formal lemma.

Lemma 1 Let IIo(R, W) = Eo(A | R,W). Let gro be the conditional probability
distribution of R, given W. Let VW be a support of the distribution Py of W. Let
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w € W. If there exists two values (r,r1) in a support of gro(- | W = w) for which
Io(r, w) — To(r1,w) # O, then

mo(w) = E Y |R=r,W=w)—Ey(Y |R=r1,W =w)
R o (r, w) — Ho(r1, w) ’

which demonstrates that mo(w) is identified as a function of P.

Statistical model: The above stated causal model implies the statistical model M con-
sisting of all probability distributions P of O = (W, R, A,Y') satistfying Ep(Y | R,W) =

II(P)(R, W)m(P)(W)+6(P)(W) for some unspecified functions m(P), §(P), and II(P)(R, W)

Ep(A| R,W).

| V).
We define our target parameter as a projection of the true Fy(Y (a) — Y(0) | V) =
aEy(mo(W) | V') on this working model. Specifically, given some weight function h(A, V),
let

Causal parameter: Let {amg(v) : B} be a working modeln for Ey(Y (a) — Y (0)

Bo = argmﬁinEOZh(a,V){aE(mo(W)|V)—am5(V)}2
= argmin Eo Y h(a,V)a*{E(mo(W) | V) = mg(V)}?

= arg mﬁin Ey Z h(a, V)a* {mo(W) — mg(V)}

arg mﬁin Eoh1(V){mo(W) — mg(V)}Q,

where we defined hy (V) = 3", h(a, V)a>.

For example, if V' is empty, and mg(v) = 3, then Spa = Eo(Y (a) — Y (0)). We can

also select V' = W and mg(w) = fw, in which case Syw is the projection of mg(w) on
this linear working model {SW : 3}.
Statistical Target parameter: Our target parameter is ¢ = (9. We note that U(FPy) =
U (mg, Pw,) only depends on Py through mg and Py, while my, as statistical parameter
of Py, is identified as a function of Q9 = Eo(Y | R, W) under the semiparametric regres-
sion model Qy = Eo(Y | R, W) = mo(R, W)mo(W) + 6o(W). We will also use notation
¥(Qo, Pw,o) or ¥(mo, mo, b, Pw,p).

Let U : M — IR? be the target parameter mapping so that U(Fy) = Bo, which exists
under the identifiability assumptions stated in Lemma 1. The mapping P — W(P) is de-
fined by first evaluating II( P), then minimizing the squared-error risk Eo (Y —II(P)m(W)—
6(W))? over the semiparametric model I1(P)(W)m (W) + (W) with m, 0 unspecified,
resulting in m(P), and finally, evaluating ¥ (P) = ¥ (m(P), Py ).

The statistical estimation problem is now defined. We observe n i.i.d. copies of O =
(W,R,A,Y) ~ Py € M, and we want to estimate 19 = ¥ (Fp) defined in terms of the
mapping ¥ : M — R%
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3. Efficient influence curve of target parameter

We determine the efficient influence curve of ¥ : M — IR? in a two step process. Firstly,
we determine the efficient influence curve in the model in which 11 is assumed to be known.
Subsequently, we compute the correction term that yields the efficient influence curve in our
model of interest in which Iy is unspecified.

3.1 Efficient influence curve in model in which II; is known.

First, we consider the statistical model M (mp) C M in which IIo(R, W) = Eo(A | R, W)
is known. For the sake of the derivation of the canonical gradient, let W € R" be discrete
with support WV so that we can view our model as a high dimensional parametric model, al-
lowing us to re-use previously established results. That is, we represent the semiparametric
regression model as Eo(Y | R, W) = Io(R, W) >, mo(w)I[(W = w) + 6o(W) so that
it corresponds with a linear regression fy,, (R, W) = llg(R, W) >, mo(w)I(W = w) in
which m represents the coefficient vector. Define the /NV-dimensional vector h(Ily)(R, W) =
d/dmgo frme (R, W) = (Up(R,W)I(W = w) : w € W). By previous results on the
semiparametric regression model, a gradient for the N-dimensional parameter m(P) at
P = Py € M(mp) is given by

Dy, 11, (Po) = C(m0) ™' (h(Io)(R, W)= E (h(Ilo) (R, W) | W))(Y = fin (R, W) —bo (W),
where C'(m) is a N x N matrix defined as

C(mo) = Fo{d/dmofme(R, W) — Eo(d/dmg frm, (R, W) | W)}?
= Eo{(I(W = w){Tlo(R, W) — Eo(Tlo(R, W) | W} : w}?
= Diag (Eo{I(W = w){Ilp(R,w) — Eo(Tlo(R, W) | W = w)}*} : w)
= Diag (Pw,o(w)Eo ({Ilo(R, W) — Eo(Ilg(R, W) | W)}* | W = w) : w) .
For notational convenience, given a vector X, we used notation X 2 for the matrix X X T.

We also used the notation Diag(z) for the N x N diagonal matrix with diagonal elements
defined by vector x. Thus, the inverse of C'(7g) exists in closed form and is given by:

1
Puvo(w) Bo({Tlo (R, W) = Eo(Tlo(R, W) [W)}2 [ W = w) w) '

C(m)~" = Diag (

This yields the following formula for the efficient influence curve of mg in model M (m):

* _ 1

Din 10,0 (P0) = By s BTt~ BT, R TW 2T =)

I(W = w)(lo(R, W) — Eo(Ilo(R, W) | W))(Y — o (R, W)mo(W) — bo(W)),
where D}, 1 (Fp) is N x 1 vector with components Dy, 1; ,(F) indexed by w € W. We
can further simplify this as follows:

* _ 1
Dy 110,00 (P0) (W, B Y') = 5y B (0 (R~ B (o (B W2 =)

I(W = w)(Iy(R, w) — Eo(Tlg(R, W) | W = w))(Y — (R, w)mo(w) — Oo(w)).
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This gradient equals the canonical gradient of mg in this model M (), if Eo((Y —
Eo(Y | I, W))? | R,W) is only a function of W. For example, this would hold if
E(UZ | R,W) = Eo(U2 | W). This might be a reasonable assumption for an instrumental
variable R. The general formula for the canonical gradient is given in [?]. For the sake of
presentation, we work with this gradient due to its relative simplicity. and the fact that it
still equals the actual canonical gradient under this assumption.

We have that 19 = ¢(mg, Py,) for a mapping

$(mo.Pwp) = arg min £y > h(a, V)a® (mo(W) — mg(V))?,

defined by working model {mg : B}. Let dp(mo, Pow,o) (hm, hw) = 3% ¢(mo, Pwo) (hm)+

— dmo
ﬁqﬁ(mo, Pyo)(hw) be the directional derivative in direction (hyy,, hy). The gradi-

ent of U : M(Ily) — R is given by Dy, (Po) = dm0¢(m0aPW0)Dm 11, (Fo) +
qu(mo,PWO)ICW, where ICw (0) = (I(W = w) — Pwo(w) : w). We note that
Bo = ¢(mo, Pw,o) solves the following d x 1 equation

U(Bo, mo, Pwo) EOZh (a,V)a —mgo(V)(mo(W) —mgy(V)) = 0.

By the implicit function theorem, the directional derivative of 5y = ¢(mg, Pw,0) is given
by

d(mo, Pw,o) (b, hw) = — {ﬁU(ﬁo,mo,PW,o)}
{dmo (Bo.mo, Pw,o)(hm) + ﬁU(ﬁoa mo, PW,O)(hW)} -

We need to apply this directional derivative to (hy,, by ) = (Dy,, 11, (o), ICw ). Recall we
assumed that mg is linear in 5. We have

d 2
CO:_ﬂU Bo,mo Eth a, V {dﬁom’%(v)} s
which is a d x d matrix. Note that if mg(V') = >_, 8;V;, then this reduces to
Cco — Eo Z h(a, V)QQVVT,
where V = (V4,..., Vy). We have

deW (Bo,m(),PWO hW Zhw Zh a ’U a mgo( )(mo(w) — mgo(’l))).

Thus, the latter expression applied to /Cyy (O) yields ¢, ' D}y, (Pp), where

Dy (Py) = Zh a,V)a 7m,30(V)(mo(W) —mg,(V)).

2209



Section on Nonparametric Statistics — JSM 2012

In addition, the directional derivative % U(Bo, mo + €hm, Pwy) \6:0 in the direction of the
function h,, is given by

d
G- U (Bosmo, Puro) () = Eo ;h(a, V)a o (V) (W)
We conclude that
do(my, Pw,o)(hm, hw) = Dy (Py) + cal {EO Z h(a, V)a dﬁ ——Mg, (V)D:mW(PO)} .

We conclude that the canonical gradient of ¥ : M (IIy) — IR? is given by

D, i, (FP0)(0) = Dy, (Po)(O)
+c01E0§j h(a, V)a % 4, (V) D}, vy (Po)
= ¢y 2, hla, V)a? goms, (V) (mo(W) — mpg, (V)

ey 2o, Mla, V)a? g mﬁo(v) B (T W) =BG )
(Ho(R, W) — Eo(Lo(R, W) | W))(Y —TIo(R, W)mo(W) — 0o(W)).

We state this result in the following lemma and also state a robustness result for this efficient
influence curve.

Lemma 2 The efficient influence curve of ¥ : M(1ly) — RY is given by

Dy 1, (Fo) = ¢ 0 2 h(a V)a? dﬁo mg, (V) (mo(W) —mg,(V))

+eg ' 0 hla, V)a? mie, (V) g e = B R T )
(o(R, W) — Eo(Io(R, W) | W))(Y — Ho(R, W)mo(W) — 0o(W)).

Assume the linear model mB(V) = ﬁ‘? Let hi (V) = Za h(a, V)aQV, We have that for
all 6,
PoD}, 11, (90, m, 0) = 0 if Eghy(V)(m — mo)(W) =0,

or, equivalently, if 1p = VU(m, Py,) = ¥(mo, Pw,o) = to.
If we represent D;; o (90, m, 0,1) as an estimating function in 1), then it follows that

PoD} 11, (90,m,0,0) = gt Poha (V) (mo(W) — V),

so that PoDy) 1, (go,m,0,1) = 0 implies 1p = 1. In other words, the efficient influ-
ence curve yields an unbiased estimating function for g at correctly specified go, 11y, but
possibly misspecified m.
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3.2 Canonical gradient in model in which II; is unknown

We will now derive the efficient influence curve in model M in which Il is unknown,
which is obtained by adding a correction term Dr(Fp) to the above derived Dy, 1y (Fo)-
The correction term D, (Fp) that needs to be added to Dy, 11, is the influence curve of
PO{D;Z,HO (7n) — Dy, (o)}, where Dy () = Dy, (5o, 0o, Mo, go, ) is the efficient
influence curve in model M), as derived above with 770 replaced by 7, and m, is the
nonparametric NPMLE of 7. Let k1 (V) = 3, h(a,v)a? i L mg,(v). Let w(e) = 7 + en.
We plug in for 7 the influence curve of the NPMLE 11, (r, w), which is given by

IR=r,W=w
PO(va)

(1) = Ja-m(rw)).
We have
D(Py) = &RD ()| _
_ Eo((r—E(w|W))(n—E(n|W))|W
= PUCO 1h1(V) {*2 otf Eo(éﬂLE)()TE?W))gY‘IA/)))l :
(m = E(r | W)(Y —7mmo —6p)}

-1 —E(n|W))(Y —tmo—0,
+Pocy hi(V) (nEO(((ﬂ—L%)(SﬂW))Z\(%/V)O)}

—1 T—FE(w|W))nm
—Pocy ' h(V) { gl } :

By writing the expectation w.r.t. Py as an expectation of a conditional expectation, given
R, W, and noting that E(Y — mogmo — 6y | R, W) = 0, it follows that the first two terms
equal zero. Thus,

1 7—Eo(w|W m
D7 (Py) = —Pocy h1(V) {E()(((TF—%(()(LT|V?/))7S2‘(‘)/V)} '

This yields as correction term:

Py (r,w)

Dr(Py) = —(A=To(R, W) [, ., Po(r,w)eq ha (V) { Fo (=B TW))2IW)

- (r(RW)— E(x(BIV) W) mo (W)
—(A=1Io(B, W))cy (V) {Eo((w(R,W%Eo(w(R,WnW)O)?|W> } :

(B (x| W) FE R T mo }

This proves the following lemma.
Lemma 3 The efficient influence curve of U : M — R is given by

D*(Py) = Dy (Po)

e (o (R, W) — Bo(mo(R, W) | W))(Y = mo(R, W)mo(W) — (W)

ey r O {(mo(B, W) — Eo(mo(R, W) | W))mo(W)} (A - mo(R, W)
= Dy (Po) + Cy (g0, m0) (R, W)(Y — mo (R, W)mo(W) — 0(W))

—Ca(90, m0, m0) (A — mo (R, W))
= Djy(Ro) + Dy (Ry) — D (Fo),
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where
o2(go,m0)(W) = Eo({Tlo(R, W) — E(Ily(R, W) | W)} | W)
h(go, m)(W) = ¢ hi (V)

* 92(go, mo) (W)
Cy (g0, m0) (R, W) = h(go, m0)(W)(mo(R, W) — Egq (mo(R, W) | W))
CA(gmﬂ-Ova)(R? W)

= Cy(go,m0)(R, W)mo(W).

Double robustness of efficient influence curve: We already showed Py D* (7o, go, m, 0) =
0if gf)(m, PW,O) = gf)(mo, PW,O)- If qS(m, Pmo) = gb(mo, PW70) (i.e., ¢ = 1/)0), then,

h
POD*<7T7g[)7m79):PO D) !

m(” - Pgo”)(ﬂo — ) (mo —m),

where we used notation Py h = E, (h(R, W) | W) for the conditional expectation opera-
tor over R, given W. In fact,
RoD* (g0, m,6) = Py (m — Pyym) (o — ) g — )
T, go, M = —— (1 — Pyym)(mo — m)(mo —m
0 90, M, 0 72(g0, ) g0 0 0
+¢(m, Pwo) — ¢(mo, Pvo),

This is thus second order in (m — mg)(m — mp). In particular, it equals zero if m = myg
or T = T, and ¢ = 1. We can thus also state the following double robustness result: if
m = my, then PyD*(m, g,mo,0) = 0if g = go orif m = my.

Double robustness of TMLE: If we represent D*(I1y, go, m, 6,1) as an estimating
function in 1, then it follows that

PyD*(Ily, go, m, 0,%) = ¢y ' Poha (V) (mo(W) — V),

so that PyD*(Ilp, go, m, 6,1) = 0 implies ¢ = 1)g. In other words, the efficient influence
curve yields an unbiased estimating function for 1y at correctly specified gg, I1y, but possi-
bly misspecified m. As a consequence, the TMLE will be consistent for v if both gg and
11, are consistently estimated. It will also be consistent for ig if gg and mg are consistently
estimated, or if IIy and m are consistently estimated.

4. Targeted minimum loss based estimation

4.1 Squared error loss and linear fluctuations.

Let L(m)(0) = (A — n(R,W))? and Lr(Q)(0) = (Y — m(R,W)m(W) — 0(W))?
be the squared error loss functions for 7y and Qo = momo + 0o, respectively. Note that
the latter loss function is indexed by m. Let L.(g9)(0O) = (7(R,W) — Eg(n(R,W) |
W))? + (m(R,W)? — E(x*(R,W) | W))? be a loss function for Ey(m(R, W) | W)
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and Ey (m?(R,W) | W), two parameters of go. Let 7) be an initial estimator of .
Let QY be an 1n1tral estimator of Qo based on loss functron Lo (Q). Let ¢° be an initial
estimator of go, or the relevant part thereof, based on Lro(g). We can now define the
fluctuations 70 (e2), Q% (1), defined by 70 (ez) = w0 + EQCA(gn,T('n,m ) and Q%(e1) =
QY + €1Cy (g2, 7%). We note that these fluctuations Q(¢) = mm. + . stay within the
semiparametric regression model for Qo. We ﬁt € = (€1, €2) with the minimum loss-based

estimators egn = argmin, P, L( n(e) and €}, = argmine P, Lo (Q) (€)). This results
in updates QL = Q%(e ) and 7} = 7Y(€3 ). One can now re-estimate gy based on the

updated loss Lwn( ), which results in an update gn. The above procedure describes an
updating process mapping (72, g%, Q%) into (7}, g1, QL). This process can be iterated till
convergence. Let Q7 be the resulting final estimator of Qp. This corresponds with a m};
and 6},. The TMLE of 1 is now defined by the plug-in estimator ¢, = ¢(m};, Pw,,). The
TMLE solves the efficient influence curve equation

P,D*(g;,,m,m;,0;) =0.

nr’n

If g} consistently estimates go, and either m,, or 7}, is consistent for their target m and
mo, then, under regularity conditions, the TMLE 17 is asymptotically linear with an in-
fluence curve that can be approximated by D*(go, 7, m, ), where m,m, 6 are the limits
of my,my, 0. This would be an asymptotically correct or conservative influence curve if
g5 and m}, are consistent. Therefore we propose to estimate the asymptotic covariance
matrix of ¢ with £, = 1 3°" {D*(g,, 7}, m%, 0:)(0;)}?, and statistical inference for
confidence intervals and testing can be based on the asymptotically valid working model

¥y, ~ Na(vo, X /n).

4.2 Squared error loss and logistic fluctuations.

Suppose that we know that A € [0, 1] that mg € (a1,b1), and 0y € (ag, be2).

e Let I19 be an initial estimator of IIy. Let m2,6° be an initial estimator of mq, 6o
respecting the above mentioned bounds. We use the relations m = a; + (by — a;)m*
and 0 = ag + (b — a2)0*, where m*, 0" are functions of W that are in (0, 1). This
defines corresponding mi? and 650 of my and 6§, respectively. Let Lii(g)(0) =
(m(R,W) — Ey(m(R,W) | W))%2 + (n(R, W)2 — E(m*(R,W) | W))? be a loss
functlon for Ego( (R,W) | W) and Eg(7%(R,W) | W), two parameters of go.
Let ¢g¥ be an initial estimators of these two parameters of gy, where we are abusing
notation. Let £ = 0.

e As loss function for IIp we can use L(I1)(O) = —AlogII(R, W) — (1 — A) log(1 —
II(R,W)), and as fluctation of IT¥, we can use LogitIT” (e5) = LogitITX 4+-e2C 4 (g%,

e For a given II, as loss function for Qo = (myg, ) we use L11(Q)(0) = (Y —
(R, W)m(W) — (W))2. We use as fluctuation of m?:

mk(e) = ar + (b1 — a))mp*(e),

2213

L5, mf).



Section on Nonparametric Statistics — JSM 2012

where
Logitm”*(e) = Logitm* + eh}.

As fluctuation of 0%, we use
08 (€) = ag + (by — a2)0%(e),

where
Logith®* (e) = Logitd** + ehb.

This defines a fluctuation
Qr(€) = IIkml (e) + O} (e).

The choice h1, ho that defines this least favorable submodel through the initial esti-
mator QF will be defined below.

We have
2 Ly (@5 () = i (1 — miy®) (by — an) + (ba — az)Oi* (1 — 0571k

Recall that Cy (g, 7)(R, W) = II(R, W)Cy (g, II) (W) + Cy.2(g, IT) (W) for spec-
ified functions Cly, 1, Cy,2. Thus we need to select (h1, ho) so that

hy = Cy1(g,10)
L= m*(—m*)(bi—ay)
B — Cy,2(g,1T)
2= 95 (1—6")(ba—a2)"
Thus,
kE_ Cy,1(gk,ITk)
h‘l - *,k *,k
my " (1—=my ") (b1—a1)
hk _ CY,2(9£7H§1)
2

TR (1—05F) (ba—az)

With this choice, we have that

d

= Lu(Q(9)] o = O (¢, (Y — Q(R,W)).

We note that these fluctuations Q(¢) = mm, + 0 stay within the semiparametric
regression model for Qg. We fit € = (ey, €) with the minimum loss-based estimators
e’f}n = argmin, P,L(IT¥ (¢)) and € = argmin, PnLHﬁ(QfL(e)). This results in
updates QX! = QF (eF) and IIE™ = II% (¢} ). One can now re-estimate go based
on the updated loss Ly (g), which results in an update g¥. The above procedure
describes an updating process mapping (I1¥, g% QF) into (k1 gk+l QF+1). This
process can be iterated till convergence: i.e., set k = k + 1, repeat the above updating
process till convergence defined by €* ~ 0.
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e Let Q be the resulting final estimator of Q. This corresponds with targeted estima-
tors m,, and 6 of mg and 6y, respectively. The TMLE of 1)y is now defined by the
plug-in estimator v, = ¢(m., Pw.y,).

By construction the TMLE solves the efficient influence curve equation

P,D*(g;, 7, m;,0:) =0.
If g consistently estimates go, and either m;, or 7 is consistent for their target mg and
mp, then, under regularity conditions, the TMLE ¢} is asymptotically linear with an in-
fluence curve that can be approximated by D*(go, 7, m, ), where m,m, 6 are the limits
of 7} my 6} . This would be an asymptotically correct or conservative influence curve if
gy, and m; are consistent. Therefore we propose to estimate the asymptotic covariance
matrix of ¢ with £, = 1 3% {D*(gy,, 75, m};, 6;)(0;)}?, and statistical inference for

confidence intervals and testing can be based on the asymptotically valid working model
Pn, ~ Na(tho, Bn/n).

5. Efficient influence curve of target parameter when assuming a parametric form
for effect of treatment as function of covariates

We now assume mg = my, for some model {m,, : o}, which implies the semiparamet-
ric regression model Eo(Y | R, W) = IIo(R, W)mg,(W) + 6o(W). Let f3(R,W) =
Ho(R, W)ms(W). Let mo(W) = o' W*, where W* is k-dimensional vector of functions
of W. Note that « is d-dimensional and %ma(W) =W

5.1 Efficient influence curve in model in which II; is known.

First, we consider the statistical model M () C M in which IIg(R, W) = Eo(A | R, W)
is known. Define the k-dimensional vector

h(Ilp)(R, W) = d/agmay (R, W) = (R, W)d/dowme, (W) = (R, W)W™.

By previous results on the semiparametric regression model, a gradient for the k£-dimensional
parameter «(P) at P = Py € M(m) is given by

ety (Po) = C(m0) ™ (h(Tlo) (R, W)= E(h(Ilo) (R, W) | W))(Y —faq (R, W) =00 (W),
where C'(m) is a k x k matrix defined as

C(T‘-O) = EO{d/daOfao (R> W) - EO(d/da()fao (Ra W) | W)}2
= Eo{(W*W*{Ily(R,W) — Eo(Tlo(R, W) | W}*},

Let C(mo)~! be the inverse of C(mg).
This gradient equals the canonical gradient of «y in this model M (m), if Eo((Y —
Eo(Y | o, W))2 | R,W) is only a function of W. For example, this would hold if
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E(UZ | R,W) = Eo(U2 | W). This might be a reasonable assumption for an instrumental
variable R. The general formula for the canonical gradient is given in [?]. For the sake of
presentation, we work with this gradient due to its relative simplicity. and the fact that it
still equals the actual canonical gradient under this assumption.

We have that ¢g = ¢ (o, Pyw,o) for a mapping

(. Pwy) = arg mﬁin Ey Z h(a, V)a2 (May (W) — mIg(V))2 ,

defined by working model {my : 8}. Let dé(ap, Pwo)(has hw) = 7% ¢(c0, Pivo) (ha) +

dog
ﬁqﬁ(ao, Py o)(hw) be the directional derlvatlve in direction (hg, hy). The gradient of

¥ : M(My) — R%is givenby D}, 1, (Fo) = dao ¢(ao, Pw,0) D} 1, (Po)—i-dpwO d(ao, Pwo)ICw,
where ICyw (O) = (I(W = w) — Pyo(w) : w) is the influence curve of the empirical dis-
tribution of 1. We note that 5y = ¢ (g, Piv) solves the following d x 1 equation

U(Bo, @0, Pwo) = Eo Y _ h(a, V)a® m,Bo(V)(mao(W) —mg,(V)) = 0.

dfo
By the implicit function theorem, the directional derivative of 5y = ¢(ag, Pi) is given

by

d6(00, Po) (ha, hw) = = { 35U (Bo, a0, Pivo) }
{25 U (Bo, a0, Puo) (ha) + 775U (B, 0, Pwo) () }

We need to apply this directional derivative to (ha, hw) = (D}, 11, (F), ICw ). Recall we
assumed that mg is linear in 3. We have

2
co = —dZU(ﬁo, a0, Pw,o) = Eo Z h(a,V)a® {ddﬁomgo(V)} ,

which is a d x d matrix. Note that if mg(V') = >_, 8;V;, then this reduces to

Cco = Eo Z h(a, V)CLQVVT,

where V = (V1,..., Vy). We have

d

mU(ﬁo,ao,Pwo Zhw Zh a,v)a? e mﬁo( ) (Mag (W) —mpg, (v)).

Thus, the latter expression applied to 7Cyy(O) yields the contribution ¢, ' D}y, (Py), where

Diy(Po) = Zh (a,V)a? mB0<V><mao<W> —mg, (V).
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In addition,
d

d
EU(ﬁo,ao,PWQ E()Zh a V a 7m50(V)Emao(W).

We conclude that

do(ao, Pwo)(ha, hw) =
Diy (Po) + 5 { o 24 1, V) iy (V) s mao (W) D2, (Po) }

We conclude that the canonical gradient of ¥ : M (1) — R? is given by

Dy, (Po) = Dy (F)(0)

{Eozh 0. V)t o mﬁo<v>;jmmao<w>} D11, (P0)(©)

= Dy (R)(0) +
o { Bon(V)VWT } Cmo) ™ (h(Mo) (R, W) = E((TLo) (R, W) | W)
(Y = fap (R, W) = Bu(WV)).

We state this result in the following lemma and also state a robustness result for this efficient
influence curve.

Lemmad4 Let hi(V) = > h(a, V)a2V.The efficient influence curve of ¥ : M(Ily) —
R? is given by

Dw 10 (F0) = & A1 (V) gt my (V)i (V) — i (V)
H B (V)VIWT ) (o)~ (o) (R, W) — E(h(Tlo) (R, W) | W)
<Y ~ oo (R, W) = Go(W)).

We have that
PyDy 11, (9, Mayg, 0) = 0, if either g = go or 6 = 6.

5.2 Canonical gradient in model in which II; is unknown

We will now derive the efficient influence curve in model M in which Il; is unknown,
which is obtained by adding a correction term Dr(Fp) to the above derived D} 1; (Fp).
The correction term D, (Fp) that needs to be added to Dy, 11, is the influence curve of
Po{Dj, 11, (mn) — Dy, 1, (m0) }, where Dy, () = Dy 11, (B0, 0o, @0, go, ) is the efficient
influence curve in model M), as derived above with 7y replaced by 7, and 7, is the
nonparametric NPMLE of 7. Let by (V) = ) h(a, v)aZ%mgo (v). Let(e) = m + en.
We plug in for 7 the influence curve of the NPMLE II,, (7, w), which is given by

I(R=rW =w)
Py(r,w)

n(r,w) = (A —TI(R,W)).
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We have

De(R) = 4 PD(r(e)

e=0
- {Pocglhl(V)VW*T} C(mo) 1Py {W*W*T(WO — B(mo | W))n(R, W)} .

This yields as correction term:

D= (P)(0) = —(A - HO(R W))
{Pocglhl(V)VW*T} Cmo) L {W*W*T (mo(R, W) — E(mo | W))}.
This proves the following lemma.
Lemma 5 The efficient influence curve of ¥ : M — R% is given by
D*(Py) = Dy (Po)
g { Boa (V)VWT } (o) W* (Tg = E(To(B, W) | W))(Y = fag (B, W) = 60(W)
- {chglhl(V)VW*T} C(mo) L {W*W*T (o (R, W) — E(mg | W)} (A — (R, W)
= Dy (Po) + Cy (g0, m0) (R, W)(Y — mo(R, W)ma, (W) — 6o(W))

—Ca(go, ™0, m0) (A — 7o (R, W))
= Dy (Po) + Dy (Po) — D (Fo),

where

Cy (g0, 70) (R, W) = ¢ {EO >0 Ma, V)G2VW*T} X
C(mo) ™ (W(Io) (R, W) — E(h(Ilo) (R, W) | W))
Calgo, 70, mo) (R, W) = { Pocg " (VIVW*T } o)~ {W* W (o(R, W) — E(mo | W))}
Double robustness of efficient influence curve: We already showed Py D*(m, g, g, 0) =

0if g = go or 6 = 6. We also have that Py D*(, go, g, 8) = 0 for all 6 and 7.
The TMLE is analogue to the TMLE presented for the nonparametric model for mgy(W).

6. Extension to structural equation for outcome that is non-linear in treatment.

Consider the structural equation model Y = Z}'J=1 Al o(W) + 0o(W) + Uy, where
the functions m; o, j = 1,...,J, are unspecified, and E(Uy | R,W) = 0. Under this
assumption, we have the following semiparametric regression model:

J
E(Y | R,W) =Y Eo(A | W)m;o(W) + 0o(W ZHOJ ymo(W) 4 6o(W),
j=1

where we defined Iy ;(W) = Eo(A7 | W). The counterfactuals are defined as Y (a) =
i1 @mo(W)+00(W) + Uy, and Ey(Y (a) =Y (0) | V) = 327, a? E(mjo(W) | V).
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Given a working model {mg : $}, and weight function h, we can define the target parameter
as

Bo = arg min £y > ha,v)(> ] d Eo(mjo(W) |V =v) — mg(a,v))’.
a v 7

Analogue to above, we can now compute the efficient influence curve, and develop the
TMLE of 8y = ®((mjo : j), Piw,o)-
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