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Abstract
Various issues arise in performing regression and classification when one uses images as predictors,
chief among them a high dimensionality. Considering a naive approach in which each pixel is en-
tered into the model as a separate predictor, the analysis quickly becomes unwieldy, since modern
cameras can output pictures with pixels numbering on the order of millions. However, images are
highly constrained; the intrinsic dimension of an image is often far less than its ambient dimension.
Moreover, various techniques to obtain new predictors (e.g., via feature extraction or by considering
sets of predefined salient points in each image as variables in a regression model) can further reduce
the dimension of the predictors, giving rise to an inherent lower-dimensional, manifold structure. We
show that, for some regression problems in computer vision, using a data-dependent regularization
that implicitly considers this manifold structure yields improvements over numerous alternatives.
We extend this method to cases in which the structure is known a priori, in which it outperforms
alternative methods, including those which explicitly take the known structure into account.
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1. Introduction

Many problems in the field of computer vision involve predicting a variety of attributes of
an individual pictured in a given image (e.g., age, gender, etc.) using the pixels in the image.
For highly constrained settings, it is typical to formulate the problem with a simple, though
somewhat naı̈ve, approach in which the grayscale level of each pixel is considered as a
separate predictor in a model. The predictors have both large dimensionality and inherent
structure that cause trouble when building models and making predictions. Mitigating the
adverse effects of this large dimensionality is an important issue and has recently received
much attention in the literature; some of these problems are made less apparent using meth-
ods such as landmark extraction – that is, using locations of predefined, salient points on
an individual’s face as predictors as opposed to the raw pixel data. However, though the
resulting predictors will have a smaller dimension and overcome some of the issues related
to this high dimensionality, the problems due to the structure of the predictors is often still
evident. This issue with the dependencies among the predictors – often called collinearity
or near-collinearity – is a well-known problem in many areas of statistics. An early exam-
ple is given in [11] in which the physical properties of pit props – lengths of lumber used
to buttress walls in a mine – are estimated with numerous predictors that are highly cor-
related; principal component analysis (PCA) was used to investigate the effect that a new
set of uncorrelated predictors has on the regression model. The issue of collinearity is also
evident in a large number of problems in economics, and attempts to ameliorate its effects
have been sought for years [6]. In this paper we will see the benefit to incorporating learned
structure into a regression problem and also develop a method to handle the case in which
the structure is known.
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2. Methodology

2.1 Regression on Manifolds

Assume predictors X1, . . . , Xn are independent, identically distributed (i.i.d.) in X ⊂ RD.
The response variables Y1, . . . , Yn ∈ R are assumed to satisfy, for each i = 1, . . . , n,

Yi = m(Xi) + σ(Xi) · εi
with εi i.i.d., E(εi) = 0 and Var(εi) = 1. Interest lies in finding the regression function
m at a point x0 defined as m(x0) = E(Y |X = x0). In order to utilize the structure in
the predictors, a common formalization is to assume that this structure arises from the fact
that the predictors lie on a d-dimensional manifold X with d < D. For the purposes of
this paper, a manifold will not be defined rigorously; the interested reader should consult
[18] for an introduction to manifolds and differential geometry. Hereafter, a d-dimensional
manifold will simply be thought of as a metric space which locally looks and acts like Rd.
The manifold assumption can simplify matters on the theoretical level, but there are still
two issues. First, finding an embedding is not necessarily a trivial task. A large body of
work exists to develop methods that perform this dimension reduction in order to learn an
approximation to X , with many popular techniques (e.g., LLE [16], ISOMAP [17]) work-
ing locally in an attempt to take advantage of local Euclidean properties of the manifold.
Second, once an embedding is found, using these lower-dimensional points to build mod-
els that can be accurately interpreted in the higher-dimensional ambient space is not always
possible with these projection methods; that is, if points are explicitly embedded into X ,
some information that may be useful in the regression may be lost.

The manifold assumption arises quite naturally in computer vision. Purely data- depen-
dent methods such as learning a face subspace using PCA on the difference between each
data point and a test image have shown promising results [14], as have methods that incor-
porate prior knowledge of the structure through parameterization of small patches of each
image in a database [15]. Analysis using landmark points can also be translated into the
language of manifolds: after removing all affine transformations from the landmark points,
the resulting predictors can be shown to lie on a Grassmannian G(2, B) – that is, the space
of all 2-dimensional linear subspaces of RB [19].

2.2 Related Work

There exists much prior work on estimating the regression function m when collinearities
are present in the predictors X1, . . . , Xn. We use ordinary least squares (OLS) as a basis
for comparison to alternative methods. OLS works by assuming the conditional mean of Y
depends on X linearly, i.e., we seek solutions of the form m(x0) = β0 +xT0 β1 minimizing
the residual sum of squares

β̂ = arg min
β

||Y −Xβ||22

where Y = [Y1, . . . , Yn]T , β = (β0, β1) ∈ R × RD and X ∈ Rn×(D+1) is the de-
sign matrix. The solution is obtained by computing β̂ = (XTX)−1XTY . The presence
of collinearities in the predictors X causes problems when taking the inverse of XTX ,
requiring the use of alternative methods.

One such method to mitigate the effect of collinearities is to add a regularization pa-
rameter to ensure that the inverse of XTX is well-defined. This can be incorporated into
the minimization above by adding an `2-penalty on some projection of the parameters β,
resulting in the optimization
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Algorithm 1 Calculation of the projection matrix in the regularization for the EDE [1].
When used in conjunction with an `2 penalty, this matrix will penalize regression coeffi-
cients for not lying parallel to the tangent space formed by X1, . . . , Xn.

1: Estimate: d with d̂ using maximum likelihood [12]
2: Ĉ ←

∑n
i=1(Xi − X̄)(Xi − X̄)T /n

3: Ĉ ← [R̂ N̂ ] · Λ̂ · [R̂ N̂ ]T eigenvalue decomposition of Ĉ with R̂ ∈ RD×d̂, N̂ ∈
RD×(D−d̂), Λ̂ a diagonal matrix

4: Π̂← N̂N̂T

5: P̂ ← diag(0, Π̂)

Algorithm 2 Calculation of the projection matrix for EDE with Grassmann prior. This reg-
ularization assumes the data X1, . . . , Xn lie on a Grassmannian G(2, B) and will penalize
a projection of the regression coefficients into the horizontal space of G(2, B).

1: Compute: orthogonalization X̄∗ of X̄ ∈ RB×2 using singular value decomposition
2: Π̂M ← (I − X̄∗X̄T

∗ )
3: Π̂← diag(Π̂M , Π̂M ), a block-diagonal matrix such that Π̂ ∈ R2B×2B

4: P̂ ← diag(0, Π̂)

β̂ = arg min
β

||Y −Xβ||22 + λ · ||Pβ||22

for λ > 0 a parameter. This yields the solution β̂ = (XTX + λ · P TP )−1XTY , and the
singularity of XTX is no longer an issue. This method (known as ridge regression [10]
when P is the identity matrix) can also handle the case in which D � n.

A slightly different attempt at removing the effect of collinearities on the predictors is
found in principal components regression (PCR) [13]. PCR works by finding the d largest
principal components of X and performing regression on these components. The benefit of
PCR can be largely problem-dependent since the handling of collinearities and the problem
of D � n will depend on how many components are included in the final regression. By
design PCR gives a sparse model – in fact, the model obtained is as sparse as the practitioner
desires because it will always contain d predictors.

2.3 Exterior Derivative Estimator (EDE)

A more recent method given in [1] considers the manifold structure by locally penalizing
the regression coefficients for not falling onto the d largest principal components (cf. PCR
in which predictors are projected directly onto these components). The motivation for this
projection is to penalize the coefficient vector for not lying parallel to the tangent space
formed by the data points X1, . . . , Xn; this arises intuitively from the desire to interpret
the regression coefficients as partial derivatives of the regression functionm. For a globally
linear manifold, the estimation of the projection matrix P̂ for the EDE is given in Algorithm
1. In the case of nonlinear manifolds, structure can be taken into account by localizing the
regression about each point of interest x0.
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2.4 Extensions of the EDE

2.4.1 Incorporation of Prior Structure

The EDE method given in [1] is largely concerned with the case where predictors lie on
an unknown manifold; however, as was seen earlier, there are often problems in which the
structure of the predictors is in fact known a priori, as in the case in which predictors lie on
a Grassmannian G(2, B). We extend the EDE method to cases in which prior knowledge is
available, with only the regularization needing modification. In constructing the EDE, the
projection orthogonal to the tangent space is estimated with the data due to the structure in
the predictors being unknown. In the case of a known manifold, we know the structure and
can directly project coefficient vectors perpendicular to the tangent space for performing
the regularization.

We think of a Grassmannian G(2, B) as the set of all 2-dimensional subspaces of RB ,
i.e.,

G(2, B) = R(2, B)/ ∼

whereR(2, B) is the space of all B × 2 matrices of rank 2, and, for U, V ∈ RB×2, U ∼ V
if there exists a nonsingular L ∈ R2×2 such that V = UL [2]. The tangent structure of
G(2, B) is slightly different from that of a manifold formed by data points X1, . . . , Xn due
to this quotient space representation. Rather than tangent spaces to points on G(2, B), we
seek tangent spaces to equivalence classes of points, which for G(2, B) amount to orthog-
onal matrices U ∈ RB×2. The tangent space to the equivalence class of a point is known
as the vertical space, and its orthogonal complement is called the horizontal space [4].
For two orthogonal matrices U, V ∈ G(2, B) ⊂ RB×2, projection of a matrix U into the
horizontal space at a point V can be done with the operator

πV (U) = (I − V V T )U

where I is the B×B identity matrix. In this case, if the predictors X1, . . . , Xn ∈ G(2, B),
we think of the regression coefficients βM1 as lying in RB×2 to allow for a projection of
βM1 into the horizontal space using πV . In order to perform the regression, we reshape
predictors X and coefficients β by concatenating column-wise so that X,β ∈ R2B . We
did not consider the use of localization when performing regression on these points, in
effect assuming that this manifold is approximately globally linear; this assumption was
not shown to be too restrictive in practice. The estimation of the projection matrix P̂ for
the regularization is given in Algorithm 2.

2.4.2 Linearity Assumption

The Grassmannian G(2, B) is a nonlinear manifold; however, a useful property of mani-
folds is that locally they behave like Euclidean space. Since for our purposes the Grass-
mannian structure comes from predictors as landmark points on a face, it can be assumed
that they do not have a high variability: an individual’s eyes will typically appear above the
nose and mouth and not be spaced arbitrarily far apart or close together.

To test the linearity assumption, 1000 pairs of points were chosen with replacement at
random from the dataset and the quantity XT

i Xj was computed. The means and standard
deviations of each element of this matrix are given in Table 1. For comparison, the same was
done with data generated uniformly at random on G(2, B), with the method for obtaining
these random observations Yi outlined in Table 2 [2].
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.9987 (.0012) -.0010 (.0321) .0009 (.0037) .0001 (.0035)

.0031 (.0320) .9661 (.0396) -.0000 (.0035) .0009 (.0033)

Table 1: Comparison between means and standard deviations of XT
i Xj for dataset (left)

and randomly generated observations (right). Note for Xi ∈ G(2, B) we have XT
i Xi = I

for I the 2× 2 identity matrix.

1. Generate 2B random standard normal variates u1, . . . , u2B ∼ N(0, 1);

2. Form random variates into matrix U = [u1 u2] where u1 = [u1, . . . , uB]T and
u2 = [uB+1, . . . , u2B]T ;

3. Compute matrix Z = U(UTU)−1UT ;

4. Form Yi = [z1 z2] where z1 and z2 are the first and second columns ofZ, respectively.

Table 2: Method for generating a single uniform random variate on G(2, B).

Algorithm 3 Computation of the Karcher mean of a set of points [? ].
given X1, . . . , Xn ∈ G(2, B) ⊂ RB×2
initialize µ0 = Xi (i random), ε = .5, δ ∈ (0, 1), j = 0, and d = 1
while d > δ do

for i = 1, . . . , n do
νi ← exp−1µj (Xi)

end for
ν̄ ←

∑
i νi/n

µj+1 ← expµj (εν̄)
d← ||µj − µj+1||
j ← j + 1

end while
return X̄1 = µj

2.4.3 The Karcher Mean

A benefit to assuming linearity is that the computation of the mean of a set of observations
is simplified on a computational level. The general procedure for computing a mean of a set
of values on a Riemannian manifold is to use an iterative procedure: each point is projected
into the tangent space about a candidate mean value, the sample mean in this tangent space
is computed, and then this sample mean is projected back some distance along the geodesic
between it and the previous candidate mean value. This procedure is outlined in Algorithm
3.

Since observations corresponding to normalized landmark points are contained within a
small (read: approximately Euclidean) subset of the Grassmannian, a simpler computation
of an approximation to the Karcher mean can be done as given in Algorithm 4. Instead
of using an iterative procedure that relies on projecting and reprojecting sample points
(using the inverse exponential and exponential map, respectively), the sample mean of the
data can be taken and then orthogonalized to ensure it lies on the Grassmannian. This
greatly improves computation time and additionally requires fewer tuning parameters than
computation of the Karcher mean using Algorithm 3.

An empirical comparison between these two methods was performed using the FG-Net
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Algorithm 4 Computation of the orthogonalized sample mean.
given X1, . . . , Xn ∈ G(2, B) ⊂ RB×2
compute X̄ ←

∑
iXi/n

let vk be such that X̄vk = λkuk and X̄∗uk = λkvk with λ1 ≥ . . . ≥ λB
return X̄2 = [u1 u2]

2 iterations 4 iterations 6 iterations 8 iterations 10 iterations
Error between Algorithm 3 and proposed

n = 30 Error .012 (.006) .011 (.005) .009 (.004) .008 (.004) .007 (.003)
n = 100 Error .012 (.006) .010 (.005) .009 (.005) .007 (.004) .007 (.003)
n = 1000 Error .012 (.006) .011 (.005) .008 (.004) .007 (.003) .007 (.003)

Computation times

n = 30
Algorithm 3 .035 (.000) .070 (.001) .105 (.001) .139 (.002) .174 (.002)
Proposed .000 (.000) .000 (.000) .000 (.000) .000 (.000) .000 (.000)

n = 100
Algorithm 3 .096 (.009) .187 (.002) .278 (.002) .369 (.002) .460 (.003)
Proposed .000 (.000) .000 (.000) .000 (.000) .000 (.000) .000 (.000)

n = 1000
Algorithm 3 .837 (.009) 1.67 (.011) 2.49 (.003) 3.32 (.010) 4.15 (.022)
Proposed .003 (.001) .003 (.001) .003 (.001) .002 (.001) .002 (.000)

Table 3: Comparison between Algorithm 3 and the orthogonalized sample mean. For
n = 30, 100, 1000 samples with replacement from the dataset, both Algorithm 3 and the
proposed mean were computed, and the MSE between both and computation times are
reported.

database [5], the results of which are given in Table 3. A random selection of 30, 100, and
1000 observations were chosen from the FG-Net database, and Algorithm 3 was performed
using 2, 4, 6, 8, and 10 iterations. Meanwhile, the sample mean was also computed using
Algorithm 4. The Frobenius norm between the two computed means was calculated, along
with the computation times of both algorithms. It is interesting to note that, as the number of
iterations increases, Algorithm 3 approaches the value obtained by simply orthogonalizing
the sample mean, and as these iterations increased, the gap between computation times
widened. On 1000 points using 10 iterations, it takes four seconds to compute the mean
using Algorithm 3, compared with .002 seconds using the alternative method. Figure 1
shows a graphical comparison between the landmark points of the sample mean of the
entire dataset computed using Algorithm 3 with 10 iterations and the proposed, simpler
method, showing these methods obtain similar configurations.

2.4.4 Extension to Generalized Linear Models

It is worthwhile to consider the extension of both the EDE and the EDE with prior methods
to generalized linear models (GLMs), viz. logistic regression, so that classification can be
performed. This extension is straightforward, the chief assumption being that for a response
variable Y ∈ {−1,+1} the logit link function is used and the linear dependence on the
parameters and predictors is through this function, i.e.,

log
P(Y = +1|X = x0)

P(Y = −1|X = x0)
= β0 + xT0 β1

where now instead of the conditional mean of Y depending linearly on X , some transfor-
mation of Y ’s conditional mean depends linearly on X . The estimation of β in this case
can be performed using coordinate descent [7] or iterated reweighted least squares.
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Figure 1: Comparison of mean face obtained via Algorithm 3 (Frechet mean with 10 iter-
ations) and proposed mean

3. Applications

3.1 Experimental Set Up

We compare various methods applied to the FG-NET database [5]. This database consists
of images of 82 separate individuals’ faces; a total of 1002 images are in the database,
571 of which correspond to males and 431 females. The alternative methods tested for
comparison were ordinary least squares (OLS), regression performed on points projected
to tangent space about the orthogonalized sample mean (REM), principal components re-
gression (PCR) [13], regression on points embedded using locality preserving projections
(RLPP) [9], and ridge regression (RR), and these methods were compared to the exterior
derivative estimator (EDE) and the exterior derivative estimator with prior (EDEwP). All
forms of regression were performed on either the predictors or the embedded predictors.
For age estimation, improvements in prediction can be gained by additionally including the
square of each predictor in the model [8], but this was not considered in this analysis.

3.1.1 Unknown Structure

Feature extraction was used to obtain predictors whose structure is not explicitly known
in advance. To obtain features, each image was converted to normalized grayscale taking
values between 0 and 1, and the Viola-Jones face detection algorithm [20] was used to
discard much of the noise and unwanted information contained in the background. Finally,
a histogram of oriented gradients (HOG) [3] feature extraction method with 9 bins on 8×8
patches was used to generate predictors X1, . . . , X1002 ∈ R576.
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3.1.2 Known Structure

Utilizing landmark points as predictors results in a manifold that is in fact known, so prior
knowledge can be incorporated to aid estimation. For this dataset, 68 predefined landmark
points are given for each image in R2 resulting in each predictor X ∈ R68×2. As was
stated earlier, normalizing the predictors to remove all affine transformations by perform-
ing a singular value decomposition on each observation is a useful pre-processing step
resulting in X ∈ G(2, 68). Predictors were concatenated column-wise to obtain vectors
X1, . . . , X1002 ∈ R136.

3.2 Age Estimation

Age estimation is a popular problem in computer vision that has seen numerous solutions
utilizing the manifold assumption on the predictors. Here each observation is labeled with
ages Y ranging from 0 to 69. In various experiments, performing regression on

√
Y yielded

more accurate predictions; using this as a response variable has the added benefit that pre-
dictions of an individual’s age will always be nonnegative.

A popular objective in the age estimation literature for assessing algorithm performance
is to use a hold-one-person-out cross-validation and report the mean absolute error (MAE).
In other words, 82 separate trials are performed where for each trial, the test dataset con-
sists of all images of one specific individual while the training dataset is composed of the
remaining 81 individuals. This method of assessment, hereafter referred to as Framework
3, gives a good indication as to how well methods are performing, but as an objective for
both parameter tuning and performance assessment it leaves something to be desired. This
cross-validation framework is closer in spirit to a jackknife cross-validation, and obtain-
ing a randomized split between training and testing data will give a better idea of how the
methods are performing relative to one another. We propose two alternative frameworks.
Framework 1 chooses 5 test points at random for testing and uses the remaining observa-
tions for training the model. Framework 2, to be more consistent with hold-one-person-out
cross-validation, does the same as Framework 1 but instead of training on the remaining
individuals, each observation corresponding to a person in the testing set is removed from
the training set and models are then built on this modified dataset.

Both of these tests (Framework 1 and Framework 2) are performed 100 times and the
average and standard deviation of the MAE for each method is reported in Table ??. In the
case in which the structure of the predictors is unknown, the EDE outperforms the alter-
natives, with RR coming in a close second. Using the landmark data gives an overall im-
provement in performance of the non-projection methods (OLS, RR, EDE, EDEwP) while
the projection methods (PCR, RLPP) actually perform worse. In this case, the EDEwP out-
performs all alternatives with the EDE coming in a close second in Frameworks 1 and 2
and RR coming second in the hold-one-person-out validation.

4. Discussion

4.1 Bayesian Interpretation

Note that for the EDE with a Grassmann prior, estimates for β can be found by performing

arg min
β

||Y −Xβ||22 + λ · ||(I − X̄∗X̄T
∗ )βM ||2F (1)

where as before X̄∗ is the orthogonalized sample mean of the predictors, βM ∈ RB×2 is
the “matrix” version of β1, and || · ||2F is the squared Frobenius norm. This penalization
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Framework 1 Framework 2 Framework 3
Model MAE(SD) MAE(SD) MAE
OLS 11.24 (4.242) 11.94 (4.513) 10.84
PCR 10.18 (3.402) 9.750 (3.521) 10.21
RLPP 9.856 (3.411) 9.711 (3.411) 10.00
RR 7.883 (3.223) 8.249 (3.394) 7.788
EDE 7.440 (3.091) 7.709 (3.198) 7.597

Table 4: Age estimation results for various testing frameworks performed on HOG data in
which the structure is unknown (optimal λ obtained for RR = 149, EDE = 723). Minimum
mean absolute errors (MAEs) are given in bold.

Framework 1 Framework 2 Framework 3
Model MAE(SD) MAE(SD) MAE
OLS 5.733 (3.004) 6.147 (3.258) 6.465
PCR 11.52 (4.777) 12.12 (4.949) 11.78
RLPP 10.26 (5.299) 9.642 (4.816) 10.10
RR 5.674 (3.095) 5.923 (3.280) 6.104
REM 5.674 (3.095) 5.923 (3.280) 6.614
EDE 5.668 (3.083) 5.920 (3.271) 6.465
EDEwP 5.664 (3.077) 5.919 (3.265) 6.102

Table 5: Age estimation results for various testing frameworks performed on landmark data
in which the structure is known (optimal λ obtained for RR = .0053, EDE = .0047, EDEwP
= .0044). Minimum mean absolute errors (MAEs) are given in bold.

term can be interpreted as placing a “Procrustean” prior on the parameters βM . In other
words, the estimate for βM obtained by optimizing (1) above can be obtained as the Bayes
posterior mode under the prior

f(βM ;λ) = K · exp{−λ · g(X̄∗, β
M )}

where g(U, V ) = tr(V TV −UTV V TU), tr(·) denotes matrix trace, andK is a normalizing
constant. This is called a “Procrustean” prior due to the fact that g above is similar to the
Procrustes distance metric gP (U, V ) = tr(I −UTV V TU) given in [2]; in fact, it will hold
locally that (βM )T (βM ) ≈ I since βM lies on the tangent space to the manifold on which
X1, . . . , Xn reside (i.e., G(2, B)), and any point Xi on this manifold satisfies XT

i Xi = I .

5. Conclusion

Problems with dimensionality and collinearity abound in the field of computer vision.
Datasets consisting of images have, by their design, an intrinsic structure regardless of
their construction: whether raw pixel data are used, features are extracted, or landmark
points are chosen, strong interdependencies between predictors will be unavoidable. Pro-
jection methods such as PCR attempt to sidestep this issue by obtaining new, uncorrelated
predictors that are projections of the given data. This has been shown to be too restrictive; it
is impossible to know whether useful information is being discarded when these projections
are performed. By adopting a more flexible approach, both in the case in which the under-
lying manifold is known in advance or the case where the manifold is unknown, we have
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obtained improvements in regression and classification. Posing the problem as an optimiza-
tion and incorporating prior knowledge into the objective function results in improvements
in performance and coefficient estimates that have an attractive interpretation in terms of
the manifold structure of the predictors. While the data considered were assumed to have
a globally linear structure, localization can be used to obtain better results on data that are
assumed to lie on nonlinear manifolds.
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