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Abstract 
The errors-in-variables (EIV) regression model, being more realistic by accounting for 
measurement errors in both the dependent and the independent variables, is widely 
adopted in applied sciences. The traditional EIV model estimators, however, can be 
highly biased by outliers and other departures from the underlying assumptions.  
 
In this paper, we develop a novel nonparametric regression approach - the robust 
compound regression (RCR) analysis method for the robust estimation of EIV models. 
We first introduce a robust and efficient estimator called least sine squares (LSS). Taking 

full advantage of both the new LSS method and the compound regression analysis 
method developed in our own group, we subsequently propose the RCR approach as a 
generalization of those two, which provides a robust counterpart of the entire class of the 
maximum likelihood estimation (MLE) solutions of the EIV model, in a 1-1 mapping. 
Technically, our approach gives users the flexibility to select from a class of RCR 
estimates the optimal one with a predefined regression efficiency criterion satisfied. 
Simulation studies and real-life examples are provided to illustrate the effectiveness of 

the RCR approach. 

 

Key Words: Errors-in-variables, robust regression, nonparametric regression, least sine 
squares, robust compound regression, regression efficiency 

 

 

1. Introduction 

 
Consider the linear errors-in-variables (EIV) model 

                                                            (1) 

where the unobservable random vector        and the linearly related random variable 

        are subject to measurement errors, and instead we only observe X and Y . 
To ensure model identifiability, the random errors   and each component of   are 

assumed to be independent and follow the same distribution. The model is called 
functional when x is deterministic, and structural when x is random such that x,  , and   

are independent. In the present paper, we focus on the structural EIV model which is 
more general. A general treatment of linear EIV models is given in Fuller (1987), and 
more recent developments and applications are summarized in Van Huffel and 

Lemmerling (2002). 
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As we all know, the popular and widely used ordinary least squares (OLS) regression is 
biased and inconsistent for estimation of EIV models, while the orthogonal regression 
(OR) and geometric mean regression (GMR) are better in that case. Unfortunately, all 
these traditional estimators can behave poorly in the presence of outliers or violations of 

distributional assumptions (Zamar 1989, Cheng and Vanness 1992) and therefore some 
robust alternatives are needed. Brown (1982) and Ketellapper and Ronner (1984) showed 
ordinary robust regression techniques are applicable to the EIV model. Zamar (1989) 
proposed robust orthogonal regression M-estimators (ORM) and showed that it 
outperforms the robust ordinary regressions. Since the normality assumption cannot be 
guaranteed in real-life problems, He and Liang (2000) provided a quantile regression 
(QR) approach that is robust to heavier-tailed errors distribution than the Gaussian. More 
recently, Fekri and Ruiz-Gazen (2004 and 2006) derived a class of bounded influence 

robust estimators of the parameters of the EIV model from reweighted multivariate 
estimators of location and scatter, and extended the proposed estimators to usual error 
variances assumptions for the simple EIV model. 
 
In this paper, we present a new class of robust estimators, called the robust compound 
regression (RCR) estimators, for the estimation of linear EIV model. This class of 
estimators naturally extends the least sine squares estimator (LSS) discussed later in this 

paper and the compound regression analysis method systematically studied by Leng 
2011. Unlike the robust regression techniques discussed in the previous paragraph and 
other regression M-estimators (He et al. 1990), the presented estimators not only allow 
for errors in both variables and departures from normality but also are robust to outliers 
in either response or explanatory variables. The rest of the paper is organized as follows. 
In Section 2, we first briefly introduce the novel LSS estimator from a motivational point 
of view, which serves as a prototype of the RCR-estimators. Subsequently, we define the 

RCR-estimators and show some of its unique properties. In Section 3, by calibrating our 
RCR-estimators, we compare the new robust estimators with the usual nonrobust 
estimators on simulated data sets as well as real-life examples. Finally, conclusions are 
given in Section 4 and some proofs are provided in Appendix. 

 

2. Methodology 

 

2.1 The Least Sine Squares Estimator 
The RCR-estimators is actually a generalization of the LSS estimator we firstly introduce 

here. The LSS estimator after its name is defined to minimize the sum of squared sine 
residuals as follows 

      ∑       
 
    ∑

    
 

  
 

 
                                       (2) 

where    denotes the angle formed by the fitted hyper-plane and the line connecting each 

case    
      to the dataset mean   ̅   ̅ . Here     

 
|     

    |

√     
 represents the 

orthogonal residual of the i-th observation, and the Euclidean distance from the 

observation to the mean is    √     ̅       ̅       ̅  . Geometrically, the 

weighted orthogonal residual as of     
    is exactly the sine residual as of      . 

 
It can be seen that the LSS estimator is simply defined through a weighted total least-
squares criterion. But different from the traditional total least-squares (i.e. OR) estimator, 

the LSS estimator as its robust counterpart not only accounts for measurement errors on 
both dependent and independent variables, but also down-weighs observations with large 
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orthogonal residuals. More importantly, from the insight of a close relationship between 
the total least-squares regression and the principle component analysis (PCA) approach 
(Jackson and Dunlevy 1988), we have reached the following proposition. 
 

Proposition 1. Consider a data set with dependent variable Y and independent variables 

              , the LSS estimator is equivalent to the principle component associated 
to the smallest eigenvalue of the robust weighted sample covariance matrix: 

 ̃  

[
 
 
 
 
 ̃      

  ̃      
 ̃    

    
 ̃      

  ̃      
 ̃    

 ̃    
  ̃    

 ̃  ]
 
 
 
 

             

                                (3) 

where  ̃      
 ∑

        ̅̅ ̅̅          ̅̅ ̅̅ ̅ 

  
 

 
    for j, k = 1, …, P, and  ̃     ∑

        ̅̅ ̅̅       ̅ 

  
 

 
    

for p = 1, …, P. Consequently, the LSS estimator in simple regression case yields 

 ̂    
 ̃    ̃   √  ̃    ̃       ̃  

 

  ̃  
     ̂     ̅   ̂    ̅                    (4) 

 
The proof of Proposition 1 is given in the Appendix. Of note, a closed-form solution of 
the LSS estimator in multivariate case can be easily obtained by the use of singular value 
decomposition (SVD), see Golub and Van Loan (1996). 
 

2.2 The Robust Compound Regression Estimator 
The RCR-estimators, as a natural extension of the LSS estimator, is defined through a 
weighted compound least-squares criterion by minimizing 

      ∑
 

  
         ̂  

  ∑         ̂   
  

     
                    (5) 

subject to the constraints of ∑   
 
      and     . Moreover, the generalized RCR can 

be easily defined by replacing   
  with   

  in (5), where the power k can be any 

nonnegative integer. When k = 0 it becomes the objective function of ordinary compound 
regression, and further investigations are needed to seek an adequate power k for the 
robustness-efficiency trade-off. 

 
It has been shown that there is equivalence between the compound regression and the 
maximum likelihood estimation (MLE) solutions of structural EIV model (Leng 2011). 
Base on that work, we emphasize that our RCR-estimators as a robust variant of the 
compound regression, provides a robust counterpart of the entire class of the MLE 
solutions of the EIV model, in a 1-1 mapping.  
 

2.2.1 Parameter estimate and its asymptotic variance 

Since the objective function (5) can be further simplified as 

         ∑
     ̂  

 

  
 

 
    ∑

  

  
 

 
   ∑

     ̂  
 

  
 

 
    

             (   ∑
  

  
 

 
   )∑

[    ̅ ∑   (       ̅̅ ̅̅ ) 
   ]

 

  
 

 
    

             (   ∑
  

  
 

 
   )  ̃   ∑ ∑      ̃      

 
   

 
     ∑    ̃    

 
                      (6) 

we can obtain the slope vector estimate by solving the system of P equations 
      

   
  , 

for p = 1, 2, …, P simultaneously. Specifically, for any l in p = 1, …, P, we have 
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 ( ̃   ∑ ∑      ̃      

 
   

 
     ∑    ̃    

 
   )    

               (   ∑
  

  
 

 
   )( ∑    ̃      

 
   
   

     ̃      
   ̃    

)                            (7)        

Solutions can be obtained via any standard numerical software such as MATLAB, from 

which we have the slope estimate  ̂    with some regulatory conditions satisfied. 

Meanwhile, the intercept estimate can be readily calculated by  ̂     ̅   ̅  ̂   . 

 
Obtaining asymptotic theory for the RCR-estimators in linear EIV models is a very 
challenging task. Hence, we use a bootstrap estimator for the asymptotic covariance 

matrix of the slope estimate  ̂   . The bootstrap estimator can be written by 

     ∑   ̂    
  ̅̂      ̂    

  ̅̂      
                                (8) 

where  ̂    
 is estimated from the b-th bootstrapping sample and  ̅̂    

 

 
∑  ̂    

 
   . 

The asymptotic variance of  ̂    can be calculated in a similar manner. 

 

2.2.2 Two special members of the RCR-estimators 
In the simple linear regression situation, the objective function (5) can be simplified as 

       ∑
          

 

  
        ∑

    
    

 
  

  
                              (9) 

where      . Straight-forward derivations show that the slope estimate would satisfy 

                            ̃       ̃           ̃          ̃                            (10) 

Obviously at two extremes of γ, we have  ̂    
   ̃

   ̃
 and  ̂    

   ̃

   ̃
 respectively. 

 
Proposition 2. The compound parameter γ is a monotonic function of the slope estimate 

 ̂ , when the range of  ̂  is between  ̂    and  ̂   . 

Proof   Equation (10) can be rewritten as 

     
 

   
 

   ̃  ̂    ̃

 ̂    ̃    ̃

 

 ̂ 
  

 ̂     ̂ 

 ̂   ̂     

 

 ̂ 
                                  (11) 

Note that      is an increasing function of        . The Cauchy-Schwarz inequality 

ensures that  ̃  
   ̃   ̃  , hence, if  ̃     we have  ̂     ̂   ̂     , and thus 

      as  ̂  , i.e. γ is a decreasing function of  ̂ ; otherwise, if  ̃     we have 

 ̂     ̂   ̂     , and thus       as  ̂  , i.e. γ is an increasing function of  ̂ . 

 

Analogous to the definition of GMR in simple linear regression, the robust geometric 

mean (RGM) estimator is defined to minimize  
 

 
       ∑

     ̂       ̂  

  
  , and we can 

easily obtain its corresponding slope estimate  ̂           ̃   √
 ̃  

 ̃  
.  

 

Proposition 3. In the simple linear regression case, the LSS and the RGM estimators are 
both special members of the RCR-estimators.  

Proof   Based on the Cauchy-Schwarz inequality, it is easy to show that 
 ̃  

 ̃  
  ̂    

 ̃    ̃   √  ̃    ̃       ̃  
 

  ̃  
 

 ̃  

 ̃  
 given  ̃    , and 

 ̃  

 ̃  
  ̂    

 ̃  

 ̃  
 given  ̃    . 

Similarly, we have 
 ̃  

 ̃  
  ̂    √

 ̃  

 ̃  
 

 ̃  

 ̃  
 when  ̃    , and 

 ̃  

 ̃  
  ̂    
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 √
 ̃  

 ̃  
 

 ̃  

 ̃  
 when  ̃    . Since both  ̂    and  ̂    are in between  ̂    and  ̂   , 

and by Proposition 2 there exists a monotonic relationship between γ and  ̂ , we can 

conclude that both      and      are between 0 and 1. Therefore, the RCR-estimators 

include the LSS and the RGM estimators as special members.  

 

2.2.3 Robust regression efficiency 

The robust regression efficiency with respect to each regression variable is defined as the 

ratio of the minimized to the observed weighted squared-residuals along the 
corresponding coordinate direction. Mathematically, the regression efficiency with 
respect to the dependent variable Y and each independent variable     for p = 1, …, P are 

formulated as follows. 

   
   ∑

     ̂  
 

  
 

 
   

∑
     ̂  

 

  
 

 
   

 
       ̂     

∑
     ̂  

 

  
 

 
   

                                     (12) 

    
 

   ∑
      ̂    

  
 

 
   

∑
      ̂    

  
 

 
   

 
       ̂     

∑
      ̂    

  
 

 
   

                                 (13) 

 
Proposition 4. The robust geometric mean estimator will always yield the equal    and 

  , and furthermore the maximum sum of robust regression efficiencies      . 

 
The proof is given in the Appendix. We hereby point out that the definition of regression 
efficiency is not only designed for the proposed robust compound regression analysis, but 
also can be utilized to compare the performance of different regression estimators given a 

real-data set. There are two ways to build up the corresponding goodness-of-fit criterion. 
One is the Frequentist approach, where all the regression variables are considered equally 
important due to the lack of prior knowledge, and our suggestion is the higher the sum of 

regression efficiencies    ∑     

 
    the better the regression estimate is. The other is 

the Bayesian approach. For example in simple regression, if one has the prior information 
of keeping the prediction accuracy of Y above a certain threshold, the best estimate will 
maximize    subject to      given        . Symmetrically, we can reverse the order 

of the importance for X and Y and obtain the best fit for Y subject to     . In addition, 

users have the flexibility to impose constraints on more than one variable and optimize 
the rest in the multivariate scenario. 
 

3. Simulation and Example 
 

3.1 Simulation Studies 
In this section, we assess the performance of our proposals in two steps. We firstly 
calibrate the whole class of RCR-estimators via the regression efficiency plot diagnosis, 
and then we focus on the comparison of the two special members – the LSS and the 
RGM estimators with the traditional nonrobust estimators. Simulation studies are 
conducted on a simple linear EIV model Y = 1 + y + ε and X = x + δ with ξ ~ N(0, 100), δ 

~ N(0, σδ
2) and ε ~ N(0, σε

2). In addition, we denote λ = σ2
ε/σ

2
δ as the ratio of the error 

variances. 
 

3.1.1 Calibration of the RCR-estimators by regression efficiency plot 
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The robust regression efficiencies of the class of RCR-estimates can be graphically 
summarized through the RCR efficiency plot as shown in Figure 1. In the following 
scenarios, without loss of generality, we assume the error variances σ2

δ = σ2
ε = 10 to be 

equal that is λ = 1. The model characteristics and corresponding results are summarized 

as follows: 
 
(a): There are 5% outliers in the Y direction with contaminated errors εc ~ N(50, σ2

ε). As 
can be seen from Figure 1(a), if let both eY and eX to be no less than 0.75, we have 

                with  ̂ varies from 0.98 to 1.05, where the cross point corresponds to 

the RGM estimate  ̂ = 1.002. The LSS estimate  ̂ = 1.004 with corresponding γ = 0.496 
falls inside the selected γ interval. 

 
(b): There are 5% leverage points in the X direction with contaminated errors δc ~ N(50, 
σ2

δ). From Figure 1(b), we can choose                 to make both eY and eX to be at 

least 0.775, and the cross point corresponds to the RGM estimate  ̂ = 1.012. The LSS 

estimate  ̂ = 1.020 with corresponding γ = 0.481 is still inside the selected interval. 

 
(c): Let ξ follows U(0, 100) distribution, and ε and δ also follow uniform distributions 
with mean 0 such that σ2

ε/σ
2

η = σ2
δ/σ

2
ξ = 10%. In Figure 1(c), the range                 

ensures both eY and eX to be at least 0.875, and it includes the LSS estimate  ̂ = 1.009 

with corresponding γ = 0.491. The cross point is the RGM estimate  ̂       . 
 

(d): Let ξ follows  √      distribution, and ε and δ both follow the student’s t(3) 
distribution such that σ2

ε/σ
2

η = σ2
δ/σ

2
ξ = 20%. By setting both eY and eX above a threshold 

of 0.725 as shown in Figure 1(d), we find                 and the RGM estimate  ̂ = 

1.027. Again, the LSS estimate  ̂ = 1.055 with corresponding γ = 0.447 are within the 

selected γ interval. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 1: The RCR efficiency plots of (a) EIV data with 5% outliers, (b) with 5% 
leverage points, (c) with uniformly distributed errors, and (d) with student’s t distributed 
errors. 
 
We further apply the bootstrap resampling technique with 1000 replicates to obtain the 

95% confidence interval (C.I.) of the RCR estimate  ̂. As can be seen from the following 
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Figure 2, the true slope β = 1 always lies in the 95% C.I. of the selected RCR slope 
estimates.  
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 2: The 95% C.I. of RCR slope estimates of (a) EIV data with 5% outliers, (b) 
with 5% leverage points, (c) with uniformly distributed errors, and (d) with student’s t 
distributed errors. 
 

3.1.2 Comparison of different estimators 
Since the LSS and the RGM estimators are most representative among the whole class of 
RCR-estimators, a more extensive simulation study is necessary to systematically 
compare them with their nonrobust counterparts – the OR and GMR estimators. We keep 

the above settings of the linear EIV model unchanged, and draw 10000 samples of size 

n = 200 from that model. Since all the fitted regression lines can be expressed by the 

point-slope form    ̅   ̂    ̅ , we therefore expect that the results of simulation 

for the intercept are similar to those of the slope. 

 
To measure performance, we use the bias, the standard deviation (std) as well as the root 

mean squared error (RMSE) of the  ̂. Since the ratio of the error variances λ is known, 

the MLE solution of structural model is treated as the ground truth. Of note, the MLEs 
are calculated after excluding the outliers for the contaminated EIV data studies. The 
results of our simulation study are given in Tables 1-4. For the uncontaminated EIV data 
in the first two tables, our estimators are comparable with the traditional EIV model 
estimator. More importantly, the last two tables show good performance of our new 
estimators in the presence of outliers, while the OR and GMR estimators are badly 

influenced by such contaminations.  
 

 
 

Table 1: Comparison of MSE, bias, and standard deviation from different estimators on 
uncontaminated EIV data with different λ and the X direction noise-to-signal ratio is .2 

 

λ 
RMSE( ̂) bias( ̂) std( ̂) 

OR LSS GMR RGM OR LSS GMR RGM OR LSS GMR RGM 

0 .097 .106 .089 .072 -.094 -.093 -.087 -.062 .029 .054 .026 .036 

.25 .074 .088 .066 .058 -.071 -.070 -.064 -.044 .034 .060 .031 .038 

.5 .050 .072 .044 .047 -.048 -.046 -.042 -.028 .038 .066 .033 .039 

.75 .025 .064 .023 .041 -.024 -.023 -.021 -.014 .043 .074 .036 .041 

1 0 .068 .008 .040 .001 .003 .001 .001 .048 .080 .040 .043 
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3.2 Real-life Examples 
 

3.2.1 Serum kanamycin data 
To further illustrate and motivate our proposals, let us consider a simple example which 
is given by (Kelly 1984) and reanalyzed by (Zamar 1989) in the context of EIV models. 
The data consists of simultaneous pairs of measurements of serum kanamycin levels in 

blood samples drawn from twenty babies. One of the measurements was obtained by a 
heelstick method (X), the other by using an umbilical catheter (Y). The question was 
whether the two methods are systematically different and so that one could be substituted 
for the other after correction for bias. It seems reasonable to assume that both methods 
are subject to measurement errors with equal variances (Kelly 1984). To better test the 
robustness of different estimator, we change the original value (33.2, 26.0) of case 2 to 
(39.2, 32.0) as in the numerical example given by (Zamar 1989). 

 
Using the usual OR and the GMR estimators lead to about 0.97 for the slope while using 
the LSS estimator we propose leads to 1.52 for the slope, which is very similar to the 
slope (1.39) of Zamar’s orthogonal regression M-estimators (ORM). We apply the RCR-
estimators on this data set as well, and as can be seen from Figure 4(a), if we set both eY 
and eX be no less than 0.825, the satisfied γ interval is [0.344, 0.379] and the 

Table 2:  Comparison of MSE, bias, and standard deviation from different estimators on 
uncontaminated EIV data with different λ and the X direction noise-to-signal ratio is .05 

 

λ 
RMSE( ̂) bias( ̂) std( ̂) 

OR LSS GMR RGM OR LSS GMR RGM OR LSS GMR RGM 

1 0 .042 .001 .031 .000 .001 .000 .001 .023 .047 .022 .034 

2 .026 .055 .024 .038 .026 .028 .024 .018 .029 .056 .027 .038 

3 .052 .076 .047 .049 .051 .053 .047 .034 .034 .062 .031 .039 

4 .079 .100 .070 .061 .078 .081 .070 .048 .039 .071 .035 .042 

5 .107 .126 .093 .072 .107 .108 .092 .061 .044 .077 .038 .043 

Table 3:   Comparison of MSE, bias, and standard deviation from different estimators on 
contaminated EIV data with different λ and 5% outliers in the X direction 

 

λ 
RMSE( ̂) bias( ̂) std( ̂) 

OR LSS GMR RGM OR LSS GMR RGM OR LSS GMR RGM 

0 .459 .149 .343 .098 -.458 -.142 -.341 -.093 .036 .048 .032 .032 

.5 .445 .133 .324 .083 -.444 -.125 -.323 -.077 .036 .054 .032 .034 

1 .436 .118 .310 .071 -.434 -.107 -.309 -.063 .040 .061 .034 .036 

1.5 .422 .101 .294 .058 -.421 -.085 -.293 -.048 .043 .067 .035 .037 

2 .410 .088 .280 .052 -.406 -.062 -.275 -.033 .047 .073 .036 .039 

Table 4:    Comparison of MSE, bias, and standard deviation from different estimators on 
contaminated EIV data with different λ and 5% outliers in the Y direction 

 

λ 
RMSE( ̂) bias( ̂) std( ̂) 

OR LSS GMR RGM OR LSS GMR RGM OR LSS GMR RGM 

0 .704 .075 .420 .047 .695 .053 .415 .032 .115 .056 .067 .034 

.5 .740 .106 .436 .062 .732 .088 .431 .051 .115 .067 .067 .039 

1 .778 .133 .452 .075 .769 .116 .447 .064 .126 .072 .068 .039 

1.5 .823 .165 .467 .087 .814 .151 .464 .079 .136 .082 .073 .042 

2 .864 .201 .483 .101 .854 .187 .479 .093 .146 .089 .075 .043 
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corresponding slope ranges from 1.32 to 1.34. Of note, the results by previous authors 
show that observations 2, 16 are potential influential, and furthermore observation 2 has 
much greater influence on the slope compared to case 16. Figure 3(b) depicts the 
standardized orthogonal residual diagnostic plot from the LSS estimate. It is clear that 

observation 2 is a gross outlier while observation 16 is relatively less influential.  
 

 
(a) 

 
(b) 

Figure 3: (a) The RCR efficiency plot and (b) the residual diagnosis plot from LSS 
estimate, for the serum kanamycin data 
 

3.2.2 Brain versus body weights data 
Another numerical example is provided to illustrate the effectiveness of the RCR-
estimators on the data set given in Rousseeuw and Leroy (1987). The data has been 
analyzed by He and Liang (2000) and Fekri and Ruiz-Gazen (2006). The data consists of 
brain and body weights of 28 animals. We also take the view that both weights are 
assumed to be measured with error and some observations are outlying (Fekri and Ruiz-
Gazen 2006). The question we are interested in is whether a larger brain is required to 
govern a heavier body, or from another perspective, whether the brain weight increases 
linearly as the body weight increases. 
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We obtain the usual OR estimates  ̂         ̂        and the GMR estimates 

 ̂          ̂        . Compared to both, the LSS estimates  ̂          ̂    
     are more close to the slope estimate  ̂        from He and Liang’s 50% quantile 

regression (QR). In addition, we also apply the RCR-estimators on this data set, and as 
can be seen from Figure 5(a), if we set both eY and eX to be no less than 0.75, the satisfied 
γ interval is [0.560, 0.645], and the corresponding slope estimate varies from 0.79 to 0.83. 
As can be seen from Figure 4(b), cases 6, 16, and 25 are detected by the standardized 
orthogonal residual plot from our proposed LSS estimator, because these three cases 
identified as dinosaurs must be distinguished from the other 25 which are mammals. 
 

  
(a) 

 
(b) 

Figure 4: (a) The RCR efficiency plot and (b) the residual diagnosis plot from LSS 
estimate, for the brain versus body weights data 
 

4. Summary and Conclusion 
 

In the present paper, we propose a novel robust estimator for the multivariate linear EIV 
model. We not only show the LSS estimator is a special case of the RCR-estimators, but 
also prove the optimality of the RGM in the respect of maximizing the sum of regression 
efficiencies in simple linear regression. The generalized RCR-estimators is defined for 
further investigations, and the sum of regression efficiencies as a general goodness-of-fit 
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criterion is proposed to compare the estimates from different regression approaches in 
real data analysis. 

 
The advantages of the new RCR-estimators lie in its intuitive geometric representation, 
its distribution free nonparametric nature being a direct generalization of the 
nonparametric compound regression analysis method, its operational independence to the 
ratio of the error variances, and more importantly its robustness to outliers and other 

departures from the underlying assumptions. Nevertheless, the disadvantage of our 
proposals is that the fitted hyper-plane must pass through the center of the target dataset 
which will to some extent sacrifice its robustness performance. A robust location 
estimator from the data depth point of view (Liu et al. 1999) could be a remedy to further 
enhance the robustness of the newly proposed RCR-estimators. 
 

Appendix 
 
A.1. Proof of Proposition 1 

Without loss of generality, we form the multivariate regression model as ∑     
 
      

or in matrix form Xβ = 0 for the centered data, where X = [X1, X2, …, XP] is a n by P 
matrix of observations, and β is a P by 1 column vector of regression coefficients. This 
linear relationship is uniquely specified by imposing the constraint βTβ = 1.  

We first define  ̃    ̃   ̃     ̃   

[
 
 
 
   

  
 

   

  

   
   

  
 

   

  ]
 
 
 

     

 as the n by P transformed 

matrix of observations, where    √∑    
  

    is the distance from the i-th observation to 

the origin. In this context, the LSS is defined to minimize  

      ( ̃ )
 
( ̃ )     ̃  ̃      ̃  ̃      ̃  

where  ̃ is the P by P robust sample covariance matrix 

 ̃  [
 ̃ 

  ̃   ̃ 
  ̃ 

   
 ̃ 

  ̃   ̃ 
  ̃ 

]

     

 

We define the eigenvectors of  ̃ as           in the order of descending eigenvalues 

         . Assume  ̃ is non-singular, the eigenvectors can expand the P-dimensional 
space, and then the slope estimate β can be expressed as a linear combination       
        subject to ∑   

 
     . Hence, the minimization of SSLSS is equivalent to the 

minimization of 

               ̃              
Since as we know that the eigenvectors are orthogonal and   

  ̃     , the problem 

becomes the minimization of ∑     
 
   . Under the constraints ∑   

 
      and    

    , the minimum is achieved when we set      and thus     . That is the 

eigenvector corresponding to    - the smallest eigenvalue of  ̃. 
 

A.2. Proof of Proposition 4 

(1) The RGM estimator aims to minimize 

       
 

 
       ∑

     ̂       ̂  
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      ̅  
 

 
     ̅        ̅        ̅  
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By solving 
      

  
  , we obtain the slope estimate ˆ ( )XY YY XXsign S S S  . Also since 
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the efficiencies    and    can be further expressed as 
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Hence, we have shown the equality of    and   . 

(2) For the slope estimate  ̂ of any estimator, we have 
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Let 
  

  ̂
  , we have  ̂  

 ̃  

 ̃  
, which means         is unimodal and maximized at 

 ̂  √
 ̃  

 ̃  
     ( ̃  )√

 ̃  

 ̃  
  ̂    when  ̃    , and it is unimodal and maximized 

at  ̂   √
 ̃  

 ̃  
       ̃   √

 ̃  

 ̃  
  ̂    when  ̃    .   

Therefore, we have proven that the RGM estimator has the maximum      . 
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