
Validating a Cox Proportional-Hazards Model 
 

 

Tristan Grogan MS, David Elashoff PhD 

 

Department of Medicine Statistics Core, David Geffen School of Medicine 

at UCLA

 
 

 

Abstract 
While several methods have been published on validating standard logistic or linear 

models, much less material exists on validating time-to-event models, such as the Cox 

proportional-hazards model. During the course of this research, an investigation of four 

different strategies for validating the Cox model was carried out, utilizing data from a 

prostate cancer study. These validation techniques are especially important for biomarker 

studies to aid in combating the effect of selection bias, and would strengthen the results 

and credibility of any study.  

 

This paper will present four performance measures for assessing whether a model has 

evidence for being validated or not—comparing model coefficients between training and 

test data sets, assessing Harrell’s c-index between the training and test models, running a 

cross-validation technique, and comparing recurrence risk predictions between the 

training and test models. 
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1. Introduction 

 
In biomarker studies, often times, several potential markers are pre-screened with 

statistical analyses, which can drastically increase the chances of making a type I error 

(false positive). One way to address this issue is to restrict the familywise error rate by 

implementing a technique such as the Bonferroni correction. However, techniques such 

as Bonferroni can be too conservative (especially with a small sample size) and important 

markers may slide under the statistical detection threshold. Another way to address this 

quagmire is through model validation techniques; which set aside a portion of the data 

(testing set) to be reserved for assessing the multivariable prognostic model (training 

model). Having ways to externally validate the final model would help protect against 

over optimistic p-values and, at times, erroneous conclusions.  

 

Tumor-associated macrophages (TAMs) have been associated with worse pathological 

characteristics and prognosis in several cancers such as colon, breast, endometrial, Non-

Hodgkin’s lymphoma, and bladder.
123456

 However, other reports suggest that increased 

TAMs are associated with improved prognosis whereas others report no importance.
78

 

The significance of TAMs in men with prostate cancer has not been studied 

comprehensively, and the studies that do exist are inconsistent.
91011
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A specific tumor-associated macrophage, CD68, has been thought to be associated with 

prostate cancer biochemical recurrence after radical prostatectomy. Biochemical 

recurrence was defined as a single PSA >0.2, 2 values at 0.2, or secondary treatment for 

an elevated post-operative PSA. Patients were monitored for biochemical recurrence with 

a median follow-up time of 5 years post prostatectomy.  

 

Our cohort consisted of 330 patients who underwent radical prostatectomy. A 2/3 to 1/3 

training and test set was determined by randomly splitting the full dataset while 

stratifying by the outcome (recurrence) variable, ensuring that each data set had a similar 

baseline hazard estimate. This allowed for an easier comparison of model coefficients 

between the two models.  

 

Each patient had multiple cores sampled from their prostate (See Figure 1); which were 

categorized as normal, pre-cancerous, or cancerous. The number of cells with CD68 

staining was assessed for each core and various summary measures for each type of core 

and patient were computed—the maximum CD68 count across all core samples, 

difference in CD68 count from cancer to normal cores, mean/median CD68 count for 

each type of core, and max CD68 count for each core.  

 

 

 

Figure 1: Graphical description of biopsy cores and CD68 count 
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2. Methods 

 
Univariate Cox proportional-hazards models predicting biochemical recurrence were 

constructed for each formulation of the CD68 marker (Table 1).  

 

Table 1: Univariate CD68 screening Cox PH models on the training data set 

            CD68 Formulation              P-Value Hazard Ratio (95% CI) 

mean nl cores 0.879 0.99 (0.91, 1.09) 

mean pin cores 0.556 1.03 (0.94, 1.11) 

mean ca cores 0.043 1.07 (1.00, 1.14) 

median nl cores 0.678 0.98 (0.90, 1.07) 

median pin cores 0.551 1.03 (0.94, 1.11) 

median ca cores 0.125 1.05 (0.99, 1.12) 

max nl cores 0.862 1.01 (0.94, 1.07) 

max pin cores 0.909 1.00 (0.95, 1.05) 

max ca cores 0.005 1.05 (1.01, 1.09) 

max all cores 0.022 1.03 (1.01, 1.07) 

avg all cores 0.169 1.06 (0.98, 1.15) 

avg diff nl-pin cores 0.886 1.01 (0.92, 1.10) 

avg diff nl-ca cores 0.031 0.93 (0.87, 0.99) 

avg diff pin-ca cores 0.168 0.95 (0.89, 1.02) 

 

 
Out of the 14 formulations of the CD68 variable, four were associated (p<0.05) with 

biochemical recurrence from the univariate Cox models (Table 1). The mean CD68 count 

from the cancer cores (within each patient) was decided as the formulation to represent 

CD68 quantity over the other three significant (p<0.05) formulations, because it had the 

highest effect size estimate (HR = 1.07) and made more clinical sense than the others.    

 

2.1 Coefficient Comparison 
This strategy involves running two independent models on both the training and test data 

sets, allowing for a comparison of the magnitude and direction of the coefficients to see if 

they are similar. Comparing p-values is also possible, although not the main focus of this 

method. If coefficient estimates are widely different between the training and test models, 

then either the covariates may not have been balanced in each data set, or perhaps the 

estimates from the training model aren’t very reliable.  

 

2.2 Harrell’s Concordance Index 
The Harrell’s c-index is a metric to compare the strength of predictive performance for 

survival models. Moreover, the index has similar interpretation to the AUC for logistic 

models (and is a rank based statistic).  

 

Model based risk scores are calculated for each subject. Then, for each eligible pair of 

patients, the algorithm counts how often the patient with the higher risk score 

experienced an event before the patient with the lower risk score experienced their event. 

Pairs of subject that either are both censored or have one subject censored prior to a 

subject with an event are omitted from the calculation. The other two scenarios; both two 
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patients have events, and a patient who was censored later than a patient who had an 

event are included in the calculation. For example, a patient may have had a recurrence at 

1 year and another patient was censored after 2 years of follow-up. It could be determined 

that if the model assigned a higher risk score to the patient who recurred, that would 

contribute to a concordant case. The resulting proportion of all possible pairs is the 

probability of concordance
12

. Comparing the percentage of concordant points in the test 

data by applying the test model and training model will give an idea for how similar the 

two models are classifying the patients.
 

 

2.3 Cross-validation 
Cross-validation was performed on the entire data set, utilizing the penalized package in 

R (optL1 function). Instead of having one training data set and one test data set as before, 

the cross-validation technique creates several partitions of the full data set. The specific 

cross-validation technique applied to this data set implemented the lasso penalty using 

10-fold likelihood. The package deliberately does not provide standard errors for p-

values/confidence intervals since they are not meaningful for biased estimates
13

. 

However, by comparing these cross-validated coefficients, a sense for the reliability and 

stability of coefficient estimates from the training model can be attained. 

 

2.4 Recurrence Risk Predictions 
This method allows a comparison of the survival predictions on the test data set using 

both the training and test set models. The goal is to show that predicting recurrence using 

the training model is no different than using the test model. Tertile cut-offs of the linear 

fitted value are created by the training set model on the training set data. Then, each 

patient in the test data set will have a linear predictor score created from the test and 

training models. Thereafter, the data is split into tertiles based on the cut-off values from 

the training data. Kaplan-Meier curves are created and the log-rank test can be used to 

assess differences between the two curves
14

. 

 

 

3. Results 

Table 2: Descriptive statistics by training and test datasets 

 

Variable Training Data (n=219)  Test Data (n=110)  

 
Mean (SD) Mean (SD) 

Follow-up time (months)  73.5 (53.7) 71.8 (56.0) 

CD68 Mean Cancer cores 6.5 (3.4) 6.8 (3.9) 

Pathological Gleason Sum 6.3 (0.96) 6.3 (1.0) 

Pre-operative serum PSA (ng/ml) 10.3 (7.7) 9.6 (6.2) 

 
Frequency Frequency 

Biochemical Recurrence (PSA>0.2) 86 (39.3%) 43 (39.1%) 

Extracapsular Extension 19 (8.7)% 16 (14.5)% 
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3.1 Coefficient Comparison 

 

Table 3: Training and test dataset models 
 

Training Data Set HR (95% CI) P-Val 

CD68 Mean CA 1.06 (0.99, 1.13) 0.082 

Path. Gleason Sum 1.73 (1.37, 2.19) <0.001 

Extracapsular E 2.99 (1.62, 5.54) <0.001 

PSA Level 1.03 (1.00, 1.05) 0.036 

Test Data Set HR (95% CI) P-Val 

CD68 Mean CA 1.00 (0.92, 1.09) 0.974 

Path. Gleason Sum 1.63 (1.15, 2.29) 0.005 

Extracapsular E 2.69 (1.30, 5.57) 0.008 

PSA Level 1.05 (1.01, 1.10) 0.021 

Full Set (Training + Test) HR (95% CI) P-Val 

CD68 Mean CA 1.03 (0.98, 1.09) 0.219 

Path. Gleason Sum 1.70 (1.41, 2.05) <0.001 

Extracapsular E 2.77 (1.74, 4.39) <0.001 

PSA Level 1.03 (1.01, 1.06) 0.002 

 

 

3.2 Harrell’s Concordance-index 

 
  

Model  

Training Data 

Concordance (standard error) 

Test Data 

Concordance (standard error) 

Training Model 0.708 (0.03)  0.702 (0.024)  

Test Model 0.681 (0.029) 0.728 (0.047)  

 

 

3.3 Cross-validation 
 

 Variable  

Hazard Ratios Training model HR 

(95% CI)  P-Val Cross-validation 10 fold   

CD68 Mean CA 1.04 1.06 (0.99, 1.13)  0.082 

Path. Gleason Sum 1.86 1.73 (1.37, 2.19)  <0.001 

Extracapsular E 3.57 2.99 (1.62, 5.54)  <0.001 

PSA Level 1.04 1.03 (1.00, 1.05)  0.036 

 

 

 

3.4 Recurrence Risk Predictions 
PSA, Pathological Gleason Sum, and the percent of patients with extracapsular extension 

are higher in tertile 3 (Figure 2). This trend is not seen in the CD68 variable. The curves 

are very similar for each plot indicating that the training and test models are not 

predicting recurrence substantially different utilizing the test data for patients with 

varying tertiles of risk. 
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Figure 2: Recurrence risk predictions 

 

 

4. Findings 

 
In conclusion, all four of the methods tested gave fairly consistent results in terms of 

validating the overall training model and the results were as follows. The training and test 

model coefficients are consistent in terms of magnitude and direction, with the exception 

of the CD68 variable (Table 2). There was no noticeable drop-off in Harrell’s c-index 

when the training model was applied to the test data set (Table 4). The cross-validation 

technique on the full data set produced similar coefficients to the training set model 

(Table 3). By using the tertile split method we saw that both models seemed to predict 

recurrence similarly on the test data set (Figure 2).  

 

In the training set model, the CD68 variable was marginally significant (p=0.08); 

however, it does not appear to have any effect in the testing cohort and drops out of the 

full multivariate model. The clinical result here is that the CD68 variable doesn’t seem to 

be a very strong predictor of recurrence after we account for the other clinically relevant 

covariates. This could be an indication that the original apparent utility of the CD68 

variable for recurrence prediction was the result of selection bias due to the multiple 

formulations of the variable that were considered in the training set. 

 

This research has shown four relatively easy to implement techniques for validating a 

Cox proportional-hazards model. The benefit of using these validation techniques will 

help deter overfitting and increase credibility of your final model. Although these 
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techniques were applied internally to the same data set, they are justifiable to use for an 

external data set validation as well.   
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