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Abstract 

This study concerns the probability distribution of the most damaging hurricanes to strike 

the United States. Economic damage is normalized to adjust for temporal shifts in societal 

vulnerability. Consistent with the extreme value theory, a generalized Pareto (GP) 

distribution is fitted to the excess in damage over a high threshold. The focus of the 

statistical analysis is primarily on diagnostics to determine an appropriate threshold. 

Conclusive evidence is provided that such data have a heavy tail (i.e., a GP distribution with 

a positive shape parameter)  
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1. Introduction 

As extreme value theory has developed in the past few decades it has found application in 

climatology, actuarial science, and engineering among others. Of special interest in 

insurance and reinsurance has been modeling the loss behavior in the tails of a 

distribution.  

In this study, we will analyze the tail behavior of hurricane losses in the United States Gulf 

of Mexico shoreline and the Atlantic shore of Florida. Pertinent data will span the years 

1926-2009. To derive the most accurate portrayal of hurricane events and the historical 

economic metrics, data was gathered from the U.S. Census Bureau, the Bureau of Economic 

Analysis (BEA), and the National Oceanic and Atmospheric Association’s National 

Hurricane Center (NOAA). In order to accurately compare historic loss amounts, a proper 

normalization method must be used to account for not only inflation, but also changes in 

population and wealth along the affected areas.  At the writing of this paper the Bureau of 

Economic Analysis’ estimate of 2010 inflation-adjusted current cost net stock of fixed 

assets and consumer goods has not been made available, therefore the analysis is done in 

2009 dollars. After storm losses were normalized, Mathwave’s EasyFit© software was used 

to estimate the parameters of the exceedences at various threshold levels.     
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The paper is organized as follows. Formulating the objective of the study in section 1, a 

short discussion of Pielke-Landsea normalization procedure is given in section 2. We also 

normalize hurricane damage data in section 2. Fundamental to the GP distribution and 

parameter estimation procedure is described in section 3. The paper is concluded in 

section 4. 

2. Pielke-Landsea Normalization Procedure 

When modeling infrequent historical catastrophic events a large time span must be 

utilized. This causes difficulty in comparison across time and changing socio-economic 

conditions. The economic data from a hurricane in the 1930’s is very different from the 

data from an equally intense storm that occurs in the 21st century. Only adjusting for 

inflation is inadequate as it does not take into account the change in the density of the 

affected population nor does it consider the change in per capita wealth. The Pielke-

Landsea (PL) procedure takes these factors into consideration [7]. In order to normalize 

past storm damages to present values, the assumption is made that the losses are 

proportional to inflation, wealth, and population. Pielke-Landsea leave open that other 

factors could be added that represent changes in the insurance industry itself like 

deductibles and policy types. They also point out that since storm damage is generated by 

buildings, rather than people, and the ratio of population to housing has changed, 

adjustments would have to be made to accommodate for the rise in buildings per capita for 

more accurate results.  

Pielke and Landsea proposed the normalized formula as: 

 

where: 

 = a storm’s losses normalized to present value. 

  = year of storm’s impact. 

  = counties of storms maximum intensity. 

  = a storm’s damages in year y, in year y dollars (not adjusted for inflation). 

 = inflation factor, the ratio of the present implicit price deflator for Gross   

Domestic Product to that of year y. 

 = wealth factor, the ratio of the inflation adjusted current cost net stock of 

fixed assets and consumer goods as per capita to that year y. 
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 = affected population factor, the ratio of the change in the population of the 

coastal counties most affected by the storm from year y to present. 

2.1 Calculating the PL Factors 

Inflation ( ) 

To adjust for the change in the value of the dollar, the implicit price deflator for gross 

domestic product (IPDGDP) for the years 1929-2009 from the BEA are used.     

 

Wealth ( ) 

The national wealth is captured by the BEA in there estimate of current-cost net sock of 

fixed assets and consumer durable goods (CCNS). Because wealth is reported in billions of 

current-year dollars for the entire nation, is has to be adjusted for inflation and population. 

It must be disaggregated to a real (noninflated) per capita value as inflation, wealth, and 

population are independently distinguished in the normalization procedure. United States 

population estimates are available from the U.S. Census Bureau. Since censuses are done 

every ten years, linear interpolation was used for intermediate years.  

 

Affected Population ( ) 

The NOAA National Hurricane Center provides data on affected counties by storm. For each 

hurricane, the affected counties were documented and there current and historical 

populations were recorded from the US Census Bureau. Since censuses are done every ten 

years, linear interpolation was used for intermediate years. With the county-level 

population data, an affected population factors was calculated by the summing of the 

historical and 2009 populations of the counties affected the year (y) of the storm then 

calculating a ratio of those figures. 
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Figure 1: A chart of aggregate nominal storm losses. The obvious upward trend is deceptive as it doesn’t take into account 
change in inflation, population, or wealth.  

 

Figure 2 : Normalized values show that the losses from 1926 to 1935 were actually significantly worse than any other 
decade. 

After normalizing the losses, the results were a mean storm damage of $34.79 billion with a 

characteristic long right-tail.  

3. Extreme Value Theory 

Pickands [6] defined that if X is a random quantity with a distribution  and μ is a 

threshold amount then the Generalized Pareto Distribution (GPD) can 

approximate . The probability density function of the GPD 

f(x) can be written as follows: 
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Where κ is defined as the shape parameter, the scale parameter is defined by σ, and μ is 

defined as the location parameter.   

The main drawback in extreme value theory analysis has been that when given a dataset 

we only use the values that exceed the threshold in estimating parameters. This leads to a 

limited data set which to estimate the parameters. Setting the threshold itself is not an easy 

task, as it is increased model bias is reduced but fewer events are available in parameter 

estimation.   

3.1 Maximum Likelihood Estimations of Parameters 

The method of Maximum Likelihood Estimation (MLE) was chosen for parameter 

estimations because of its well documented use in determining the parameter values for 

GPD distributed data.    Estimates from using this method are usually unbiased, therefore 

for all sample sizes the parameter of interest is calculated correctly. The first step in MLE 

process is the likelihood function  

 

 

After taking the logarithm of the likelihood function we maximize by setting the derivatives 

  equal to zero. A maximum likelihood estimator cannot be obtained for μ, because 

the likelihood function is unbounded with respect to μ. Since μ is the lower bound of the 

random variable X, we may use the lowest sample value as a constraint  then the likelihood 

function is maximized with respect to μ when μ = x1. 
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3.2 Estimations of Parameters Results 

Mathwave’s EasyFit© was used to calculate the parameter estimates. Plots of the 

parameter values against the changing threshold levels were created to check for 

parameter stability. A long “flat” spot appears in between $13 billion and $17.5 billion 

because there were no storms with normalized losses in this range; therefore no change in 

the data set occurs as the threshold was moved through these levels. Parameter stability 

cannot be assessed accurately in these long flat spots, but they were relatively stable up to 

12.5 billion. For all threshold levels between 7.5 and 26 billion, by both the Kolmogrov-

Smirnov and Anderson-Darling test, the GPD is an acceptable fit at α=.01.   

 

Figure 3: Plots of the parameters show strong stability up to $12.5 billion. Anderson –Darling scores reveal that the GPD is an extremely 
good fit for all thresholds. 
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3.3 Means Excess Plot  

A graphical approach is used to define the possible range for the threshold choice and to 

assess the soundness of the threshold decision using the Mean Excess Plot. 

Let   be a random variable with the cumulative distribution function . Then the 

distribution of the excesses over the threshold  has the c.d.f.: 

 

                                

Now take the expected value of  

 

The function e(t) describes the mean excess function of the random variable X. If F 

~GPDκ,σ(x) then the excesses have the c.d.f.: 

 

 

The excess distribution over higher thresholds remains a GPD with the same shape 

parameter but with a scale parameter that is linearly increasing with the threshold level. 

From the equations above the mean excess function can be calculated by: 

 

 

 

4. Concluding Remarks 

Overall the mean excess e(t) graph is positively sloped which is consistent with  

for all threshold levels. In addition, the relationship between the mean excess value and the 

threshold level is strongly linear for the threshold levels between 7.5 billion and 26 billion, 
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which according to equation e(t) is to be expected if the data come from a GPD. Had the 

data ceased to be properly distributed at certain threshold levels, then the mean excess 

plot would become erratic or curved and threshold selection at those unstable levels would 

violate the assumption that the data was from a GPD. Therefore, from the mean excess 

graph alone, limitations cannot be placed on threshold selection. After reviewing the 

Anderson-Darling statistics (Figure 3, bottom), the minimum is between 23 and 24 billion 

but the GPD is an extremely good fit throughout the threshold levels at α = .01. The only 

limitations on threshold selection come from the parameter stability charts (Figure 3, top). 

As discussed earlier, after a threshold of $12.5 billion, the parameter stability cannot be in 

violation of the parameter stability assumption, the mean excess plot is linear, and the GPD 

is a good fit according to the Anderson-Darling test.  
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