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Abstract
Regression analysis of anthropometry data has a long history in public health research. Early work
relied on conditional mean regression models, but given that most policy interest is in either the
lower or upper tail of a distribution, recent studies have utilized either binary outcome regression
(logistic or ordinal logistic) or quantile regression. If the errors of the index function underlying
binary models have non-constant variance, it is well-knownthat parameter estimates are inconsis-
tent. We present simulation results of a proposed two-stageestimator to adjust for heteroskedasticity
of unknown form. The two-stage estimator appears to substantially reduce bias in both parameter
estimates and predictive changes in prevalence.
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1. Introduction

Studying variations in the measurements of people (height,weight, arm circumference,
etc.), or anthropometry, has a long history of analysis in public health. The origins of many
of the approaches in use today, including the ratio of weightin kilograms to squared height
in meters – known now as thebody mass index (BMI) and formerly as the Quetelet index
– dates to work by Quetelet from the middle of the 19th century. Anthropometric data is
widely used to classify and identify vulnerable populations over time and across space. An
infant’s weight at birth provides an indication of the mother’s lifestyle during pregnancy, if
a child’s height-for-age is low relative to an international standard then researchers would
classify the child as chronically undernourished, if a woman has a low mid-upper arm
circumference the woman would be said to be suffering from significant caloric depletion.

In general, researchers are primarily interested in both the prevalence (during a spe-
cific time period or relative to a particular population) andin the determinants/correlates of
sub-optimal anthropometric measures. Reflecting these interests, logistic regression using
some external cut-point, is frequently employed despite the fact that the underlying dis-
tribution of most anthropometric measures is actually continuous. In a recently published
article, Sweeney et al. (2012) show that in ignoring the underlying continuous distribution
of anthroprometric measures the resulting statistical models are not able to capture impor-
tant variation within a population. They further argue thatwith the use of two types of
regression strategies, quantile regression and ordinal regression, that an improved under-
standing of the factors related to variation in anthropometric outcomes results. Basically,
the use of quantile regression facilitates an analysis of the tails of the distribution and al-
lows identification of complex distributional features. A two-stage estimator (based on a
median regression) is then proposed which enables the use ofthe ordinal regression model.
The focus of this paper is a simulation study of the two-stageestimator.
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2. Regression Models

Throughout this section we assume the existence of some non-specific anthropometry mea-
sure,Y , and a covariateX measured for a large set of individuals. Early anthropometry
research employed linear regression with the resulting parameter estimates measuring the
shift in the conditional mean ofY given a one unit changeX. Interpretation of the esti-
mated linear coefficients and associated inferential testsrequires that well known assump-
tions about the model specification and properties of the error distribution have been satis-
fied. If the assumptions are met then the relationship can betweenY and covariates can be
summarized with the few parameters estimated.

Within public health, anthropometry measures are typically employed as indirect indi-
cators of current, past, or future poor health. For example,low height-for-age is an indirect
indicator for chronic undernutrition, and a high BMI score is an indirect indicator of percent
body fat, which in turn is a leading indicator of future chronic disease outcomes (Manson
et al. 1995). The use of regression models in this context forces attention away from the
mean of distributions and instead focuses on questions about the upper or lower tail, de-
pending on the measure under study. Indeed, for many anthropometry measures there are
national and international reference distributions with threshold values that define the range
of tail values of concern. For example, we could define thresholds yt1 andyt2 such that
individuals withY ≤ yt1 are extreme cases needing immediate interventions and those
with yt1 < Y ≤ yt2 are of moderate concern.

Because of this focus on the tails of the distribution, conditional mean models subse-
quently gave way to the use of binary outcome regression models and quantile regression
(for example, Wei et al. 2005). Binary outcome models are still conditional mean mod-
els but the outcome variable can now be one of the tail probabilities of interest. We can
transform the continuous anthropometry measureY into an ordinal outcome,

y∗i =











1 if yi ≤ yt1

2 if yt1 < yi ≤ yt2

3 if yi > yt2

where 1 indicates extreme poor health, 2 indicate moderate poor health, and 3 indicates
normal health. Regression models in this case are used to estimate the change in the proba-
bility of an individual being assigned to one of the categories conditional on their covariate
value,Pr(y∗i ≤ j|xi) = F (xTi γj). One of the primary attractions of this approach is that
the resulting estimates can be used to assess odds ratios or changes in prevalence condi-
tional on covariate values. Since the anthropometry measures are usually collected to set
policy goals in terms of prevalence outcomes, the interpretation of model results feed nicely
into the policy context.

Quantile regression is a more recent approach in anthropometry studies but it has
rapidly gained in popularity. In this case, parameter estimates measure the change in the
τ th quantile given a unit change inX,

Qy[τ |xi] = β0(τ) + β1(τ)xi.

Quantile regression loses the direct connection to prevalence because fixed thresholds such
asyt1 used in the binary model cannot be imposed. Instead, the share of population (τ )
is fixed and variation in the quantileQy[τ |xi] is assessed. Quantile regression has several
desirable properties that yield important insights beyondprevalence. The parameter esti-
mates are robust to outliers and the set of estimatesβ̂(τ) with τ ∈ {0, 1} can be used to
understand how the entire distribution ofY shifts and changes shape when conditioning on
X (Koenker 2005).
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One of the main findings in Sweeney et al. (2012), is that studies based on results using
both quantile regression and ordinal regression can yield important insights that would be
missed using either method in isolation. One problem in implementing an analysis using
both models is that the conditional variance inY over the domain ofX is typically non-
constant when dealing with individual level data such as that used in anthropometry. For
quantile regression this does not cause a problem. Estimated standard errors will be slightly
less efficient and the estimated coefficientβ̂(τ) are still consistent. But the estimated coef-
ficientsγ̂ in binary models will be inconsistent (Greene 2003). Suppose we are interested
in estimating a binary outcome model with continuous index functionyi = xTi γ + ǫi. This
can be formulated as

Pr(yi < yt1 |xi) = Pr(xTi γ + yt1 + ǫ < 0) = Pr(ǫ > xTγ∗).

The non-central probability evaluation is absorbed into the intercept term. Under het-
eroskedasticity of an unknown form,σ(x), we get instead,

yi = xTi γ
∗ + σ(xi)ǫi

and the probability model is,

Pr(yi < −yt1 |xi) = Pr

(

ǫi >
xTi γ

∗

σ(xi)

)

The presence ofσ(xi) in the probability evaluation is what leads to bias (finite samples) and
inconsistency (large sample) of estimates. We suspect these problems are fairly widespread
in applications of binary outcome models to anthropometry data.

The proposed solution in Sweeney et al. (2012) is to use the following estimation
strategy:

1. Fit a median regression, recover the residuals, and use,

σ̂i =
n
∑

j=1

Wij |êij | i = 1, 2, . . . , n

to estimate the scaling effects,σ̂i.

2. Constructy∗ = [I(y ≤ yt1), I(y ≤ yt2)] and

X∗ = I2 ⊗ (diag(σ̂−1)X)

and then fit an ordinal logit or probit model ofy∗ on X∗.

3. Use average predictive comparisons to recover probabilities that are most rele-
vant for the problem under study.

3. Simulation Study

The two-stage estimator proposed above is motivated by Zhao’s (2001) research on the ef-
ficiency of the median regression estimator under heteroskedasticity of unknown form. In
this case we are instead focused on using Zhao’s strategy to estimateσi and then employ
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that estimate in the binary outcome model to reduce bias. Thesimulation study that fol-
lows provides some sense of how the estimation strategy performs under different forms of
heteroskedasticity.

We follow the same general Monte Carlo framework as Zhao (2001) but in addition to
continuous covariates we also include a binary covariate. The three different heteroskedas-
ticity functional forms used are:

Type I:
σ(1) = a1e

a2|X′β|

Type II:

σ(2) = 1 + 3e−
(X′β+5)2

100

Type III:

σ(3) =



















0.75 if min(X ′β) ≤ X ′β < Q0.25(X
′β)

1.5 if Q0.25(X
′β) ≤ X ′β < Q0.5(X

′β)
3 if Q0.5(X

′β) ≤ X ′β < Q0.75(X
′β)

2 if Q0.75(X
′β) ≤ X ′β ≤ max(X ′β)

In the above equations,a1 = 1, a2 = 0.2, andQp() is a quantile function. The design
matrix includes elementsX = [1|x1|x2|x3] wherex1 = U + 0.2V1, x2 = 0.2U + V ,
andx3 = I(V2 < 0.4) are constructed from the random numbers,U a normal variate with
mean 5 and standard deviation 9,V1 a rectangular variate with bounds 0 and 4, andV2 a
rectangular variate with bounds 0 and 1. The parameter vector β = {0.1,−0.25, 0.25, 0.1}.
Visual characterizations of each type of heteroskadasticity are displayed in Figure 1.

The results here are based on 400 simulation cycles with eachsimulated data set hav-
ing 500 observations. For each simulation cycle, a pure disturbance term is definedu =
N(0, 1), and four continuous dependent variables are defined:

1. No heteroskedasticity:y = X ′β + u

2. Heteroskedasticity I:y(1) = X ′β + σ(1)u

3. Heteroskedasticity II:y(2) = X ′β + σ(2)u

4. Heteroskedasticity IIII:y(3) = X ′β + σ(3)u

For each of the continuous variables, discrete ordinal variables with three outcomes can
be recovered using the thresholds−2 and0.5 defined asy∗, y∗(1), y∗(2), andy∗(3). The
two-stage estimation is then pursued as described above. The first stage is a median re-
gression usingX and one of the three heteroskedastic continuous dependent variables.
Residualŝu are recovered from a median regression. The scaling vector,σ̂ is estimated
as
∑n

j=1Wijf(êij) where the functional formf(u) is either absolute value (|u|), squared

residuals (u2), or or a transformation between squaring and absolute value (u4/3). Given,
σ̂, the design matrix is rescaled usingX∗ = I2 ⊗ (diag(σ̂−1)X). Estimates of the param-
eters of the ordinal models use a design matrix approach suggested by Winship and Mare
(1984). Finally, estimates ofβ are stored from the ordinal regression. Below we present
tables showing relative consistency (β(two−stage)/β(true)). An unbiased measure would
have a relative consistency of 1, values less than one indicate downward bias, and greater
than one upward bias.
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For the ordinal regression models as specified, the expectedrelationships under no
heteroskedasticity are:β01 < β02, β11 = β12 = −0.25, β21 = β22 = 0.25, andβ31 =
β32 = 0.1. The results in Tables 1, 2, and 3 show in the first column the pure effects of
heteroskedasticity of each type. Theβs are consistently underestimated with bias of as
much as 90%. The second column shows estimates after rescaling by the trueσ(). The last
three columns in each table show the performance of the two-stage estimator using either
û2, û4/3, or |û|. The use of̂u4/3 yields the best results with much reduced bias compared to
the unadjusted estimates (column 1). Notice thatû2 tends to overestimate and on the most
difficult type of heteroskedasticity (the step function, type III) the estimator occasionally
explodes and means of the simulations are pushed to extremely high values (the medians
are in the range of the other two-stage estimators).

Raw parameter estimates from an ordinal model are not directly interpretable (or are at
least difficult to interpret). For each of the sets of simulated parameters, we used average
predictive comparison (see Gelman and Pardoe 2007) to examine the marginal effects of
a covariate on a particular type of probability. Those results are displayed in Figures 2, 3,
and 4. The dot is the mean change in probability from a one unitchange in the covariate.
The horizontal lines indicate the 10th to 90th quantile of the simulated values. Notice
that while the two-stage estimator is not perfect in terms ofremoving bias, the multiple
comparisons involved in generating the average predictivecomparisons tend to cancel out
most of the remaining bias and appear quite robust to the presence of heteroskedasticity
after the two-stage adjustment. In contrast the average predictive comparisons based on
the unadjusted estimates clearly show bias. Policy interpretations based on the unadjusted
estimates would thus yield the wrong expectations about changes in prevalence from an
intervention on covariateX.

4. Conclusions

Anthropometric measures are some of the most important tools public health researchers
have available to them as they facilitate quick and minimally invasive estimates of the health
of a population. When it comes to statistically modeling thevariation in specific anthro-
pometric measures, however, some important considerations arise - namely issues related
to biased and inconsistent estimates. Here we presented results from a two-stage estima-
tor that accounts for some of the complex distributional features found in anthropometric
data. If this approach is employed when anthropometric variation is of interest the resulting
models are more likely to represent the true features of a population.
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Parm no true û2 û4/3 |û|
correction σ σ̂ σ̂ σ̂

β01 0.350 0.993 1.265 0.996 0.822
β02 0.278 0.994 0.808 0.812 0.748
β11 0.225 0.987 1.275 0.971 0.762
β12 0.112 0.978 0.969 0.827 0.665
β21 0.197 0.982 1.229 0.926 0.716
β22 0.079 0.976 0.925 0.809 0.658
β31 0.347 0.971 1.228 0.978 0.815
β32 0.194 0.973 1.009 0.841 0.670

Table 1: Relative consistency for heteroskedasticity type I

Parm no true û2 û4/3 |û|
correction σ σ̂ σ̂ σ̂

β01 0.328 0.985 1.284 0.991 0.805
β02 0.119 0.927 1.059 0.876 0.708
β11 0.310 0.991 1.285 0.985 0.800
β12 0.279 0.977 1.242 0.963 0.777
β21 0.302 0.989 1.266 0.967 0.788
β22 0.266 0.953 1.187 0.944 0.771
β31 0.306 0.950 1.215 0.944 0.771
β32 0.283 1.003 1.312 0.972 0.765

Table 2: Relative consistency for heteroskedasticity type II

Parm no true û2 û4/3 |û|
correction σ σ̂ σ̂ σ̂

β01 0.392 0.988 0.880 0.884 0.807
β02 0.648 0.988 0.851 0.825 0.792
β11 0.609 0.993 0.900 0.910 0.854
β12 0.611 0.994 0.946 0.889 0.828
β21 0.716 0.987 0.916 0.926 0.881
β22 0.610 0.989 0.907 0.860 0.808
β31 0.459 0.962 0.782 0.816 0.782
β32 0.641 1.016 0.993 0.927 0.858

Table 3: Relative consistency for heteroskedasticity type III
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Type 3  Heteroskedasticity
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Figure 1: Three types of heteroskedasticity. In density curves the black line is pure distur-
bance and the red line is heteroskedastic.
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Figure 2: APCs for Type I heteroskedastcity.
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Figure 3: APCs for Type II heteroskedastcity.
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Figure 4: APCs for Type III heteroskedastcity.
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