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Abstract 
Food-borne infection is caused by intake of foods or beverages contaminated with 

microbial pathogens.  Dose-response modeling is used to estimate exposure levels of 

pathogens associated with specific risks of infection or illness.  When a single dose-

response model is used and confidence limits on infectious doses are calculated, only data 

uncertainty is captured.   We propose a method to estimate the lower confidence limit on 

an infectious dose by including model uncertainty and separating it from data uncertainty.  

The infectious dose is estimated by a weighted average of effective dose estimates from a 

set of dose-response models via a Kullback information criterion.  The confidence 

interval for the infectious dose is constructed by the delta method, where data uncertainty 

is addressed by a bootstrap method.  To evaluate the actual coverage probabilities of the 

lower confidence limit, a Monte Carlo simulation study is conducted under sublinear, 

linear and superlinear dose-response shapes that can be commonly found in real data sets.  

Our model-averaging method achieves coverage close to nominal in almost all cases, thus 

providing a useful and efficient tool for accurate calculation of lower confidence limits 

on infectious doses. 

 

Key Words: bias-skewness correction; confidence limit; data uncertainty; food 

safety; Kullback information criterion 

 

 
1. Introduction 

 
Food safety is a critical issue in public health. The Centers for Disease Control and 

Prevention (CDC, 2011) estimated that there are 48 million illnesses, 128 thousand 

hospitalizations, and 3000 deaths due to foodborne pathogens every year in the United 

States. Among well-known pathogens, Norovirus and Salmonella are included in the top 

five pathogens causing domestically acquired foodborne illness and resulting in 

hospitalization and death. Another well-known pathogen, E. coli O157, was included in 

the top five pathogens causing domestically acquired foodborne illnesses resulting in 

hospitalization. 

 

Biometrics Section – JSM 2012

313



In order to control diseases caused by microbial contaminants in food, it is essential to 

assess their dose-response relationships as accurately as possible. However, definitive 

dose-response data on humans at low levels of contamination likely to occur in practice 

are scarce to nonexistent. Hence, when sufficient animal or human data at high doses are 

available to allow dose-response modeling, allowable contamination levels of specific 

microorganisms in food can be derived using infectious dose (ID) levels derived from 

these models as “points of departure” for low-dose extrapolation. This approach to setting 

exposure levels is equivalent to the benchmark dose (BMD) approach used in chemical 

risk assessment (EPA, 2000). Reliable methods for deriving such IDp levels (0.01 ≤ p ≤ 

0.10) are essential, where IDp is defined as a dose that causes a response (infection or 

illness) at a predetermined risk level, p. 

 

Dose-response models with one, two, and three parameters have been proposed for dose-

response modeling in microbial risk assessment (MRA) (Kodell et al, 2002; Marks et al, 

1998; Moon et al., 2004). The simplest model is the one-parameter exponential model, ���; ��� = 1 − ��
�−��� , � > 0, which can be derived from basic biological 

assumptions considering low numbers of pathogens as discrete particles (Haas, 1983). 

Even though the exponential model has low-dose linearity, it is often not flexible enough 

to provide an adequate fit to dose-response data on pathogenic microorganisms.  The 

Beta-Poisson (BP) model (Haas, 1983; Furumoto and Mickey, 1967; Haas et al., 1999), 

which includes slightly more complex biology, has been used in MRA(WHO, 2001a, 

2001b, 2002). However, the adequacy of the BP model as a potential “default” model for 

MRA has been questioned (Marks et al., 1998). It can be shown that the exponential and 

the BP models are dose-response pattern-specific so that they may not be suitable models 

under a certain dose-response pattern (e.g. a hypothetical sublinear pattern in Figure 1).  

Other two-parameter models include the Log-Normal (LN), the Log-Logistic (LL), and 

the Extreme-Value (EV) models (Pinsky, 2000)
.
 The best-known three-parameter model 

is the Weibull-Gamma (WG) model (Farber et al., 1996). However, three-parameter 

models require data at four or more dose levels, which may not be readily available for 

many microbial agents.  It was noted that the BP and LL models are special cases of the 

WG model (Kodell et al, 2002). 

 

Several dose-response models often provide reasonably good fits to the data in the 

experimental dose range but can yield very different infectious dose (ID) estimates in the 

low-dose range, even with infection rates as high as 0.01 ≤ p ≤ 0.10. Hence, it is 

undesirable to choose only one model and estimate an ID based on the chosen model. In 

order to account for model uncertainty, model averaging (MA) methods have been 

proposed (FDA/FSIS, 2003; Moon et al., 2004, 2005; Bailer et al., 2005; Faes et al., 

2007; Wheeler and Bailer, 2007; Namata et al., 2008). 

 

Kang et al. (2000) used four two-parameter models to demonstrate how model 

uncertainty can be addressed in MRA using the Akaike information criterion (AIC) 

(Akaike, 1974) to average the individual-model IDs.  Kodell et al. (2002) presented a 

general framework for generating dose-response models in the interest of deriving 

potential competitors for the three-parameter Weibull-Gamma (WG) model (Farber et al., 

1996).  Moon et al. (2004) suggested that two-parameter dose-response models for MRA 

reflected at least as much model uncertainty as three-parameter models.  Moon et al. 

(2005) used maximum likelihood estimates (MLEs) from a binomial log-likelihood 

function to estimate parameters of dose-response models and integrated model 

uncertainty into estimating IDs using weights obtained from the Kullback information 
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criterion (Cavanaugh, 1999; Kim and Cavanaugh, 2005) as a measure of model 

variability. 

 

Faes et al. (2007) showed the necessity of model averaging by comparing the ID based on 

a set of fractional polynomials to the ID from the selected best model. Namata et al. 

(2008) also investigated model averaging in MRA using fractional polynomials, 

suggesting that the common two-parameter models were not sufficiently diverse to give 

appropriate confidence coverage in model averaging. 

 

Bayesian model averaging provides a coherent approach for accounting for model 

uncertainty (Hoeting et al., 1999). Bailer et al. (2005) illustrated Bayesian model 

averaging with a simple Bayesian information criterion (BIC) approximation (Schwarz, 

1978; Kass and Wasserman, 1995) under the assumption of the unit information prior on 

the parameter space for addressing uncertainty in the selection of models when 

generating risk estimates. Their emphasis was on the Bayesian analysis of model 

uncertainty to obtain a model-averaged summary. 

 

Recently, Wheeler and Bailer (2007) investigated an alternative MA approach to estimate 

IDs (benchmark doses, or BMDs, in their terminology) based on a weighted “average 

model” and illustrated their method with dose-response lung cancer data on rats. Their ID 

estimates are obtained by solving the weighted average model, and the weights are 

determined by AIC. The lower confidence bound on the ID was obtained by the bootstrap 

percentile method. They investigated the coverage of their ID lower confidence estimates 

with linear and sublinear dose-response patterns. 

 

We propose a new method to estimate the lower confidence limit (LCL) for an ID under 

the consideration of both model uncertainty and data uncertainty. Following Moon et al. 

(2004), four two-parameter dose-response models are considered a sufficiently diverse 

set of models. Parameters of the models are estimated by the method of maximum 

likelihood. The ID is estimated by a KIC-weighted average of effective dose (ED) 

estimates from the dose-response models. We introduce a new variance formula and 

calculate the variance of the ID estimate with separate components for model uncertainty 

and data uncertainty via a bootstrap method. The LCL for the ID is constructed assuming 

the ID is log-normally distributed. The delta method is used to approximate the variance 

of the log-ID estimate. 

 

The use of the natural log transformation of ID estimates to normalize the ID distribution 

is not unusual. In a similar line of this study, Faes et al. (2007) used a log-normal 

assumption, and their equation (8) is similar to our idea, but with a different algebraic 

expression. The log transformation of ID estimates makes the distribution more 

symmetric. Even after the log-transformation, skewness still exists.  By the same token, 

Figure 5 in Wheeler and Bailer (2007) showed a skewed distribution at low doses.  

However, our proposed method with nonparametric quantile estimation further adjusts 

the skewness via the BCa bootstrap method. 

 

In order to evaluate the actual coverage probabilities of the ID LCL estimate using our 

variance formula accounting for data and model uncertainties, a Monte Carlo simulation 

study is conducted under linear and nonlinear (sublinear and superlinear) dose-response 

shapes that can be commonly found in real data sets. A superlinear shape is adopted from 

Echovirus 12 virus data (Teunis et al., 1996) from human volunteers (See Table I), and 

linear and sublinear shapes are derived with suitable modifications of low-dose 
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responses. We note that the cited paper (Teunis et al., 1996) contains the Echovirus 12 

virus data and only linear models and that it is our inference indicating nonlinear 

response. Under each dose-response shape, one thousand simulation data sets are 

generated under a binomial assumption. The details are described in Section 3. 

 

 
2. Methods 

 

2.1 Infectious Dose Estimation 
Let �  denote the number of independent dose groups. Let ��  denote the number of 

independent subjects in the � -th group, � = 1, 2, … , �.  Let ��  denote the number of 

subjects infected or with symptoms in the �-th group. Assume that ��  has a binomial 

distribution with ��  and ����; θθθθ��, where ����; θθθθ�� is a dose-response model and θθθθ� is a 

parameter vector. The estimation of θθθθ� is accomplished by maximizing the binomial log-

likelihood function (Kodell et al., 2002),
 ��θθθθ�� ∝ � ���ln����� , θθθθ�� + ��� − ���ln�1 −"�#$���� , θθθθ�� %. 

 

In this paper, four two-parameter dose-response models are used as shown in Table II. 

The two-parameter models include the Beta Poisson (BP), log-normal (LN), log-logistic 

(LL), and extreme-value (EV) models. The maximization is performed by employing the 

Table I:  Echovirus 12 virus data (Teunis et al., 1996) from human volunteers 
1
Dose (��� 

2
Total (��) 3

Infection (��) 4
Probability (
�) 

330  50  15  0.3000  

1000  20    9  0.4500  

3300  26  19  0.7308  

10000 12  12  1.0000  
1
Dose: ingested numbers of pfu (plaque forming units) 

2
Total: number of subjects at a certain dose 

3
Infection: number of subjects with infection (excretion of echovirus or seroconversion, or both) 

4
Probability: sample proportion (��/��� 

Table II:  Dose-response models for microbial risk assessment 

Name Model Domain of Parameters 

Beta Poisson (BP) ���; �, '� = 1 − (1 + �
')*+�� � > 0, ' > 0 

Log-normal (LN) ���; �, '� = Φ-ln��� − �
' . −∞ < � < ∞,' > 0 

Log-logistic (LL) 

���; �, '�
= 11 + exp (− ln � − �

' )5*$
 

−∞ < � < ∞,' > 0 

Extreme-value (EV) 
���; �, '� = 1 − exp�−exp��+ ' ln ��% −∞ < � < ∞,' > 0 

Weibull gamma
1
 (WG) ���; �, ', 6� = 1 − -1 + �7

' .
*+

 � > 0, ' > 0, 6 > 0 

1
Weibull gamma (WG): an additional three-parameter model to establish true underlying models 

in the simulation study. 
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SAS procedure NLMIXED (SAS code is available from the authors upon request). It is 

found that the dose levels may be scaled by a constant scale factor in order to achieve 

greater stability in the maximum likelihood estimates. The model fitting procedure is 

invariant to the transformation. Therefore, the estimates of the effective doses are the 

same regardless of scaling. 

 

When the parameters of a dose-response model are estimated, the effective dose at a 

specific risk level p (EDp) for a given model, which itself can be regarded as a fixed 

“parameter,” can be estimated by substituting the “other” parameter estimates and solving 

for dose d. Every two-parameter model in this study has a closed-form solution for �. If a 

model has no closed-form solution, the bisection method, a simple and robust root-

finding algorithm, can be employed to obtain the estimate of EDp. Estimates of effective 

dose at risk levels of 1% (ED01) or 10% (ED10) represent how many microorganisms can 

produce a 1% or 10% increase in infection or illness, relative to the control response 

(usually assumed to be zero). These effective dose levels (ED01 and ED10) correspond to 

the lower and upper limits of the risk range (1% and 10%) generally recommended for 

restricting the calculation of BMDs in chemical risk assessment (correspondingly, IDs in 

microbial risk assessment). For quantal data, an excess risk above background risk of 

10% is known as the default benchmark risk (BMR) (Nordberg et al., 2007), which here 

we term the IDR. 

 

In order to estimate an ID, effective doses obtained from the two-parameter models (BP, 

LN, LL and EV) are averaged using Kullback weights. We let m be the dimension of the 

parameter vector. The KIC is defined as 8�9 = −2�:θθθθ�;< + 3>. We define the Kullback 

weight for the ? -th model, denoted by @AB"C = exp:−∆AB"C/2</� exp:−∆AB"C/2<,BA#$  

where ∆AB"C= 8�9A − min��8�9$, 8�9G, … , 8�9B�, the sum of the weights � @AB"CBA#$ =
1, and K represents the total number of candidate dose-response models. The model with 

the minimum 8�9A has the most contribution to the ID estimate. The point estimate of the 

ID is obtained as �HIJ = � @AB"CKHI J,ABA#$ ,............................................................(1) 

where KHIJ,A represents the effective dose estimate from the ?-th model at p (1% or 10%) 

risk level. 

 

2.2 Lower Confidence Limit on Infectious Dose 

In this paper a method to construct a lower confidence limit (LCL) on an IDp at excess 

infection rate IDR = p is proposed. We assume that the distribution of ID estimates is not 

symmetric but approximately log-normal (see also Faes et al., 2007). The proposed 

method incorporates model-averaging with KIC-weights (Moon et al., 2005) and our 

nonparametric quantile estimator L+∗  via the bias-corrected and accelerated (BCa) 

bootstrap method (Efron, 1987; Efron and Tibshirani, 1993) in order to adjust for both 

bias associated with empirical estimates of infectious doses (ID) and skewness in the 

sampling distributions of log-ID. The main contribution of the paper is the inclusion of 

model uncertainty and separation of the model uncertainty from data uncertainty to 

estimate the lower confidence limit on an ID. 

 

It is reasonable to assume that each KHI N  has expectation KHN  and that the KHN s 

themselves have expectation �H = � @NB"CKHNBN#$  as similar to assumptions of Faes et al. 

(2007). In order to obtain an LCL on an ID at excess risk BMR, we propose the variance 

of ID as follows: 
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OPQ��H� = R OPQ�
B

N#$
@NB"CKHN� + 2R R 9ST

B

N#AU$

B

A#$
:@AB"CKHA , @NB"CKHN<, (2) 

where the variance term can be decomposed to OPQ:@NB"CKHN< = OPQVK:@NB"CKHNWXN<Y + KVOPQ:@NB"CKHNWXN<Y, (3) 

and the covariance term can be obtained as 

9ST:@AB"CKHA , @NB"CKHN< = KV9STZ:@AB"CKHAWXA<, �@NB"CKHN|XN�\Y, (4) 

where XN  indicates the model k. The proposed formula is based on the law of total 

variance shown in basic statistics textbooks (Devore, 1991; Burnham and Anderson, 

2002). It is also similar to one used in Faes et al. (2007). However, a main difference 

from the one in Faes et al. (2007) is that the weight vector @N is treated as a random 

quantity inside the variance and covariance operators rather than a fixed quantity because 

even the weights vary from dataset to dataset. We note that there is no covariance among 

the model means other than the underlying variance itself because ID estimates for each 

model do not co-vary in any defined or measurable way. Hence, we consider only data 

uncertainty in the covariance term. Therefore, equation (2) with equations (3) and (4) can 

be rewritten as 

OPQ��H� = R OPQVK:@NB"CKHNWXN<Y
B

N#$
+ R R KV9STZ:@AB"CKHAWXA<, �@NB"CKHN|XN�\Y

B

N#$

B

A#$
. 

 

(5) 

 

In this framework the first and second terms in equation (5) represent model 

uncertainty and data uncertainty, respectively. We estimate OPQ��H�  via 

bootstrapping by generating B bootstrap samples and by estimating @NB"C and KHN 
for each dose-response model in each bootstrap sample. 

 
To construct an LCL on an ID, we apply the delta method. We assume that ln��H� is 

approximately normally distributed with mean ln��HI� and variance OPQZln��HI��\. The 

OPQZln��HI��\ can be approximated by OPQ��H�] /�HIG using the delta method. Then, an 

LCL on ln��H� can be estimated as 

^9Î = ln:�HI< + L+∗
_OPQ��H�]

�HI , 
 

(6) 

where OPQ��H�]  is obtained by equation (5). A critical value L+∗  corresponding to the 100�1 − ��% confidence level is estimated by 

L+∗ = ln:�HI<�`� − >
aT ,  

(7) 

where ln:�HI<�`� is the LCL estimate for ln���H� from the BCa bootstrap method, and > 

and T  are the mean and variance of log-ID estimates from the B bootstrap samples, 

respectively. An LCL on the ID is obtained by applying the anti-log transformation exp�^9Î �. 
 

The estimation of ln:�HI<�`� is summarized as follows: First, from each bootstrap sample, 

B bootstrap estimates of ID’s are obtained. Next, the bias correction factor Lb is obtained 
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as Lcb = Φ*$:#Zln:�HIe< < ln:�HI<\/f< , where ln:�HIe<  can be estimated from the B 

bootstrap samples �g = 1, 2, … , f�, and ln:�HI< can be estimated from the original data. 

Next, the acceleration factor P  can be obtained as Ph = � Zln��H�∗iiiiiiiiii − ln:�HIe<\jke#$ /
16 m� Zln��H�∗iiiiiiiiii − ln:�HIe<\Gke#$ nj/G5 , where  ln��H�∗iiiiiiiiii  is the mean of the bootstrap 

estimates ln:�HIe<.  Finally, we estimate ln:�HI<�`� by calculating  ^ = of × �$q, where 

�$ = Φ�Lcb + �Lcb + L+�/�1 − Ph�Lcb + L+��%. 
 

This process is computationally intensive. Instead of using one thousand or more 

bootstrap samples, a smaller bootstrap sample size was determined by a simulation study. 

The mean differences between L+∗  obtained from a bootstrap sample size of 1000 and L+∗  

obtained from bootstrap sample sizes less than 1000 were compared using both a t-

statistic and a Wilcoxon rank sum statistic as a nonparametric alternative. The bootstrap 

sample size f = 700�was selected based on p-value > 0.10. 

 

 

3. MONTE CARLO SIMULATION STUDIES 

 
In order to examine the coverage of the LCL estimate for ID, Monte Carlo simulation 

studies are conducted. Three distinct monotonic dose-response patterns, sublinear, linear 

and superlinear are considered, which can be commonly found in real data sets (Teunis, 

et al., 1996). By way of explanation, when two points on a curve are connected, and the 

curve is above (below) a straight line connecting the points, we say the curve is 

superlinear (sublinear). A superlinear pattern is derived from the Echovirus 12 data, and 

linear and sublinear patterns are derived from appropriate modifications. We do not 

intend to make inferences about Echovirus 12. We simply use the Echovirus data to 

ground our simulation study. It illustrates some characteristics of actual microbial dose-

response data and gives us a superlinear dose-response pattern as a starting point. All five 

models (BP, LN, LL, EV and WG) in Table II are fitted to each pattern in Table III to 

establish “true” underlying dose-response curves. The three-parameter WG model is 

included along with the two-parameter models because of its historical prominence in 

MRA. However, only the four two-parameter models are used in model averaging to 

estimate the ID and its LCL. 

 

As shown in Table III, four points in each pattern are considered to generate each dose-

response pattern. For example, we consider the superlinear pattern. In order to generate 

the true probabilities at dose levels 330, 1000, 3300 and 10000 based on Table III, each 

dose-response model is fitted to the four points to obtain true parameters θθθθ. For 

generating well-distinguishable three dose-response patterns, six dose-levels are 

geometrically spaced as d6 = 10000, d5 = 5000, d4 = 2500, d3 = 1250, d2 = 625, and d1 = 

312.5. For each dose-level, the “true probability” is determined by pi = P(di |θθθθ) for i = 1, 

2, …, 6 (as shown in Tables IV and V).  Similarly, other patterns can be generated. 

 

Note that true probabilities at the six geometrically spaced dose levels are used when 

Table III:  Three hypothetical dose response patterns 

Response Patterns d = 330
 

d = 1000
 

d = 3300
 

d = 10000
 

Superlinear 0.24 0.50 0.76 1.00 

Linear 0.04 0.10 0.34 1.00 

Sublinear 0.02 0.04 0.08 1.00 
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generating Monte Carlo simulation data sets as shown in Tables IV and V. In Table IV, 

di, ni, and pi are fixed as true conditions, whereas the response Xi is randomly generated  

under the binomial assumption with parameters ni and pi. To generate M = 1000 

simulation data sets for each designed pattern, each dose-response model is used 200 

times as a true model Ptrue(d; θθθθ), where θθθθ = (α, β) for the two-parameter models and θθθθ = 

(α, β, γ) for the three-parameter WG model.  Two sample sizes of ni = 10 and ni = 30 for i 

= 1, 2, …, 6 are considered, where the sample size 30 is approximately the average 

sample size per dose level in the Echovirus 12 data. It is common to use the number of 

dose levels � ≤ 6 in MRA. After fitting the true configurations, true parameters are used 

to obtain the IDtrue from each true dose-response model. In order to calculate the coverage 

rate for each simulation setting, we observe how many LCL estimates “cover” the IDtrue.  

That is, the coverage rate is the proportion of simulations for which the LCL on the ID is 

less than the IDtrue. 95% is the nominal coverage rate we are trying to achieve. 

 

As proof of concept, a pilot simulation study has been conducted to verify the coverage 

Table IV:  Generation of Monte Carlo simulation data sets from a true model 

Dose Level 

(i) 

Dose (di) Total (ni) Response 

(Xi) 

True Probability (pi) 

1 3.125 × 10
2 10 (or 30) Bin(n1, p1) p1 = Ptrue (d = 3.125 × 10

2
; θθθθ) 

2 6.250 × 102 10 (or 30) Bin(n2, p2) p2 = Ptrue (d = 6.250 × 102; θθθθ) 

3 1.250 × 10
3 10 (or 30) Bin(n3, p3) p3 = Ptrue (d = 1.250 × 10

3
; θθθθ) 

4 2.500 × 10
3 10 (or 30) Bin(n4, p4) p4 = Ptrue (d = 2.500 × 10

3
; θθθθ) 

5 5.000 × 10
3 10 (or 30) Bin(n5, p5) p5 = Ptrue (d = 5.000 × 10

3
; θθθθ) 

6 1.000 × 10
4 10 (or 30) Bin(n6, p6) p6 = Ptrue (d = 1.000 × 10

4
; θθθθ) 

Table V:  True hypothetical probabilities at 6 dose levels for Monte Carlo samples. 

 Superlinear 

Dose (di) BP LN LL EV WG 

3.125 × 10
2 0.1884 0.1983 0.1974 0.2202 0.2202 

6.250 × 10
2 0.3347 0.3734 0.3702 0.3540 0.3540 

1.250 × 10
3 0.5407 0.5799 0.5841 0.5359 0.5359 

2.500 × 10
3 0.7611 0.7662 0.7705 0.7404 0.7404 

5.000 × 10
3 0.9171 0.8945 0.8891 0.9065 0.9065 

1.000 × 10
4 0.9822 0.9621 0.9504 0.9845 0.9844 

 Linear 

Dose (di) BP LN LL EV WG 

3.125 × 10
2 0.0605 0.0052 0.0071 0.0110 0.0110 

6.250 × 10
2 0.1174 0.0366 0.0295 0.0350 0.0350 

1.250 × 10
3 0.2209 0.1529 0.1137 0.1083 0.1083 

2.500 × 10
3 0.3931 0.3989 0.3515 0.3084 0.3085 

5.000 × 10
3 0.6316 0.6955 0.6959 0.6948 0.6948 

1.000 × 10
4 0.8643 0.8997 0.9062 0.9781 0.9781 

 Sublinear 

Dose (di) BP LN LL EV WG 

3.125 × 10
2 0.0417 0.0000 0.0001 0.0004 0.0004 

6.250 × 10
2 0.0817 0.0019 0.0010 0.0026 0.0026 

1.250 × 10
3 0.10567 0.0298 0.0101 0.0162 0.0163 

2.500 × 10
3 0.2888 0.1899 0.0964 0.0974 0.0975 

5.000 × 10
3 0.4942 0.5506 0.5268 0.4732 0.4735 

1.000 × 10
4 0.7441 0.8712 0.9208 0.9819 0.9818 

Biometrics Section – JSM 2012

320



of the ID via the proposed variance formula when the LN model is known to be the true 

model. The results from four methods are compared: (1) bootstrap percentile method 

(Efron and Tibshirani, 1993) without the variance formula (2) the BCa bootstrap method 

without the variance formula, (3) the variance formula with z0.05 = −1.645, and (4) the 

variance formula with estimated critical value using the BCa bootstrap method (denoted 

by L+∗ ). As shown in Table VI, the proposed method with L+∗  outperforms the other three 

methods, and the coverage rate is close to the nominal level 0.95. We expect that the 

application of the BCa bootstrap method in the computation of L+∗  should correct bias and 

skewness if they exist. 

 

After the pilot study using the single LN model, a Monte Carlo simulation study is 

conducted to evaluate the coverage probabilities obtained from the four methods under 

the consideration of data uncertainty and model uncertainty. Figures 1 to 3 are obtained 

by fitting the dose-response patterns in Table III using the four two-parameter models.  

They serve as the true underlying patterns for sublinear, linear, and superlinear, 

respectively. Since the BP model appears to be insufficiently flexible to generate a 

sublinear pattern, it may not be a good representation for the true sublinear pattern (See 

Figure 1). For only the sublinear pattern, each model is used 250 times as a true model, 

and two results with and without the BP model are compared. The results from the four 

methods are compared. 

 

As shown in Table VII, the proposed method also appears to outperform the other 

methods in model-averaging. The bootstrap percentile method without the variance 

formula and the BCa bootstrap method without the variance formula do not provide 

enough coverage, and none of the results reaches the nominal coverage rate 0.95. Using 

the proposed variance formula, the coverage rate is generally improved and close to 0.95.  

It seems clear that the proposed variance formula performs better than the bootstrap 

percentile and the BCa bootstrap methods. Moreover, it is remarkable that using a 

nonparametric quantile estimate L+∗ , coverage approaches the 0.95 level more tightly than 

using z0.05 = −1.645, and this phenomenon is consistent throughout all three 

configurations regardless of ID01 or ID10 and ni = 10 or ni = 30. For ni = 10 in the 

sublinear pattern, none of the four methods has a plausible result. It may be because the 

pattern is too extreme with a small sample size per dose group. 

 

 

4. Discussion 

 

Table VI:  Results from the pilot simulation study (LN model only) 

  1Coverage 2Coverage 3Coverage 4
Coverage 

Pattern ni ID01 ID10 ID01 ID10 ID01 ID10 ID01 ID10 

Superlinear 10 0.875 0.880 0.933 0.930 0.923 0.904 0.969 0.954 
30 0.890 0.889 0.956 0.951 0.928 0.920 0.963 0.959 

Linear 10 0.832 0.847 0.905 0.898 0.921 0.904 0.953 0.939 
30 0.867 0.875 0.932 0.935 0.916 0.921 0.972 0.956 

Sublinear 10 0.755 0.793 0.853 0.849 0.951 0.913 0.962 0.916 
30 0.840 0.841 0.927 0.919 0.896 0.900 0.967 0.952 

1
Coverage: coverage rate from bootstrap percentile method 

2
Coverage: coverage rate from bootstrap BCa method 

3
Coverage: coverage rate from the proposed variance formula with Lb.bt = −1.645  

4
Coverage: coverage rate from the proposed variance formula with L+∗  
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The main contribution of the paper is the inclusion of model uncertainty, and the 

separation of model uncertainty from data uncertainty to estimate the lower confidence 

limit on an ID. The proposed method incorporates model-averaging with KIC-weights 

(Moon et al., 2005) and our nonparametric quantile estimator L+∗  via the BCa bootstrap 

method in order to adjust for both bias of the ID estimate and skewness in the sampling 

distributions of log-ID. We note that the estimation of a lower confidence limit on an ID 

should not be sensitive to the choice of KIC-weights or AIC-weights when the dose-

response models have the same number of parameters. In our study, the number of 

parameters m is 2 for every model in model-averaging. 

 

Although the typical BCa bootstrap method (without the proposed variance formula) 

accounts for both bias and skewness in data uncertainty to improve the bootstrap 

percentile method, it does not properly account for model uncertainty. As a result, the 

coverage rates do not meet the desired confidence level 0.95 (as shown in columns 5 and 

6 of Tables VI and VII). This result highlights the importance of properly accounting for 

model uncertainty in a model-averaging method. Our nonparametric quantile estimator L+∗  using the BCa bootstrap method consistently outperforms zα from the normality 

assumption regardless of dose-response patterns, risk levels, and sample sizes. In other 

words, ignoring bias and skewness may lead to inaccurate coverage of the LCL on the 

ID. 

 

In the pilot study in Section 3, the single LN model with the proposed method exhibits 

nominal coverage when the true setting is designed by the same LN model as shown in 

Table VI. On the other hand, the result may not be guaranteed for the case when the truth 

is generated from other models. Wheeler and Bailer (2007) also have shown that using 

the best model (in terms of wG Goodness-of-Fit statistic) does not provide a satisfactory 

 
Figure 1.  True dose response models fitted to the hypothetical sublinear pattern in 

Table 3.   Note that the fits from EV and WG appear to be almost identical. 
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coverage rate in their simulation study based on various true settings. Since there is no 

default model in MRA, incorporating model uncertainty along with data uncertainty is 

recommended to ensure public health protection. 

 

In the Monte Carlo simulation study, the three configurations, superlinear, linear, and 

sublinear, represent various microbial risk patterns showing the relationship between the 

dose to an agent and the severity of associated adverse response relating to the food-

borne contamination process. The coverage rates from the proposed method in various 

simulation settings are near the nominal level except for sublinear with ni = 10 as shown 

in Table VII. It may be due to a small sample size and an extreme sublinear pattern, 

which may lead to abnormally high estimates of IDp. None of the four compared methods 

meets the nominal coverage for the sublinear pattern with the small sample size. For ni = 

10 and the given sublinear pattern, it is more likely to have zero binary responses in the 

low dose-levels, and the estimates of IDp become abnormal. 

 

The coverage of ID01 in the superlinear pattern with ni = 30 appears to be lower than the 

nominal level (Table VII). It may be due to inadequate representation of model 

uncertainty because every model is fitted close to each other as shown in Figure 3. The 

figure indicates that an indistinguishable amount of model variation exists near the 1% 

level. Elimination of wrong models may be a possible remedy, but the determination of 

wrong models is another challenge. Furthermore, if a wrong model exists, it has been 

already treated by the Kullback information criterion by imposing a small or negligible 

weight in the estimation as a penalty for the poor fit. 

 

Another issue is the sample size for each dose group. In the superlinear pattern, the 

 
Figure 2.  True dose response models fitted to the hypothetical linear pattern in Table 3.  

Note that the fits from EV and WG appear to be almost identical. 
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coverage for ID01 is consistently lower among the methods when the sample size per dose 

group is higher. In other words, increasing the sample size produces an inaccurate result, 

which is a contradiction to statistical common sense. Overall, the difference between the 

sample sizes ni = 10 and ni = 30 seems to be sensitive to patterns and/or risk levels. The 

exact relationship is still not revealed, and a further investigation is deferred to a future 

study. 

 

Moon et al. (2004)
 
claimed that the two-parameter models (beta-Poisson, log-normal, 

log-logistic, and extreme value) reflected at least as much model uncertainty on average 

as the three-parameter models (Weibull gamma, exponential gamma, Weibull 

Table VII:  Coverage rates of the four methods with the four two-parameter models 
  

1
Coverage

 2
Coverage

 3
Coverage 

4
Coverage 

Pattern ni ID01 ID10 ID01 ID10 ID01 ID10 ID01 ID10 

Superlinear 
10 0.6980 0.8230 0.7890 0.8950 0.9020 0.9270 0.9490 0.9670 

30 0.5560 0.7430 0.7110 0.9070 0.8750 0.9150 0.8990 0.9690 

Linear 
10 0.7020 0.7940 0.8350 0.8780 0.9530 0.9740 0.9520 0.9580 

30 0.7330 0.8230 0.8610 0.9200 0.9390 0.9920 0.9580 0.9810 

Sublinear 

(
5
Including BP) 

10 0.6792 0.7888 0.8296 0.8552 0.8360 0.8824 0.8384 0.8880 

30 0.6648 0.7504 0.8624 0.9344 0.9688 0.9912 0.9632 0.9752 

Sublinear 

(
6
Excluding BP) 

10 0.7100 0.8050 0.8230 0.8330 0.8190 0.8680 0.8160 0.8760 

30 0.6840 0.7370 0.8720 0.9310 0.9880 0.9940 0.9720 0.9790 
1
Coverage: coverage rate from bootstrap percentile method 

2
Coverage: coverage rate from bootstrap BCa method 

3
Coverage: coverage rate from the proposed variance formula with Lb.bt = −1.645  

4
Coverage: coverage rate from the proposed variance formula with L+∗  

5
Including BP: each model is used 250 times as a true model, so M = 1250. 

6
Excluding BP: each model is used 250 times as a true model, so M = 1000. 

 
Figure 3.  True dose response models fitted to the hypothetical superlinear pattern in 

Table 3.  Note that the fits from EV and WG appear to be almost identical. 
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exponential, and shifted Weibull). Namata et al. (2008) studied model-averaging in MRA 

with K = 40 dose-response models including the same four two-parameter models in this 

study plus the family of fractional polynomial models with the combination of 3 negative 

powers and 4 positive powers. They claimed that the set of candidate models should be 

rich enough. We note that the richness may not be solely determined by the number of 

dose-response models considered in model-averaging. A set of fewer but diverse models 

may reflect as much model uncertainty in a more efficient manner. In our simulation 

study, we confirm that only the four two-parameter models are sufficient to account for 

model uncertainty in all three representative dose-response patterns. 

 

An ideal combination of dose-response models is unknown, or it may not exist. Our 

proposed method can be applied with any set of dose-response models. We note that the 

number of models in model-averaging and the number of model parameters may 

significantly influence the computational process. We also note that an alternative 

approach may be model selection based on classification of a model as “mechanistic” or 

empirical. Mechanistic models are plausible because of their interpretability. However, 

the underlying assumptions are sometimes strong, and there may be circumstances in 

which the assumptions are not valid. A good mix of mechanistic and empirical models is 

also a key point in model-averaging (selection of model space). If data arise from the 

assumed mechanism, and the mechanistic model fits the data well, then the model will be 

highly weighted. If assumptions are not met, our estimates will be weighted more by 

empirical models. 

 

In future studies, we may investigate if a subset of BP, LN, LL, and EV models performs 

well for all three representative patterns. We may be able to discover a pattern-specific 

subset of the two-parameter models or of any larger model spaces. For a simple 

illustration, if a real data set exhibits a sublinear pattern, the BP model appears to be 

eliminated because it is unable to fit the pattern. In the BP model, the second-derivative 

with respect to d (dose) is negative for all α > 0, β > 0, and d > 0; hence it is unable to be 

concave upward for any data points (See Figure 1). We note that Teunis et al. (1996) 

suggest that the BP model is the best-fit model for the Echovirus data set, although we 

assert that the Echovirus data exhibit a superlinear dose-response pattern. If a general 

guideline can be developed for a preferable pattern-specific subset of dose-response 

models, it may contribute substantially to MRA and it can be widely used in practice. 
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