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Abstract

The estimation in latent variable models with categorical responses, such
as generalized linear mixed models (GLMM) and item response models (IRT),
often involves integration that cannot be solved analytically. Numerous ap-
proaches have been proposed to tackle this problem, among which numerical
integration, for example Gauss-Hermite quadrature, has proven to generate
more accurate estimations as compared with other methods. G-H quadrature
with 20 points per dimension is widely considered to be able to produce qual-
ity estimations. However, several researches have reported unstable or biased
estimations even with more than 20 quadrature points per dimension under
some special conditions, for example when the variances of latent variables are
large. The objective of this research is to investigate when and why standard
G-H quadrature will be inadequate even with a large number of quadrature
points, and demonstrate why adaptive quadrature can effectively solve this
problem.
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1. Introduction

Latent variable model refers to statistical models with unobserved variables
that explain the key features of observed data. Notable examples include fac-
tor analysis models, finite mixture models and linear mixed models. They have
been widely used to tackle various practical modeling difficulties. For example,
factor analysis models are often used for high dimensional data analysis, and
linear mixed models enjoy several appealing properties for clustered data anal-
ysis. During the last twenty years, latent variable models have been extended
in many different ways, which have greatly increased the practical usefulness
of these models. Among these extensions, latent variable models for categori-
cal responses, such as generalized linear mixed model (GLMM), are probably
the most valuable. The estimation of latent variable models with categorical
responses, however, often involves intractable integrations. A large number of
approaches have been proposed to handle this problem. The most commonly
used approaches include Laplace approximation, numerical integration and
Monte Carlo integration (e.g., Breslow and Clayton 1993; Bock and Aitkin
1981; Meng and Schilling 1996). Estimates based on numerical integration,
mostly Gauss-Hermite (G-H) quadrature, have shown to be the most accu-
rate, but there are two scenarios that G-H quadrature becomes inadequate.
The first one occurs when the number of latent variables is large, since the
number of quadrature points grows exponentially as the number of latent vari-
able increases. The other problem is related to the approximation accuracy
of G-H quadrature under certain situations. It is commonly believed that 20
G-H quadrature points per dimension would produce accurate approximation
of the likelihood and as a results reliable parameter estimates. However, sev-
eral cases have been reported where a large number of quadrature points is
required to obtain valid estimates (e.g., Lesaffre and Spiessens 2001; Rabe-
Hesketh et al. 2002).

While the issue associated with high dimensional quadrature is widely ap-
preciated, the approximation accuracy issue has only been reported for GLMM
under certain cases. The underlying cause and most importantly its effect on
other latent variable models, such as item response theory (IRT), has not
been investigated. The purpose of this paper is to investigate and illustrate
the approximation accuracy issues associated with G-H quadrature for latent
variable models with categorical responses and why adaptive rule (Naylor and
Smith 1982) can greatly reduce this problem. Cases where adaptive quadra-
ture may potentially fail will also be discussed. The rest of this paper is
organized at follows. Parameterization for latent variable models with cate-
gorical responses will be presented in the next section. In section 3, we will
illustrate when the G-H quadrature will become inefficient. Using GLMM and
IRT as examples, we will also review the cases when G-H quadrature may fail
to produce reliable estimates. The paper is concluded with some discussions
on the implications of this issue for applied researchers.
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2. Latent Variable Model with Categorical Responses

In this section we will briefly review latent variable models with categorical
responses and their estimations based on marginal likelihood. To simplify no-
tations binary responses will be adopted for illustration purpose, while results
presented in this paper also apply to ordinal and nominal responses. A gen-
eral parameterization of one dimensional latent variable models with binary
response, ui = u(ui1, . . . , uiJ), i = 1, . . . , N , can be expressed as follows

yi = Xiβ + Λiηi + εi (1)

P (uij = 1) = P (yij > 0) (2)

where yi = (yi1, . . . , yiJ) are the continuous latent responses underlying ui,
Xi are the covariates, ηi and εi are the latent factor and the random er-
ror, and they are often assumed to be normally distributed and independent,
ηi ∼ N(0, σ2), εi ∼ NJ(0, I), ηi⊥εi. In IRT, σ is fixed at 1 for identification
purpose. Structure matrix Λi can include either variables or parameters. For
example, Λi is the covariates for random effects in mixed effects models, or
the factor loading matrix in factor analysis model. Based on the above model
specification, we have

Pij = P (uij = 1|ηi) =

∫ ∞
0

p(y;xijβj + λijηi, 1)dy = 1−Qij (3)

Parameter estimates for this model are often obtained by maximizing the
marginal likelihood, which can be expressed as

L(θ|U) =
N∏
i=1

∫ J∏
j=1

P
uij

ij Q
1−uij

ij φ(η)dη (4)

where φ(η) is the density function of the prior distribution for latent factor η.
The corresponding log marginal likelihood is

ll(θ|U) =
N∑
i=1

log

∫
Li(η)dη =

N∏
i=1

log

∫ J∑
j=1

P
uij

ij Q
1−uij

ij φ(η)dη (5)

Integrations involved in the above likelihood can not be solved analytically,
and is approximated with numeric integration techniques, most often Gauss-
Hermite quadrature.

3. Gauss-Hermite Quadrature

In general the G-H quadrature can be presented as follows∫ ∞
−∞

g(x)dx =

∫ ∞
−∞

f(x)φ(x)dx ≈
G∑

g=1

f(xg)wg (6)
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Figure 1: Illustrations of Gaussian-Hermite quadrature with 20, 30, 50
quadrature points.

where G is the number of quadrature, xg and wg are the integration points
and weights, which are uniquely determined by the integration domain and
the weighting kernel φ(x). Traditional G-H quadrature often uses e−x

2
as the

weighting kernel. In statistics the density of standard normal distribution
is widely used because for the estimation of various statistical models, the
Gaussian density is often a factor of the integrand. In the case when a Gaus-
sian density is not a factor of the integrand, the integral is transformed in to
form in 6 by dividing and multiplying the original integrand by the standard
normal density. Graphic illustrations of G-H quadrature with the number of
quadrature points ranging from 20 to 50 are included in Figure 1. In Figure
1 we can observe that (1) the positions and weights of the quadrature points
are symmetric around zero; (2) As the number of quadrature increases, the
quadrature points extend gradually to the two ends.

The G points quadrature approximation is exact if f(x) or g(x)/φ(x) is a
polynomial of order 2G−1. For example, the rth moment of standard normal
distribution can be approximated exactly by (r+1)/2 points G-H quadrature.
However, as pointed out by many researches, f(x) for various statistical mod-
els often has a sharp peak and cannot be well approximated by a low degree
polynomial. Furthermore, the peak may be far from zero so that substantial
contribution to the integral is lost unless a large number of quadrature points
have been used. Three situations when the G-H quadrature will become in-
adequate are illustrated by Figure 2. The red curve represents the case when
f(x) has a sharp peak. The green curve shows the case where the peak of the
integrand is far from zero. The most troublesome case is illustrated by the
black curve, in which f(x) has a sharp peak and the peak is far from zero.
Among these 30 quadrature points, only 4, 7 and 3 quadrature points make
significant contributions to the approximation for the above three cases.
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Figure 2: Three situations when the Gaussian-Hermite quadrature becomes
inadequate.

4. G-H quadrature for latent variable models with categorical
responses

G-H quadrature has been widely used along with optimization techniques,
such as Expectation-Maximization and Newton methods, to estimate various
latent variable models with categorical responses. Several cases have been
reported that a larger number of quadrature points are needed to get reli-
able estimates for generalized linear mixed models with categorical responses.
These problems are often caused by the fact that the peak for some integrands
involved in the model are far from zero and(or) the integrand is very sharp
around the peak. These problems also apply to other latent variable models
with categorical responses, such as the item response theory model, but have
not be recognized.

Using GLMM and IRT with binary responses as examples, we will investi-
gate how the integrands, the location of peak and the sharpness, are affected
by the setting of the model, for example cluster size and parameter values.
Equation 5 suggests that the integrand, Li(η) =

∏J
j=1 P

uij

ij Q
1−uij

ij φ(η), can be
considered as the unnormalized posterior distribution of latent variable η for
cluster (or subject) i with response ui = (ui1, . . . , uiJ). Let η̂i and Hi denote
the location of the peak and the corresponding Hessian of −logLi(η). Then
η̂i and 1

H
can be used as an estimate for the posterior mean and variance of

latent variable ηi. The default setting for GLMM is a random intercept model
with 30 observations for each cluster. The variance of random effect is set to
1 and the population intercept is set to 0. The default IRT model includes 30
items and one latent factor. Factor loadings are set to 1. Under this setting,
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J MaxHi (η̂i) G-H AveHi Max abs(η̂i)(Hi) G-H Ave abs(η̂i)

30 20.10(0) 60 15.88 1.926(4.83) 15 0.72
100 64.66(0) 180 49.61 2.378(6.71) 20 0.77
200 128.32(0) 350 97.69 2.616(7.88) 25 0.78

Table 1: Number of Gaussian-Hermite quadrature points needed for the inte-
grands with the sharpest peak (MaxHi) or the peak furthest from zero (Max
abs(η̂i)) in GLMM models with different cluster sizes (J = 30, 100, 200) .

responses have the same marginal mean will produce roughly the same inte-
grand. Thus instead of keeping track of all the possible response patterns, we
will only consider the J+1 responses patterns with different marginal means.
In the following studies, the average and maximum value of η̂i and Hi across
these J+1 response patterns will be reported under different settings. For
integrand with the maximum η̂i or Hi, the number of quadrature points that
is needed to approximate the integration with an error smaller than 0.01 will
also be reported.

It is well known that as the cluster size increases, the shape of the integrand
becomes closer to a normal density function but meanwhile its peak becomes
sharper (the posterior variance become smaller) which will cause problems for
the quadrature. Results for cluster size of 30, 100, and 200 are summarized
in Table 1, including the average and maximum η̂i and Hi and the number of
quadrature points needed to accurately approximate these integrand with the
maximum η̂i orHi. These results suggest that the cluster size has an significant
impact on the posterior variance ( 1

Hi
) which in turn strongly affects the number

of quadrature points required for numerical accuracy. As the cluster size moves
from 30 to 200, the maximum Hi increases from 20 to 128; and to obtain equal
accuracy, the number of quadrature points move from 60 to 350. Same effects
also applies to IRT models, in which the cluster size refer to the number of
items.

It has been reported that the high intraclass correlation can also cause
problems for G-H quadrature for the estimation of GLMM model. Since the
error variance is fixed as constant for identification purpose for GLMM model,
higher intraclass correlation suggest larger variance of the random effect. Re-
sults correspond to different random effects variance, σ2, are summarized in
Table 2. To our surprise, the average and maximum value of η̂i and Hi do not
change a lot as σ2 increases from 0.5 to 10. As a results, large σ2 or equiv-
alently hight intraclass correlation does not cause problems for the quadrature.

Last, we want to examine how the mean and scale of zi affect the maximum
and average value of Hi and η̂i and whether they will cause problems for the
G-H quadrature. The model used here is a random slope model that includes
30 observations for each cluster and the random effect variance is fixed to 1.
The population intercept and slope are set to 0 and 1 respectively. By default,
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σ2 MaxHi (η̂i) G-H AveHi Max abs(η̂i)(Hi) G-H Ave abs(η̂i)

J=100
0.5 65.66(0) 180 51.10 2.124(11.21) 25 0.742
1 64.66(0) 180 49.61 2.378(6.71) 20 0.766
10 63.76(0) 180 48.20 3.116(1.07) 10 0.797

J=30
0.5 21.10(0) 60 17.26 1.641(7.74) 20 0.661
1 20.10(0) 60 15.89 1.926(4.83) 20 0.717
10 19.20(0) 60 14.54 2.748(0.86) 8 0.797

Table 2: Number of Gaussian-Hermite quadrature points needed for the
integrands with the sharpest peak (MaxHi) or the peak furthest from zero
(Max abs(η̂i)) in GLMM models with different intraclass correlations (σ2 =
0.5, 1, 10) and cluster size (J = 30, 100).

µz σz MaxHi (η̂i) G-H AveHi Max abs(η̂i)(Hi) G-H Ave abs(η̂i)

0 1 23.64(-1.0029) 60 18.76 2.620(4.32) 15 1.0551
0 4 91.59(-1.0124) 250 70.99 2.187(5.69) 15 1.0165
0 1/4 6.65(-1.0411) 20 5.65 3.007(3.10) 8 1.1504
5 1 675.45(-0.1644) 400+ 506.64 0.4825(8.02) 25 0.1975
-5 1 334.96(0.1866) 400+ 240.45 0.6897(94.64) 250 0.2623

Table 3: Number of Gaussian-Hermite quadrature points needed for the inte-
grands with the sharpest peak (MaxHi) or the peak furthest from zero (Max
abs(η̂i)) in random slope models with different mean and variance (µz σz)of
the random slope.

zi is drawn from a standard normal distribution and later shifted or rescaled
to create other settings. Results summarized in Table 3 suggest that both the
mean and variance of zi have great impact on the maximum and average value
of Hi and in turn the G-H quadrature. The mean of zi is especially influential.

The element in IRT corresponding to the zi in GLMM is the factor loading
matrix Λ, which is unknown and need to be estimated. Table 4 summarizes the
results for three cases where factor loadings are set to 0.5, 1 and 2 respectively.
These results suggest that these factor loadings have a similar effects as zi.

λ MaxHi (η̂i) G-H AveHi Max abs(η̂i)(Hi) G-H Ave abs(η̂i)

0.5 5.77(0) 15 4.95 2.680(3.03) 9 1.1611
1 20.10(0) 55 15.89 1.926(4.83) 15 0.7165
2 77.39(0) 210 59.11 1.221(7.02) 18 0.3885

Table 4: Number of Gaussian-Hermite quadrature points needed for the inte-
grands with the sharpest peak (MaxHi) or the peak furthest from zero (Max
abs(η̂i)) in IRT models with different factor loadings (λ).
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5. Discussion

In this paper, we investigate several different factors that affect the G-H
quadrature for the estimation of latent variable models with categorical re-
sponses. Results suggest that the cluster size, and the mean and variance of
random covariates or factor loadings have great impact on G-H quadrature.
The same problem also applies to other latent variable models, such as Struc-
tured Equation Modeling with categorical responses, where G-H quadrature
is used for model estimation. One of our observation that contradicts with
previous research results is that high intraclass correlation is not a cause of
numerical accuracy problem for G-H quadrature. Adaptive G-H quadrature
(Liu and Pierce 1994) has shown to be able to solve this problem effectively
(Lesaffre and Spiessens 2001) and has also been used to improve computational
efficiency for high dimensional latent variable models (e.g., Rabe-Hesketh et al.
2002; Schilling and Bock 2005). While several statistical packages, such as the
GLMMIX procedure in SAS, have changed their default numeric integration
technique from G-H to adaptive G-H quadrature, a large number of pack-
ages for latent variable models still use G-H as their default or may not even
have adaptive G-H available. Implementation from this research to applied
researchers is that make the default integration technique to adaptive G-H
quadrature if it is available. Otherwise, increasing the number of quadrature
until the change in parameter estimate becomes very small.

A. Item Response Theory Model with Binary Responses

An item response theory model (Bock and Aitkin 1981; Bock et al. 1988) with
binary responses, ui = (ui1, . . . , uip), i = 1, . . . , n, can be expressed with the
following equations:

yi = µ+ Ληi + εi (7)

uij =

{
0 if yij < 0
1 if yij > 0

, (8)

where yi = (yi1, . . . , yip) is a p elements vector, ηi = (ηi1, . . . , ηid) ∼ Nd(0,Φ)
and εi = (εi1, . . . , εip) ∼ Np(0,Ψ) are factor scores and residuals, µ is an in-
tercept, Λ is a p by d factor loading matrix, and uij is the observed binary
response of the ith respondent on the jth variable. Ψ is fixed as the identity
matrix I for identification purpose, which suggests that yij, j = 1, . . . , p are
independent conditional on latent factor ηi. This conditional independence
assumption plays an important role in the development of the direct sampling
based MCEM algorithm. To identify the model, we also need to fix some pa-
rameters in Λ and Φ. In exploratory analysis, Λij is fixed at 0, for j ≥ i, and Φ
is fixed to be identity matrix I. In confirmatory analysis, the research design
will specify enough zeros in Λ such that factor rotation will be impossible. To
fix factor scales, we can either restrict one element in each column of Λ to be
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1 or restrict the diagonal elements of Φ to be 1.

B. Generalized Linear Mixed Effect Model with Binary Responses

Assume that we have n subjects, and for each subject, there are ni binary
responses ui = (ui1, . . . , uini

). Also assume that yi = (yi1, . . . , yini
) is the la-

tent response underlying ui. Then, based on the latent response formulation
(McCulloch 1994; Chan and Kuk 1997), the mixed effects model with binary
responses can be expressed by the following two equations

yi = Xiβ + Zibi + εi (9)

and

uij =

{
0 if yij < 0
1 if yij > 0

, (10)

where Xi and Zi are matrices of known covariates with (ni × p) and (ni × q)
dimensions respectively, β is a p dimensional vector of fixed effects, bi is a q
dimensional vector of random effects with bi ∼ N(0, D), εi is a ni dimensional
vector of residuals, and bi and εi, i = 1, . . . , n are independent. It is often
assumed that εi ∼ N(0, Ini

), which will lead to the conditional independence
assumption that yi1, . . . , yini

are independent conditional on random effects
bi. As will be shown in the next section, this assumption is critical for the
development of the DSMCEM algorithm. The unknown parameters in this
model are θ = {β,D}.
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