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Abstract
In today’s technology world, data is increasingly being relied upon for decision-making. Nonpara-
metric techniques have advantages in these scenarios because they don’t enforce a lot of structure
to the pattern in the data upfront. We have proposed a methodology that is highly adaptive in cap-
turing sudden changes without overfitting. The adaptivity of the methodology comes from the use
of multiple “libraries”, such as spline and fourier bases, and the parsimony of model representation
comes from ad-hoc estimation of model complexity via Monte Carlo simulations. Bootstrap confi-
dence intervals can be obtained simultaneously as a by-product of the computation. It is shown that
such a methodology has the potential to make a big impact in A/B testing and marketplace response
detection, both of which are common statistical exercises in the technology industry. An R package
has been made to implement the methodology.
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1. Introduction

In the tech industry, especially for online businesses, A/B testing has become increasing
common for comparing the outcomes of observation studies known as live experiments.
Both the “A” and “B” in A/B testing respectively represent a combination of settings. A
group of subjects are first divided into two groups supposedly matched in propensity of
interest. Then these two groups undergo what is called an A/A test when both groups are
subject to the “control” settings to make sure their respective outcomes in the metrics of
interest are not significantly different. Afterwards one of the groups will be subject to the
“treatment” settings and both groups will be observed for an equal period of time. The two
groups are not always equal in size. So it usually is an unbalanced 2-factor design. Table 1
illustrates such a design. Factor A has two levels: control and treatment; Factor B can have
a variable number of levels for different granularities in time, e.g. days or hours.

An ANOVA table can be generated and power of the test can be computed. The problem
with this approach is that because of resource constraints, the experiments may not be
run long enough to achieve the desirable statistical power and there is too much noise
in the observations. To this end, we are proposing an adaptive non-parametric modeling
procedure that will allow us to do a visual examination of the trend and variability over
time in such data sets with high resolution.
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Table 1: A/B testing: unbalanced 2-factor design

B: Time j = 1, . . . , b
A: Control i=0 . . . y(0,j,1), . . . , y(0,j,n0j) . . .

A: Treatment i=1 . . . y(1,j,1), . . . , y(1,j,n1j) . . .

2. Adaptive nonparametric methods

Consider a regression model

yi = f(xi) + ϵi, xi ∈ X , i = 1, · · · , n, (1)

where yi’s are the responses, xi’s are design points, f is a nonparametric function on an
arbitrary domain X and ϵi’s are iid random errors with mean zero. The goal is to model
and estimate the mean function f .

Spline modeling is one popular approach to model the function f in (1). First consider
the special case when X = [a, b]. A spline is a piecewise function on intervals connected
at fixed points called knots: a < t1 < · · · < tk < b. There are two kinds of splines in gen-
eral: regression splines and smoothing splines. Regression splines are usually considered a
basis approach while the smoothing splines are considered a regularization approach. With
a basis approach, one often starts with a set of linearly independent functions that span
the function space. The number of basis functions is in general infinite. The task is to
select a finite subset of basis functions that can approximate the function f well. With a
regularization approach, one penalizes complexity and finds the optimal solution within a
well-defined function space.

Both the basis and regularization approaches have a large literature and are commonly
used in practice (Ruppert, Wand and Carroll 2003). Multivariate Adaptive Regression
Splines, or MARS, developed by Friedman (1991), is an example of the basis approach.
The smoothing spline analysis of variance, or SS-ANOVA (Wahba 1990), is an example
of the regularization approach. Hybrid Adaptive Splines, or HAS (Luo and Wahba 1997),
combines features from both regression spline and smoothing spline (hence the term “hy-
brid”). It is an example of both.

2.1 Limitation of current methods

Two key ingredients in non-parametric modeling are the choice of basis functions (or a
model space) and a model selection procedure that selects basis functions and/or controls
the balance between goodness-of-fit and model complexity. With respect to these two key
ingredients, there are a few limitations with most of the existing methodologies.

All basis approaches mentioned earlier use one class of basis functions only. For exam-
ple, MARS uses truncated polynomials, and HAS uses a basis generated by a reproducing
kernel of the cubic splines for the univariate case. Even though a single class of basis func-
tions, often of infinite dimension, may eventually be able to capture a complex signal in
the data, the methods based on a single class of basis functions are limited in their adaptiv-
ity with finite samples. On the other hand, the choices for the class of basis functions are
virtually unlimited.

As for model selection, for example, penalized least squares criterion relies on a single
global smoothing parameter, λ, to control the trade-off between the goodness-of-fit and the
smoothness of the estimated function over the entire domain x ∈ [a, b]. Thus an implicit

Business and Economic Statistics Section – JSM 2012

1181



assumption is that f is smooth with relatively homogeneous curvatures over the entire
domain. If the true function is spatially inhomogeneous, then spline estimates tend to over-
smooth in regions where f is rough and under-smooth in regions where f is smooth.

2.2 Generalized Degree of Freedom

The Generalized Degrees of Freedom (GDF) offers a way to adaptively estimate model
complexity and is thoroughly investigated by Ye (1998). It is applicable to complex model-
ing procedures. The definition is based on the sum of the sensitivity of each fitted value to
perturbation in the corresponding observed value. The concept is non-asymptotic in nature
and offers a unified framework under which the complexity of any modeling procedure can
be measured.

GDF depends on both the modeling procedure and the underlying true model. In a
linear model, let

H = X(X′X)−1X′ (2)

be the projection matrix onto the space spanned by the columns of X. Let µ̂(y) =
(µ̂1, . . . , µ̂n) = Hy be the fit. The degrees of freedom can be expressed as

p = tr(H) =

n∑
i=1

hii =

n∑
i=1

∂µ̂i
∂yi

. (3)

The degrees of freedom are the sum of the sensitivities of the fitted values µ̂i with respect
to the observed response values yi.

For any modeling procedure M, the GDF is defined by

D(M) =
n∑
i=1

hMi (µ), (4)

where

hMi (µ) =
∂Eµ{µ̂i(y)}

∂µi
= lim

δ→0
Eµ

{
µ̂i(y + δei)− µ̂i(y)

δ

}
=

1

σ2
cov(µ̂i(y), yi), (5)

where µ = (Ey1, . . . , Eyn)
′, y = (y1, . . . , yn)

′, and ei is the ith column of the n × n
identity matrix.

2.3 The BSML procedure

As alluded to earlier, a truly flexible procedure should be able to choose from a variety of
basis functions of different constructions to model complex features of a regression func-
tion. Let L0 and Ll = {ψl,1, . . . , ψl,nl

} for l = 1, . . . , L be L + 1 libraries of basis
functions. L0 is the null library, which could be empty or contains elements {ϕ1, . . . , ϕm}
that will be forced into the model. Each library contains basis functions with similar prop-
erties. Otherwise, there is no limitation on the number of libraries and the elements of each
library. For example, there may be different families of basis functions for each Ll: e.g.
Fourier, wavelets or smoothing spline.

The idea of multiple libraries is inspired by the use of overcomplete bases in machine
learning literature (Lewicki and Sejnowski 2000, Coifman and Wickerhauser 1992, Mallat
and Zhang 1993, Chen, Donoho and Saunders 2001). With overcomplete bases, it is pos-
sible to represent a signal with better resolution and much smaller set of basis functions,
leading to better interpretation of the model. But an overcomplete basis could also lead to
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overfitting if the corresponding rise in model complexity is not properly accounted for with
the improvement in goodness-of-fit. That is where GDF comes to help.

BSML-C Procedure

1. Initialization: set Bm = L0 and let M be the upper limit on the number of basis
functions to be selected (including those in L0).

2. Forward selection: for k = m+1, . . . ,M , find ϕk from the remaining basis functions
not yet selected in O = ∪Ll=1Ll that maximizes the reduction of residual sum of
squares

ϕk = argmax
ψ ∈ O ∩ Bc

k−1

{RSS(Bk−1)−RSS(Bk−1 ∪ {ψ})}

where Bk−1 is the set of basis functions selected up to step k-1 and update Bk =
Bk−1 ∪ {ϕk} .

3. Elimination: choose k∗,m ≤ k∗ ≤ M , as the minimizer of a model selection crite-
rion Cr(k) such as the GCV.

4. Final model: fit a standard or ridge regression model to the selected basis functions
set Bk∗ .

BSML-S Procedure

1. Initialization: set Bm = L0 and let M be the upper limit on the number of basis
functions to be selected.

2. Forward selection: for k = m+ 1, . . . ,M , select a candidate ψ(k)
l,jl

from the remain-
ing basis functions not yet selected in library Ll, l = 1, . . . , L that maximizes the
reduction in the residual sum of squares

ψ
(k)
l,jl

= argmax
ψ∈Ll∩Bc

k−1

{RSS(Bk−1)−RSS(Bk−1 ∪ {ψ})}

where Bk−1 is the set of basis functions selected up to step k − 1. Then select
ϕk ∈

{
ψ
(k)
1,j1

, . . . , ψ
(k)
L,jL

}
that minimizes a model selection criterion CrF (k) and

update Bk = Bk−1 ∪ {ϕk}.

3. Elimination: choose k∗,m ≤ k∗ ≤ M that minimizes a model selection criterion
Cr(k) such as the GCV.

4. Final model: fit a standard or ridge regression model to the the basis functions set
Bk∗ .

More details regarding these two procedures are provided in Sklar, Wu, Meiring and
Wang (2013) and Wu (2011).

2.4 Bootstrap confidence intervals

Confidence intervals can be obtained as a by-product of GDF computation. A bootstrap
procedure for deriving confidence intervals generally follows the steps below. We first
obtain a pilot fit (µ̂01, µ̂

0
2, . . . , µ̂

0
n). With a Gaussian assumption for noise, we generate new

residuals δ1, δ2, . . . , δn from N(0, σ̂2), where σ̂2 is the error variance estimated from the
pilot fit or a difference-based estimator such as the Rice estimator. Alternatively, we can
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resample the residuals with replacement if the normal assumption is objectionable. Add
them to the pilot fit and repeat T times so that we have T bootstrap samples

yti = µ̂0i + δti , i = 1, . . . , n t = 1, . . . , T (6)

where n is the sample size and T is the number of bootstrap samples. We use the BSML
modeling procedure again to fit each bootstrap sample and obtain estimates (µ̂t1, µ̂

t
2, . . . , µ̂

t
n), t =

1, . . . , T . Then we can find the (1 − α)% (across the function) confidence interval for µi:
(µ̂α/2, i, µ̂(1−α/2), i), where µ̂α/2, i and µ̂(1−α/2), i are the α/2 and (1− α/2) percentiles of
(µ̂1i , µ̂

2
i , . . . , µ̂

T
i ).

Algorithm

1. Obtain a pilot fit from a “big” model: (µ̂01, µ̂
0
2, . . . , µ̂

0
n) and an estimate of σ2: σ̂2.

2. Generate bootstrap samples yti = µ̂0i + δti , i = 1, . . . , n, t = 1, . . . , T where
δt1, δ

t
2, . . . , δ

t
n are from N(0, σ̂2) or a sample with replacement from the estimated

residuals.

3. Apply the forward selection part of the BSML procedure to select up to M basis
functions for each bootstrap sample and obtain all the fits:
(µ̂t1, k, µ̂

t
2, k, . . . , µ̂

t
n, k), k = m, . . . ,M, t = 1, . . . , T , where k indicates the number

of basis functions in the model and m is the number of null bases.

4. Calculate MSE(k, t) =
∑n

i=1(µ̂
t
i, k− µ̂0i )2/n, k = m, . . . ,M, t = 1, . . . , T and find

k∗t = argminMk=m MSE(k, t), t = 1, . . . , T . This is to find the optimal fit for each
bootstrap sample based on MSE. Since the true values are unknown, the values from
the pilot fit are used as approximations.

5. Obtain the (1 − α)% confidence interval for µi, i = 1, . . . , n: (µ̂α/2, i, µ̂(1−α/2), i)

from the range of estimates: (µ̂1i, k∗1 , µ̂
2
i, k∗2

, . . . , µ̂Ti, k∗T
).

While bootstrap confidence intervals are not known for having the best properties in
terms of coverage and width, it is found in Wu (2011) that, when used with the BSML
procedure, bootstrap confidence intervals can have superior properties. A theoretical justi-
fication is being investigated.

2.5 The R package

The BSML procedure has been made into an R package (Wu, Sklar, Wang and Meiring
2012) available on CRAN with the following content:

• Main functions

– bsml.R

– bsmlc.R

– bsmls.R

– has.R

• Utility functions

– control.bsml.R
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– summary.bsml.R

– predict.bsml.R

– bas.check.R

– stdz.R

3. Applications

3.1 Marketing initiative effectiveness detection

In online advertising, when pushing a marketing initiative to advertisers, it is important to
be able to detect whether an advertiser has taken action as suggested. One such example
would be account managers reaching out to big advertisers whose accounts are underper-
forming (meaning getting no ad impressions) due to low bids. These advertisers are advised
to raise the bids of their listings. Despite that advertisers are asked to call back within a
week to confirm their activities (if action has been taken), the only way to know for sure is
via the data logs. For a time period of 27 consecutive weeks, we calculate the proportion of
listings whose bids have been raised for each account week over week: ξi,j,k where i = 0, 1
(0 for control and 1 for treatment), j = 1, . . . , 26 and k = 1, . . . , nij (nij are the number of
advertisers in group i for week j). If we plot the mean of these proportions each week over
time, for both control and treatment, we will get Fig. 1. The plot doesn’t look very illumi-
nating even though we can see in general the level of response for treatment is higher than
that for control. If we are to model treatment and control separately: ξi,j,k = fi(j) + ϵijk,
where i = 0, 1, j = 1, . . . , 26, k = 1, . . . , nij and ϵjk are iid random errors with mean
zero, we can apply the BSML-C procedure to each. The libraries used were L0 = constant
and linear functions, L1 = cubic spline representers, L2 = truncated constants, L3 = trun-
cated linear polynomials and L4 = truncated quadratic polynomials. The model selection
criterion Cr(k) used was GCV and 300 bootstrap samples were generated for computing
the confidence bands. The outcome is a much clearer pattern for either control or treatment
along with bootstrap confidence intervals showing the variability at each time point. In
Fig. 2, it becomes clear that regardless of treatment (outreach), advertisers generally begin
raising their bids at the beginning of the summer shopping season and lower their bids at
the end of it. The start of the increase of activities was much more obvious for advertisers
in the treatment group and they tend to continue to raise their bids throughout the shopping
season. Similar observations were in fact made via other channels. Because of the treat-
ment group was a much smaller group than control, the general lack of overlap between the
confidence bands gives assurance that the difference in activities for the two groups indeed
exists.
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Figure 1: Average week-over-week market responses over time.
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Figure 2: BSML fit to week-over-week market responses over time.
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3.2 Positional factors estimation

The BSML procedure can be used to estimate the click-through rate (CTR) at each ad
position all at once in online advertising. There are as many as 12 ad positions that can be
filled on a search results page (though not all of them may be filled for every page) and they
are clustered into two main blocks. The CTR values tend to be monotonically decreasing
within each block from top to bottom and from the center block to the righthand block.
When comparing the level of user engagement of one live experiment to that of another,
we usually look at if the CTR values of one experiment are generally higher than those
from another. In other words, we mostly care if one CTR ”curve” is above another. The
CTR values for each position also tend to be normally distributed. Therefore, the BSML
procedure will be a great tool for this purpose, allowing detection of anomaly with its
adaptivity while also providing bootstrap confidence intervals.

To show that there is an advantage to be had when computing bootstrap confidence
intervals with BSML compared to computing them with other existing methods, as an ex-
ample, in Fig. 3, we fit the CTR data using smoothing spline and also generated bootstrap
confidence bands. There is sizable overlap between the confidence bands, making us won-
der if the treatment curve is indeed above the control one. In Fig. 4, we are showing the
BSML-C fit together with bootstrap confidence bands. Just as in the previous example,
the libraries used were L0 = constant and linear functions, L1 = cubic spline representers,
L2 = truncated constants, L3 = truncated linear polynomials and L4 = truncated quadratic
polynomials. The model selection criterion Cr(k) used was GCV and 300 bootstrap sam-
ples were generated for computing the confidence bands. Because the confidence bands are
much narrower, at the same time with as good or better coverage as shown in Wu (2011),
we can clearly see that for positions 2, 3 and 4, all of which very important positions for
revenue, the treatment curve is above the control curve. For the control curve in that figure,
we can also see a reversal of monotonicity between positions 3 and 4, an important finding
related to pricing that is not uncovered in the figure for smoothing spline. Such a finding is
only possible because of the adaptivity and good balance between fit and model complexity
from the BSML procedure.
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Figure 3: Smoothing spline fit to the CTR curves for both treatment and control.
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Figure 4: BSML-C fit to the CTR curves for both treatment and control.

Business and Economic Statistics Section – JSM 2012

1188



4. Discussion

In this work we have illustrated the advantage of identifying the pattern in a live experi-
ment using adaptive non-parametric procedures as well as comparing these patterns using
graphical means. Any conclusions drawn from observing these graphical representations,
however, will be rather subjective. Progress needs to be made for formally testing the dif-
ference between two curves. In addition, even though sample size generally is not an issue
for the purpose of making the normal assumption, there are occasions either when the nor-
mal assumption doesn’t hold or when we want to model the outcomes directly (e.g. 0 or
1). There is definitely a need to extend the BSML procedure to accommodate observations
from the exponential family of distributions. Such an effort is underway.
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