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Regression Analysis of Anthropometry Data:
A Simulation Study of a Two-Stage Estimator

Stuart Sweeney Kathryn Gracé

Abstract

Regression analysis of anthropometry data has a long hist@ublic health research. Early work
relied on conditional mean regression models, but givehrti@st policy interest is in either the
lower or upper tail of a distribution, recent studies havized either binary outcome regression
(logistic or ordinal logistic) or quantile regression. Iifet errors of the index function underlying
binary models have non-constant variance, it is well-knthvet parameter estimates are inconsis-
tent. We present simulation results of a proposed two-stafy@ator to adjust for heteroskedasticity
of unknown form. The two-stage estimator appears to sutialigrreduce bias in both parameter
estimates and predictive changes in prevalence.

Key Words: Quantile regression, ordinal regression, anthropometrylic health, heteroskedas-
ticity, simulation study

1. Introduction

Studying variations in the measurements of people (heigbight, arm circumference,
etc.), or anthropometry, has a long history of analysis inlipinealth. The origins of many
of the approaches in use today, including the ratio of weigkilograms to squared height
in meters — known now as thHmdy mass index (BMI) and formerly as the Quetelet index
— dates to work by Quetelet from the middle of the 19th centémythropometric data is
widely used to classify and identify vulnerable populasi@ver time and across space. An
infant’s weight at birth provides an indication of the mathdifestyle during pregnancy;, if
a child’s height-for-age is low relative to an internatibeendard then researchers would
classify the child as chronically undernourished, if a wantes a low mid-upper arm
circumference the woman would be said to be suffering fragni§cant caloric depletion.

In general, researchers are primarily interested in bathptievalence (during a spe-
cific time period or relative to a particular population) andhe determinants/correlates of
sub-optimal anthropometric measures. Reflecting theseesiis, logistic regression using
some external cut-point, is frequently employed despigeféttt that the underlying dis-
tribution of most anthropometric measures is actually iomous. In a recently published
article, Sweeney et al. (2012) show that in ignoring the dgag continuous distribution
of anthroprometric measures the resulting statisticalaetsodre not able to capture impor-
tant variation within a population. They further argue tigth the use of two types of
regression strategies, quantile regression and ordigatssion, that an improved under-
standing of the factors related to variation in anthropoimetutcomes results. Basically,
the use of quantile regression facilitates an analysis etdfis of the distribution and al-
lows identification of complex distributional features. wad-stage estimator (based on a
median regression) is then proposed which enables the ulse ofdinal regression model.
The focus of this paper is a simulation study of the two-stegjamator.
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2. Regression Models

Throughout this section we assume the existence of somspexific anthropometry mea-
sure,Y’, and a covariateX measured for a large set of individuals. Early anthropoynetr
research employed linear regression with the resultingrpater estimates measuring the
shift in the conditional mean df given a one unit chang&. Interpretation of the esti-
mated linear coefficients and associated inferential tespsires that well known assump-
tions about the model specification and properties of tha elistribution have been satis-
fied. If the assumptions are met then the relationship camdeztY” and covariates can be
summarized with the few parameters estimated.

Within public health, anthropometry measures are typioathployed as indirect indi-
cators of current, past, or future poor health. For exanige height-for-age is an indirect
indicator for chronic undernutrition, and a high BMI scosen indirect indicator of percent
body fat, which in turn is a leading indicator of future chimdisease outcomes (Manson
et al. 1995). The use of regression models in this contexefoattention away from the
mean of distributions and instead focuses on questionst dbewpper or lower tail, de-
pending on the measure under study. Indeed, for many amimeipy measures there are
national and international reference distributions wlitfeshold values that define the range
of tail values of concern. For example, we could define thotelshy’* andy’ such that
individuals withY < ¢t are extreme cases needing immediate interventions and thos
with y't <Y < y*2 are of moderate concern.

Because of this focus on the tails of the distribution, cbadal mean models subse-
quently gave way to the use of binary outcome regression Imeae quantile regression
(for example, Wei et al. 2005). Binary outcome models ale&inditional mean mod-
els but the outcome variable can now be one of the tail préibabiof interest. We can
transform the continuous anthropometry meadaiato an ordinal outcome,

1 ify <y
yi =4 2 ifyht <y <yt
3 if 5 > yt2

where 1 indicates extreme poor health, 2 indicate modemae Ipealth, and 3 indicates
normal health. Regression models in this case are usedrtaésthe change in the proba-
bility of an individual being assigned to one of the categegonditional on their covariate
value, Pr(y; < jlz;) = F(zI~;). One of the primary attractions of this approach is that
the resulting estimates can be used to assess odds ratibargyes in prevalence condi-
tional on covariate values. Since the anthropometry measare usually collected to set
policy goals in terms of prevalence outcomes, the inteaicet of model results feed nicely
into the policy context.

Quantile regression is a more recent approach in anthroppprstudies but it has
rapidly gained in popularity. In this case, parameter estam measure the change in the
Tth quantile given a unit change ix,

Qylr|zi] = Bo(T) + B1(T)i.

Quantile regression loses the direct connection to pregalbecause fixed thresholds such
asy't used in the binary model cannot be imposed. Instead, the stigropulation £)

is fixed and variation in the quanti@, [7|z;] is assessed. Quantile regression has several
desirable properties that yield important insights beypralalence. The parameter esti-
mates are robust to outliers and the set of estimate$ with 7 € {0,1} can be used to
understand how the entire distribution¥fshifts and changes shape when conditioning on
X (Koenker 2005).

1419



Health Policy Statistics Section —JSM 2012

One of the main findings in Sweeney et al. (2012), is that studased on results using
both quantile regression and ordinal regression can yieftbrtant insights that would be
missed using either method in isolation. One problem in @m@nting an analysis using
both models is that the conditional varianceYinover the domain ofX is typically non-
constant when dealing with individual level data such as¢ tised in anthropometry. For
guantile regression this does not cause a problem. Estirstadard errors will be slightly
less efficient and the estimated coefficigiit) are still consistent. But the estimated coef-
ficients# in binary models will be inconsistent (Greene 2003). Suppee are interested
in estimating a binary outcome model with continuous indexcfiony; = =~ + ¢;. This
can be formulated as

Pr(y; < y|z;) = Pr(zly +y" + e < 0) = Pr(e > z7*).

The non-central probability evaluation is absorbed inte ititercept term. Under het-
eroskedasticity of an unknown form(z), we get instead,

Yi = xiTW* +o(x;)e;

and the probability model is,

) oty — ) gﬁlli
Pr(y; < —y"|z;) = Pr (Q > 0(:5,-))
The presence of(z;) in the probability evaluation is what leads to bias (finitmigées) and
inconsistency (large sample) of estimates. We suspect fireblems are fairly widespread
in applications of binary outcome models to anthropome#itad

The proposed solution in Sweeney et al. (2012) is to use theniog estimation
strategy:

1. Fit a median regression, recover the residuals, and use,
n
6222m3|é23| i:1,2,...,n
j=1

to estimate the scaling effects;.

2. Constructy* = [I(y < y'),1(y < y*)] and
X* =Ty @ (diag(6)X)
and then fit an ordinal logit or probit model gf on X*.

3. Use average predictive comparisons to recover probabilhat are most rele-
vant for the problem under study.

3. Simulation Study

The two-stage estimator proposed above is motivated by’'Z2@01) research on the ef-
ficiency of the median regression estimator under hetedasitieity of unknown form. In
this case we are instead focused on using Zhao's strategstitoates; and then employ
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that estimate in the binary outcome model to reduce bias. sirhalation study that fol-
lows provides some sense of how the estimation strateggnpesfunder different forms of
heteroskedasticity.

We follow the same general Monte Carlo framework as ZhaoibQt in addition to
continuous covariates we also include a binary covaridbe. three different heteroskedas-
ticity functional forms used are:

Type I
o) = g,e221X'Pl
Type Il
0@ 1 4 e T
Type Il

0.75  if min(X'B) < X'B < Qo.os(X'p)
@ _ ) 15 if Qu.2s(X'B) < X'B < Qus(X'B)
3 if Qos(X'B) <X'B < Qors(X'B)
2 if Qo.75(X'B) < X' < max(X'B)

In the above equationg; = 1, ax = 0.2, and@,() is a quantile function. The design
matrix includes elementX = [1|z;|z2|z3] Wherez; = U + 0.2V, 29 = 0.2U + V,
andzs = I(V, < 0.4) are constructed from the random numbéfsa normal variate with
mean 5 and standard deviation1§, a rectangular variate with bounds 0 and 4, dhd
rectangular variate with bounds 0 and 1. The parameterwvgcto{0.1, —0.25,0.25,0.1}.
Visual characterizations of each type of heteroskadastice displayed in Figuirg 1.

The results here are based on 400 simulation cycles with @aullated data set hav-
ing 500 observations. For each simulation cycle, a pureidiahce term is defined =
N(0,1), and four continuous dependent variables are defined:

No heteroskedasticityy = X’ + u
Heteroskedasticity ") = X'8 + c(Mu

Heteroskedasticity Ily® = X' + oy

AP w0 dpoE

Heteroskedasticity lllly®) = X'3 + c®uy

For each of the continuous variables, discrete ordinabttes with three outcomes can
be recovered using the thresholdg and0.5 defined ag/*, y*(V), y*?), andy*®). The
two-stage estimation is then pursued as described abowve. fifBhstage is a median re-
gression usingX and one of the three heteroskedastic continuous dependeables.
Residualsi are recovered from a median regression. The scaling vexttisrestimated
as)_7_, Wi; f(é;;) where the functional fornf (u) is either absolute valug«(), squared
residuals ¢2), or or a transformation between squaring and absoluteev@altd®). Given,
&, the design matrix is rescaled usidy = I, ® (diag(6~')X). Estimates of the param-
eters of the ordinal models use a design matrix approacheste by Winship and Mare
(1984). Finally, estimates gf are stored from the ordinal regression. Below we present
tables showing relative consistengg({-o—stase) /3(true)y  An unbiased measure would
have a relative consistency of 1, values less than one iteditavnward bias, and greater
than one upward bias.
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For the ordinal regression models as specified, the expeetationships under no
heteroskedasticity are3y1 < Po2, f11 = P12 = —0.25, Ba1 = P22 = 0.25, andf3; =
B32 = 0.1. The results in Tablds L] 2, ahd 3 show in the first column thre pffects of
heteroskedasticity of each type. THe are consistently underestimated with bias of as
much as 90%. The second column shows estimates after resbglthe truer(. The last
three columns in each table show the performance of the tagesstimator using either
@2, 443, or|i|. The use ofi*/? yields the best results with much reduced bias compared to
the unadjusted estimates (column 1). Notice #lfatends to overestimate and on the most
difficult type of heteroskedasticity (the step functionpeylll) the estimator occasionally
explodes and means of the simulations are pushed to exirdnghl values (the medians
are in the range of the other two-stage estimators).

Raw parameter estimates from an ordinal model are not Qinecerpretable (or are at
least difficult to interpret). For each of the sets of simedaparameters, we used average
predictive comparison (see Gelman and Pardoe 2007) to aratimé marginal effects of
a covariate on a particular type of probability. Those rssate displayed in Figurés [2, 3,
andl4. The dot is the mean change in probability from a onealnainge in the covariate.
The horizontal lines indicate the 10th to 90th quantile & #imulated values. Notice
that while the two-stage estimator is not perfect in termseofioving bias, the multiple
comparisons involved in generating the average predictivaparisons tend to cancel out
most of the remaining bias and appear quite robust to theepcesof heteroskedasticity
after the two-stage adjustment. In contrast the averagdigivee comparisons based on
the unadjusted estimates clearly show bias. Policy inkéapons based on the unadjusted
estimates would thus yield the wrong expectations aboutgd®in prevalence from an
intervention on covariate .

4. Conclusions

Anthropometric measures are some of the most important fmablic health researchers
have available to them as they facilitate quick and miniynallasive estimates of the health
of a population. When it comes to statistically modeling ¥aeation in specific anthro-
pometric measures, however, some important considesatioee - namely issues related
to biased and inconsistent estimates. Here we presentelsrgesm a two-stage estima-
tor that accounts for some of the complex distributionatuess found in anthropometric
data. If this approach is employed when anthropometri@tiani is of interest the resulting
models are more likely to represent the true features of alptpn.
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Parm no true a2 a3 |4
correction o o o o
Bor  0.350 0.993 1.265 0.996 0.822
Bz 0278  0.994 0.808 0.812 0.748
B 0225 0987 1.275 0.971 0.762
B2 0112 0978 0.969 0.827 0.665
foi 0197 0982 1.229 0.926 0.716
By  0.079 0976 0.925 0.809 0.658
B3 0347 0971 1.228 0.978 0.815
B32  0.194  0.973 1.009 0.841 0.670

Table 1. Relative consistency for heteroskedasticity type |

Parm no true a2 a3 |4
correction o o o o
Boi 0328 0.985 1.284 0.991 0.805
Boe  0.119  0.927 1.059 0.876 0.708
fii 0.310 0.991 1.285 0.985 0.800
Bz 0279 0977 1.242 0.963 0.777
B 0.302  0.989 1.266 0.967 0.788
By 0.266 0953 1.187 0.944 0.771
B3 0.306  0.950 1.215 0.944 0.771

B2 0.283 1.003 1.312 0.972 0.765

Table 2: Relative consistency for heteroskedasticity type Il

Parm no true a2 a3 |4
correction o o o o
Bor  0.392 0.988 0.880 0.884 0.807
Bo2 0.648 0.988 0.851 0.825 0.792
B 0.609  0.993 0.900 0.910 0.854
P12 0.611 0.994 0.946 0.889 0.828
B21 0.716 0.987 0.916 0.926 0.881
P22 0.610 0.989 0.907 0.860 0.808
B31 0.459 0.962 0.782 0.816 0.782

B2 0.641 1.016 0.993 0.927 0.858

Table 3: Relative consistency for heteroskedasticity type IlI
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Type 1 Heteroskedasticity

—10

Type 2 Heteroskedasticity

—10

Type 3 Heteroskedasticity

—10

Figure 1. Three types of heteroskedasticity.
bance and the red line is heteroskedastic.
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