
Scan statistic distribution through slack equations

Donald E. K. Martin
North Carolina State University, Statistics Department, 4272 SAS Hall, 2301 Stinson

Drive, Raleigh NC 27695-8203

Abstract
Scan statistics are used in many areas of applied probability and statistics to study local
clumping of patterns. Testing based on a scan statistic requires tail probabilities.
Whereas the distribution of various scan statistics has been studied extensively, most of
the results are approximations, due to the difficulties associated with the computation.
Results have been given to compute exact p -values for the statistic over a binary
sequence that is independent or first-order Markovian. However, in many practical
applications, the variables under study take on multiple values, and/or a model with
higher-order dependence provides a better fit. The present paper fills this gap by
obtaining the distribution of the univariate scan statistic for multi-state trials that are
Markovian of a general order of dependence. A deterministic finite automaton is
developed to index the computation, and a matrix corresponding to automaton transitions
is used to update probabilities. Examples are given to illustrate the algorithm.

Key Words: clustering of patterns, deterministic finite automaton, higher-order
Markovian trials, multi-state trials, one-dimensional scan statistic

1. Introduction

For a sequence 1, , nX X=X  of random variables taking values in a finite discrete
space, the discrete scan statistic is typically defined by

 { }1

() max for , 1, ,i
i jj i w

S w X i w w n
= − +

= = +∑  . (1)

The statistic is frequently used to detect local clustering of patterns in X . As examples,
Wagner (1999) used the statistic to detect clusters of transcription factor binding sites in
DNA nucleotides, Hoh and Ott (2000) to search for new genes, and Sun et al. (2006) to
identify choromosomal regions that are associated with disease, DNA copy number
variations, and other genome-based measurements.
 Tail probabilities of ()S w are needed for statistical tests. However, most of the
results in this area are approximations and bounds on the probabilities [see, e.g. Naus
(1982), Glaz (1989), Loader (1991), and Chen (1998)]. Results for the exact distribution
of ()S w are relatively scarce, even in the case of independent binary trials, due to the
difficulty in computing the distribution. Naus (1974) obtained an exact combinatorial
result for i.i.d. Bernoulli trials that by its nature has limited applicability. Fu (2001)
computed p -values for the statistic that apply to independent and first-order Markovian
binary trials, and displayed the statistic’s entire distribution for window sizes as large as

Section on Statistical Computing – JSM 2012

2561

5w = . Ebneshahrashoob et al. (2005) set up a system of conditional probability
generating functions and used a matrix corresponding to the system to extend the latter
results to larger window sizes. However, to date there have been no exact results for
multi-state trials or higher-order Markovian sequences, both of which can be very useful
in modeling.
 An application where multi-state trials arose was in locating significant clusters of
charges in protein sequences (Karlin et al. 1989). In the study, arginine, lysine and
histidine were represented by “1” (a positive charge), aspartic and glutamic acid by “-1”
(a negative charge), and all other residues by “0,” a neutral charge. An application where
a higher-order Markov model is particularly useful is to model the “background noise”
when searching for exceptional patterns in biological sequences [Robin et al. (2005)].
 We allow X to be a sequence of multi-state trials that is higher-order Markovian,
and compute the exact distribution of the scan statistic (1). The computation is carried
out by forming a deterministic finite automaton with final states that indicate that

()S w s≥ for each fixed value of s , setting up an initial distribution and transition
probability matrix for automaton state transitions, and using vector-matrix updates of
probabilities. Thus the computation has some similarities to the automaton-based
approach to compute distributions of patterns of Ribeca and Ranieri (2008), as well as the
finite Markov chain embedding approach used in Fu (2001), with deviations to improve
computational efficiency that will be mentioned in what follows.
 The paper is organized as follows. The next section contains details of the algorithm.
Section 3 gives examples to illustrate the algorithm and its use, and the final section is a
summary.

2. Computation of the Distribution of the Scan Statistic

Let X be a stationary m th-order Markovian sequence with realized values denoted by

1, , nx x , where { }0 1 1, , ,i kx σ σ σ −∈Σ =  with 0 1 1kσ σ σ −< < < . For simplicity we
focus on the case where 1j jσ σ δ+ = + for some integer δ and 0,1, , 2j k= − , though
the general case can be handled in a similar manner. In the linear case that is assumed,
we can without loss of generality use { }0,1, , 1kΣ = − so that the scan statistic takes

values in (){ } (){ }0 1 1, , , 0,1, , 1w k w kν ν ν −Φ = = −  , since if { }0 1 1, , , kσ σ σ −′ ′ ′ ′Σ =  with

0j jσ σ δ′ ′= + for 0,1, , 1j k= − and some fixed δ , the elements of

(){ }0 1 1, , , w kν ν ν −
′ ′ ′ ′Φ =  correspond in a one-to-one fashion to Φ through 0j jv w sσ δ′ ′= + .

 We compute probabilities ()()P S w s≥ that give p -values for a given initial

distribution π over m -tuples m
mx ∈Σ and transition matrix T . Here ()1, ,t t m tx x x− +≡  ,

, 1, ,t m m n= +  and T gives transition probabilities for transitions of tx to 1tx + , or
equivalently probabilities ()1t tP x x+  . The basic steps of the algorithm are:

 Set up a deterministic finite automaton [DFA, Hopcroft et al. (2001)] with states
that index progress into terminal strings that indicate that ()S w s≥ .

 Use π to set up an initial distribution π over automaton states, and T to set up
a transaction probability matrix Ω for transitions of those states.

 Carry out matrix-vector updates to compute the desired probability.

Section on Statistical Computing – JSM 2012

2562

Next we give more details on the computation algorithm.

2.1 Setup of automaton states
For a fixed s , let s∆ be the set of automaton states that is needed to compute

()()P S w s≥ , and let
(1)

2

w k
ss

−

=
∆ ≡ ∆


. For a state 1 jd d d= ∈∆ of length j , define

the window sum (denoted by ()win d) to be
1

j
ii

d
=∑ .

 The shortest strings in s∆ are those of m m
sΣ ⊂ Σ , the m -tuples mx for which

()mwin x s< . This implies that all transient automaton states carry the last m values of
the X sequence. m

sΣ is required in s∆ due to the Markovian assumption.
 We then add to s∆ the following strings of lengths 1, , 1j m w= + − :

()() () []{ }, 1 0; max 1, 1 min (1), 1s jD d d s k w j win d j k s= >  − − −  ≤ ≤ − −  .

The inequality
 ()() ()1s k w j win d− − − ≤ (2)

guarantees that from every state of ,s s jj
D D≡


, a sum 1 2 wd d d s+ + + ≥

is possible.

On the other hand, the inequality

 () 1win d s≤ − (3)

ensures that all states of sD are transient. We add the absorbing state sA to s∆ to
correspond to terminal DFA strings d with ()win d s≥ . Then

1

,
1

w
m

s s s j s
j m

D A
−

= +

 
∆ = Σ ∪ ∪ 

 


, a disjoint union.

 No string d of length w is needed because either such strings have ()win d s≥ (and
thus are represented by the absorbing state), or their window sums can’t possibly reach s
because their length is already w .
 The states of sD may be set up using what we call slack variables 1, jς and 2, jς that
respectively indicate when the inequalities (2) and (3) no longer are satisfied. The slack
variables for string 1, , jx x x=  are

 () () ()1, 1 1j w k s j k win xς = − − − − −  

 ()() ()()1w j k s win x= − − − − ; (4)

 ()2, 1j s win xς = − − . (5)

Slack 1, jς decreases from the initial (before any symbols are observed) “leeway”

()1w k s− − by 1 ik x− − for each symbol 1ix k< − . Its negative value indicates that the
string can no longer reach s , and thus isn’t needed in the state space. On the other hand,

2, jς decreases from the initial value 1s − by ix . If 2, 0jς < , then ()win x s≥ . An m -

Section on Statistical Computing – JSM 2012

2563

tuple of mΣ not satisfying (3) for j m= (i.e. with 2, 0mς <) is not contained in m
sΣ , and

strings of length j m> are only in sD if 1, 0jς ≥ and 2, 0jς ≥ .

 The number of strings in ∆ is ()()2 11m m w wk k k k k− −∆ = + − + + = . This
shouldn’t be surprising since strings of ∆ correspond in a one-to-one fashion to the
()1w − -tuples 1w−Σ by deleting all leading zeroes from the latter strings (the one
exception being the m -tuple consisting of all zeroes, which corresponds to the ()1w − -
tuple consisting of all zeroes). An advantage of computing p -values is that the size of
each s∆ is typically much less than 1wk − .
 In the Appendix we derive a combinatorial formula for the number of states s∆ of

s∆ . Using those results, Table 1 and 2 give s∆ for 1m = , { }0,1,2Σ = , and various
values of w . This information is useful for dimensioning vectors when programming the

algorithm. Note that s∆ is maximized for s ξ=    , where ()1
1

2
w k

ξ
−

≡ + . Also, we

observe symmetry in s∆ (actually in sD) for different values of s . This symmetry is

explored next. We first define what we mean by “complementary” strings ()ax and ()bx
and corresponding complementary values ()as and ()bs .

Table 1. State space size s∆ , 2,3, ,2s w=  for { }0,1,2Σ = , 3k = , 1m = , and various

values of w .

s 4w = 5w = 6w = 7w = 8w = 9w = 10w = 11w = 12w =
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

5
11
17
20
17
11
6

6
16
31
46
52
46
31
16
7

7
22
51
91
127
142
127
91
51
22
8

8
29
78

162
267
358
394
358
267
162
78
29
9

9
37

113
267
505
785

1017
1108
1017
785
505
267
113
37
10

10
46

157
415
883
1555
2305
2908
3140
2908
2305
1555
883
415
157
46
11

11
56

211
616

1453
2851
4741
6766
8351
8954
8351
6766
4741
2851
1453
616
211
56
12

12
67

276
881

2278
4918
9043

14356
19856
24069
25654
24069
19856
14356
9043
4918
2278
881
276
67
13

13
79

353
1222
3433
8075

16237
28315
43253
58279
69577
73790
69577
58279
43253
28315
16237
8075
3433
1222
353
79
14

Section on Statistical Computing – JSM 2012

2564

Table 2. s∆ for 13, 14 and 15w = , 1s wξ= = + , { }0,1,2Σ = (3k =) and 1m = .

s 13w = 14w = 15w =
14
15
16

212942

616228

1787608

Definition 2.1. Strings () ()() () ()

1 2, , ,a a a a
jx x x x≡  and () ()() () ()

1 2, , ,b b b b
jx x x x≡  are called

complementary if () ()
1 1

a bx x k+ = and () () 1a b
i ix x k+ = − for any { }2, ,i j∈  .

Definition 2.2. Complementary integer values ()as and ()bs for the problems

()()() rP S w s≥ , ,r a b= are such that ()as qξ= − and ()bs qξ= + for some q ξ< .

Theorem 2.2. Consider complementary strings ()ax and ()bx of arbitrary length

{ }, 1, , 1j m m w∈ + − and complementary values ()as and ()bs respectively

corresponding to ()ax and ()bx . If () ()()1, 2,,r r
j jς ς denotes the value of ()1, 2,,j jς ς for string

()rx , ,r a b= , then () ()() () ()()1, 2, 2, 1,, ,a a b b
j j j jς ς ς ς= .

Proof. First note that by definition, ()() ()

1 1
1j ja b

i ii i
x x kj j

= =
+ = − −∑ ∑ , 1m j w≤ ≤ − .

We have from (4) and (5),
 () ()() ()()()

1, 1
1 ja a a

j ii
w j k s xς

=
= − − − −∑ ,

() () () ()()1

1
1 1 1 1

2
j b

ii

w k
w k j k q kj j x

=

  − 
= − − − − + − + − − +  

   
∑

 () ()
2,1

1 j b b
i ji

q xξ ς
=

= + − − =∑ .
Also,

() () ()
2, 1

1 ja a a
j ii

s xς
=

= − −∑ ,

() ()()()
1

1
1 1 1

2
j b

ii

w k
q kj j x

=

 − 
= + − − − − − − 
 

∑

() () () ()
1

1
1 1 1

2
j b

ii

w k
w k j k q x

=

−
= − − − − − − +∑

()() ()() ()
1,1

1 j b b
i ji

w j k q xξ ς
=

= − − − + − =∑ .

 ▄

Since () ()() () ()()1, 2, 2, 1,, ,a a b b

j j j jς ς ς ς= and the states of sD are those that have non-negative slack

variables, we have the following corollary.

Section on Statistical Computing – JSM 2012

2565

Corollary 1. Let ()as and ()bs be complementary values. Then for every state in the set

()as
D for computing ()()Pr () aS w s≥ , there is a corresponding state in ()bs

D for the

problem of computing ()()Pr () bS w s≥ . This implies that () ()a bs s
D D= .

 This discussion leads to the following method to obtain state spaces when the
complete distribution of ()S w is needed.

 First form the states of ()bs
D for () ()1 , , 1

2
bs w kξ = + −  

 using slack variables

as filters, as described above.
 Form states () () ()

() () ()
1 2, , , a

a a a a
j s

x x x x D= ∈

for () 1, 2, ,2as ξ ξ= − −  from states

() () ()
() () ()
1 2, , , b

b b b b
j s

x x x x D= ∈

formed above using the symmetric of states for

complementary values ()as qξ= − and ()bs qξ= + . This is carried out by setting
() ()() () () ()

1 2 3, 1 , 1 , , 1a b b b b
jx k x k x k x k x= − − − − − − − .

 Add in m -tuples mx with ()mwin x s< for the various values of s .

If 1s = , () ()Pr () 1 Pr () 0 1 0,0, ,0 0 0,0, ,0

n m
m m

S w s S w pπ

−
   
   ≥ = − = = −

        

 


  .

2.2 Setup of initial distribution and transition matrix for automaton states
 To set up the initial distribution π over automaton states, set () ()m mx xπ π=   ,

m
m sx ∈Σ , and () 1sAπ ς= − , where ς is the sum of probabilities for m -tuples m

m sx ∈Σ .

() 0dπ = for all other states sd ∈∆ .

 For state sd ∈∆ of length j and symbol x∈Σ , if 2, 0j xς − < , then d transitions to

sA on symbol x . If 2, 0j xς − ≥ then d d ′→ , where d ′ is the longest suffix (ending) of

dx that is a state of s∆ . (Here dx denotes the concatenation of x to the right of d).
The transition probability associated with the transition d d ′→ (or sd A→) is exactly
the entry of T for m mx x′→  , where mx is the m -tuple suffix of d , and mx′ is the m -
tuple suffix of d ′ (or of dx when sd A→). Transition probabilities for automaton states
are stored in a matrix Ω .

2.3 Implementation of computation
The vector n m

nψ π −= ×Ω has elements ,n dψ that give the probability that the automaton

lies in state d at time n . Then () ,Pr ()
sn AS w s ψ≥ = , the probability of the absorbing

state.
 Since there are only k non-zero elements in each row of Ω , that matrix is stored in
a sparse fashion. Probability vectors rψ are updated sequentially using 1r rψ ψ −= Ω ,

1, ,r m n= +  , with initial condition mψ π=  . Each update requires about sk ∆

Section on Statistical Computing – JSM 2012

2566

multiplications and additions, for a total of () sn m k− ∆ of each operation. Thus the
computation is linear in n , but s∆ , though smaller than 1wk −∆ = , nonetheless grows
very quickly with window size w .
 Note that we could compute n m−Ω in relatively few multiplications using “matrix
doubling” (as was done in Martin and Coleman 2011), however the sparseness of uΩ
goes away as the power of u increases, so that the advantage of using sparse matrix
algebra disappears. Multiplying two square matrices of order s∆ uses ()3

sO ∆

operations. Thus for large w (and corresponding large values of s∆), it is more
economical to sequentially update rψ instead of first forming n m−Ω and then multiplying
π by it.

3. Numerical Examples

We wrote a FORTRAN program to implement the algorithm described in Section 2. The
program contains a subroutine designed for computing the complete distribution by using
the complementary nature of the state spaces for ()bs qξ= + and ()as qξ= − . It also has
a subroutine for computing p -values ()Pr ()S w s≥ for specified values of s . Below are
basic examples to illustrate the steps of the algorithm, and to give some numerical output.
 Consider first a case where X is a first-order Markov chain (1m =), with

{ }0,1,2Σ = so that 3k = . Tables 1 and 2 given earlier give the number of states used to
compute ()Pr ()S w s≥ . If 4w = and 7 and 3s = , complementary values that are

symmetric about ()1
1 5

2
w k

ξ
−

= + = , 1 1
7 3Σ = Σ = Σ , { }7 12,21,22,122,212,221,222D =

and { }3 20,11,10,200,110,101,100D = , where we have listed states so that state i of 7D
is complementary to state i of 3D (for example state 12 of 7D and 20 of 3D are
complementary, with respective slack values ()0,4 and ()4,0).
 Using the transition matrix

1

0.5 0.2 0.3
0.4 0.2 0.4
0.6 0.1 0.3

T
 
 =  
 
 

and stationary initial distribution 52 17 32, ,
101 101 101

π  =  
 

 (computed using stationary

Tπ π=) as input to the algorithm (the corresponding states are listed in lexigraphical
order, so that, for example, ()1 0 52 /101P X = =), we obtained p -values for

1, ,12w =  and 2 ,2 1, ,1s w w= −  (Table 3). The CPU times were all less than a
second for 4 8w≤ ≤ , but increase greatly with w . The computations were terminated if

()Pr () 0.99995S w s≥ > since probabilities are listed to four significant digits and Table

Section on Statistical Computing – JSM 2012

2567

Table 3. Probabilities ()Pr ()S w s≥ , 1,2, ,2s w=  for 100n = , transition matrix

2T , { }0,1,2Σ = ()3k = , 1m = , and various values of w .

s 4w = 5w = 6w = 7w = 8w = 9w = 10w = 11w = 12w =
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Time

1
1
1
1
1

0.9959
0.8058
0.4509

0.0s

1
1
1
1
1

0.9999
0.9878
0.8684
0.4202
0.1605

0.0s

1
1
1
1
1
1

0.9994
0.9839
0.8334
0.5264
0.1664
0.0503

0.0s

1
1
1
1
1
1
1

0.9985
0.9708
0.8344
0.5131
0.2382
0.0587
0.0152

0.1s

1
1
1
1
1
1
1

0.9999
0.9960
0.9600
0.8051
0.5359
0.2464
0.0927
0.0197
0.0045

0.8s

1
1
1
1
1
1
1
1

0.9995
0.9922
0.9418
0.7889
0.5216
0.2734
0.1030
0.0336
0.0065
0.0013

6.5s

1
1
1
1
1
1
1
1

0.9999
0.9986
0.9855
0.9243
0.7605
0.5186
0.2760
0.1212
0.0400
0.0117
0.0021
0.0004

59.6s

1
1
1
1
1
1
1
1
1

0.9998
0.9967
0.9769
0.9016
0.7375
0.5023
0.2834
0.1282
0.0497
0.0149
0.0040
0.0007
0.0001

9m14s

1
1
1
1
1
1
1
1
1
1

0.9993
0.9936
0.9650
0.8789
0.7094
0.4898
0.2810
0.1369
0.0551
0.0194
0.0054
0.0014
0.0002
0.0000

82m44s

() ()Pr () 1 Pr ()S w s S w s≥ − > ≥ . In Table 4, p -values were computed for
13, 14, and 15w = and 2 ,2 1,s w w= −  ; in this case the computation was terminated

when ()Pr () 0.05S w s≥ > . These computations are useful for determining critical values
of test procedures.
 We also display output for the case where X is a second-order Markov chain
(2m =), with { }0,1Σ = . Table 5 gives s∆ for 4, ,20w =  and , 1, ,2s w w= −  . Only

1max s ξ +∆ = ∆ is shown for 18, 19, and 20w = . Table 6 has complete distributions for

the various values of w , and using transition matrix

2

0.7 0.3 0 0
0 0 0.4 0.6

0.6 0.4 0 0
 0 0 0.9 0.1

T

 
 
 =
 
 
 

Section on Statistical Computing – JSM 2012

2568

and the corresponding stationary initial distribution 3 3 3 1, , ,
7 14 14 7

π  =  
 

 as input.

 As in Ebneshahrashoob et al. (2005), we also computed ()()P S w w≥ for large values
of n and w . These probabilities may be used to obtain the distribution of the longest
success run by varying w . For 610n = , 1Pr 1 1 0.75t tX X − = =  =  ,

1Pr 1 0 0.25t tX X − = =  =  and the stationary probability of success 0.5p = , our

probabilities ()()P S w w≥ matched those listed in Table 3 of the latter paper. We also
show output for

3

0.7 0.3 0 0
0 0 0.4 0.6

0.6 0.4 0 0
 0 0 0.4 0.6

T

 
 
 =
 
 
 

and the stationary initial distribution 4 2 2 3, , ,
11 11 11 11

π  =  
 

 in Tables 7 and 8 for window

sizes { }40,50,60,70,80w∈ and 610n = .

Table 4. Probabilities ()Pr ()S w s≥ , 2 ,2 1,s w w= −  for 100n = , transition matrix 2T ,

{ }0,1,2Σ = , 1m = , and various values of w .

s 13w = 14w = 15w =
20
21
22
23
24
25
26
27
28
29
30

Time

0.0611
0.0225
0.0074
0.0019
0.0005
0.0001
0.0000

4m6s

0.0648
0.0259
0.0089
0.0027
0.0007
0.0002
0.0000
0.0000

49m22s

0.0682
0.0285
0.0106
0.0034
0.0010
0.0002
0.0000
0.0000
0.0000

575m17s

Summary

We have given a method to compute exact p -values or the complete distribution of the
one-dimensional scan statistic for multi-state trials and higher-order Markovian
sequences. The basic algorithm is to set up a deterministic finite automaton with final

Section on Statistical Computing – JSM 2012

2569

states that correspond to strings that indicate that ()S w s ≥   , form a transition matrix
for transitions of automaton states, and then update probabilities held in a probability
vector using matrix-vector updates. Symmetry in the number of states was used to make
the computation more efficient when the entire distribution is desired.

Table 5. State space size s∆ , 2,3 ,s w=  for { }0,1Σ = , 2m = , and various values of

w .

s 4w = 5w = 6w = 7w = 8w = 9w = 10w = 11w = 12w =
2
3
4
5
6
7
8
9

10
11
12

5
7
6

6
11
11
7

7
16
21
16
8

8
22
36
36
22
9

9
29
57
71
57
29
10

10
37
85

127
127
85
37
11

11
46

121
211
253
211
121
46
12

12
56

166
331
463
463
331
166
56
13

13
67

221
496
793
925
793
496
221
67
14

s 13w = 14w = 15w = 16w = 17w = 18w = 19w = 20w =
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

14
79
287
716
1288
1717
1717
1288
716
287
79
15

15
92
365
1002
2003
3004
3433
3004
2003
1002
365
92
16

16
106
456
1366
3004
5006
6436
6436
5006
3004
1366
456
106
17

17
121
561

1821
4369
8009

11441
12871
11441
8009
4369
1821
561
121
18

18
137
681

2381
6189

12377
19449
24311
24311
19449
12377
6189
2381
681
137
19

48621

92379

184757

Section on Statistical Computing – JSM 2012

2570

Table 6. Distributions ()Pr ()S w s≥ , 1,2, , (1)s w k= − for 1000n = , transition matrix

2T , { }0,1Σ = , 2m = , and various values of w . “Time” stands for CPU time.

s 4w = 5w = 6w = 7w = 8w = 9w = 10w = 11w = 12w =
1
2
3
4
5
6
7
8
9

10
11
12

Time

1
1
1

0.7243

0.0s

1
1
1
1

0.1203

0.0s

1
1
1
1

0.9962
0.0127

0.0s

1
1
1
1
1

0.5579
0.0013

0.0s

1
1
1
1
1

0.9998
0.1030
0.0001

0.0s

1
1
1
1
1
1

0.8724
0.0135
0.0000

0.1s

1
1
1
1
1
1

0.9996
0.3183
0.0016
0.0000

0.1s

1
1
1
1
1
1
1

0.9404
0.0602
0.0002
0.0000

0.2s

1
1
1
1
1
1
1

0.9991
0.5288
0.0091
0.0000
0.0000

0.6s

s 13w = 14w = 15w = 16w = 17w = 18w = 19w = 20w =
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Time

1
1
1
1
1
1
1
1

0.9394
0.1496
0.0013
0.0000
0.0000

1.3s

1
1
1
1
1
1
1
1

0.9974
0.6262
0.0297
0.0002
0.0000
0.0000

5.1s

1
1
1
1
1
1
1
1
1

0.9306
0.2432
0.0051
0.0000
0.0000
0.0000

14.5s

1
1
1
1
1
1
1
1
1

0.9941
0.6489
0.0636
0.0008
0.0000
0.0000
0.0000

68.3s

1
1
1
1
1
1
1
1
1

0.9997
0.9114
0.3021
0.0134
0.0001
0.0000
0.0000
0.0000

5m11s

1
1
1
1
1
1
1
1
1
1

0.9876
0.6475
0.0995
0.0025
0.0000
0.0000
0.0000
0.0000

17m41s

1
1
1
1
1
1
1
1
1
1

0.9990
0.8870
0.3289
0.0259
0.0004
0.0000
0.0000
0.0000
0.0000

83m16s

1
1
1
1
1
1
1
1
1
1

0.9999
0.9771
0.6294
0.1263
0.0058
0.0001
0.0000
0.0000
0.0000
0.0000

376m39s

Section on Statistical Computing – JSM 2012

2571

Table 7. ()Pr ()S w w≥ for 610n = , transition matrix 3T , { }0,1Σ = , 2m = , and
various values of w . CPU times are listed below the probabilities.

40w = 50w = 60w = 70w = 80w =
0.0004

5.2s

2.45e-6

6.5s

1.48e-8

7.7s

8.95e-11

8.9s

5.41e-13

10.1s

Table 8. ()Pr () 1S w w≥ − for 610n = , transition matrix 3T , { }0,1Σ = , 2m = , and
various values of w . CPU times are listed below the probabilities.

40w = 50w = 60w = 70w = 80w =
0.0070

1m34s

5.361e-5

2m28s

4.000e-7

3m35s

2.756e-9

4m56s

1.907e-11

6m31s

Appendix

In this Appendix we obtain an expression for the number of states in s∆ .

Theorem A.1. Let { }0,1, , 1kΣ = − and consider the string 1 cx x . The number of
integer solutions (), ,k cη µ of 1 2 cx x x µ+ + + = , where µ is a positive integer and

ix ∈Σ , is

 () ()
/

0

1
, , 1

 1

k
j

j

c c jk
k c

j c

µ µ
η µ

  

=

− + −  
= −   −  
∑ . (A.1)

Proof: The result is obtained by considering the series expansion of ()1

0

ck i
i

y−

=∑ for

1y < [see Murty, (1981)]. Taking 1xy from the first factor, 2xy from the second,  ,
and cxy from the c th factor and multiplying, we obtain 1 2 cx x xy + + + , and thus the
coefficient of yµ in the expansion is precisely the total number of solutions of

1 2 cx x x µ+ + + = .

 Since ()()1 1

0
1 1k i k

i
y y y− −

=
= − −∑ ,

() () ()1

0
1 1

c ck ci k
i

y y y− −

=
= − −∑

()0 0

1
1

 1
c j jk r
j r

c c r
y y

j c
∞

= =

   + −   
= −      −      
∑ ∑ .

The term of order µ is

Section on Statistical Computing – JSM 2012

2572

()
1

1
 1

j jk rc c r
y

j c
++ −  

−  −  
∑ ,

where the summation runs over values of j and r such that jk r µ+ = ; 0r ≥ ,
0 j c≤ ≤ , or

r jkµ= − ; j
k
µ
≥ ; 0 j c≤ ≤ , i.e. 0 j

k
µ

≤ ≤ .

Hence the required coefficient is () ()
/

0

1
, , 1

 1

k
j

j

c c jk
k c

j c

µ µ
η µ

  

=

− + −  
= −   −  
∑ . ▄

Theorem A.2 The number of automaton states in s∆ is

()
()min 1 , 1

0
1 , ,

m k s

s k m
µ

η µ
− −  

=

∆ = +   ∑

()
()()

()

()
()()

()()min 1 , 1 min 1 1 , 11

1 max 1, 1 max 1, 1

+ , , , 1,
c k s c k sw

c m s w c k s w c k

k c k c
µ µ

η µ η µ
− − − − −   −    

= + = − − − = − − −      

    −  −     
  

∑ ∑ ∑

Proof: The number of strings of length m with window sums 1 2 mx x x µ+ + + = is

(), ,k mη µ for ()0,1, ,min 1 , 1m k sµ =  − −   . Based on this fact,

()
()min 1 , 1

0
, ,

m k s
m
s k m

µ

η µ
− −  

=

Σ = ∑ . To obtain sD , ()
()()

()min 1 , 11

1 max 1, 1

, ,
c k sw

c m s w c k

k c
µ

η µ
− − −  

= + = − − −  

 
    

 
∑ ∑ gives

the number of strings of lengths 1, , 1c m w= + − with window sums µ in the
acceptable range. However, we must subtract the number of strings (), 1,k cη µ− that
have the same window sum µ but begin with zero. For strings that begin with zero, the
upper bound for µ may be smaller because the string length after the first symbol is only

1c − and not c . The additional state is the absorbing state. The result follows. ▄

For (1)s w k= − or (1) 1s w k= − − , we give a more compact form of sD .

Theorem A.3 If (1)s w k= − , 1sD w m= − − so that m

s k w m∆ = + − . For
(1) 1s w k= − − ,

()

1 2
, 3,4,

 2 2

1 2
, 2

 2 2

s

w m
k

D
w m

w m k

 + +   
− =   

   = 
+ +    − − − =      



and again 1m
s sD k∆ = + + .

Proof: If (1)s w k= − , 1,0 0ς = , and all strings in sD must be of the form

()1, 1, , 1k k k− − − . There is then exactly one string in sD for each of the lengths
1, , 1m w+ − , for a total of 1w m− − of such strings.

Section on Statistical Computing – JSM 2012

2573

 If (1) 1s w k= − − and 3k ≥ , there is exactly one m -tuple with 1, 1mς = , m with

1, 0mς = , and the rest have 1, 0mς < . Strings of length j , , , 2j m w= − with 1, 0jς =
produce one automaton string of length 1j + (by concatenating 1k − as the last
component), while the one string of each length with 1, 1jς = produces two automaton

strings (by concatenating 1k − to produce a string with 1, 1 1jς + = or by concatenating
2k −). Thus sD has 1j + strings of length j , 1, , 1j m w= + − , for a total of number

of strings equal to

() ()()1 1 2

2
2 2

w w m m
m w

+ + +
+ + + = − .

If 2k = , the m -tuple


1

0,1, ,1
m− 

  
 

 has slack 1, 0jς = , however this state isn’t included in

the automaton, and its offspring shouldn’t be either. There is one such string for each of
the lengths 1, , 1m w+ − , for a total of 1w m− − strings that should be subtracted. In

addition, the string
1

1,1, ,1
w− 

 
 
 



 has 1, 1 1wς − = , however for that string 2, 1 1wς − = − as it is

absorbed. Thus it should not be counted, and a total of ()1 1w m w m− − + = − strings
should be subtracted from the count when 2k > to obtain the count when 2k = .
 In each case, mk m -tuples and also an absorbing state are included in s∆ , and thus

1m
s sD k∆ = + + . ▄

Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grants DMS-0805577 and DMS-1107084.

References

J. Chen, Approximations and Inequalities for Discrete Scan Statistics. Ph. D. dissertation,

University of Connecticut, Storrs, CT, 1998.

M. Ebneshahrashoob, T. Gao, and M. Wu, “An efficient algorithm for exact distribution of

discrete scan statistics,” Methodology and Computing in Applied Probability, vol. 7, pp. 459-
471, 2005.

J. C. Fu, “Distributions of the scan statistic for a sequence of bistate trials.” Journal of Applied

Probability, vol. 38, pp. 908-916, 2001.

J. Glaz, “Approximations and bounds for the distribution of the scan statistic.” Journal of the

American Statistical Association, vol. 84, pp. 560-569, 1989.

J. Hoh and J. Ott, “Scan statistics to scan markers for susceptible genes.” Proceedings of the

National Academy of Science USA, vol. 97, pp. 9615-9617, 2000.

Section on Statistical Computing – JSM 2012

2574

J. E. Hopcroft, R. Motwani, JD Ullman (2001). Introduction to Automata Theory, Languages and

Computation. Addison Wesley.

S. Karlin, B.E. Blaisdell, E.S. Mocarski, and V. Brendel, “A method to identify distinctive charge

configurations in protein sequences, with application to human herpesvirus polypeptides,”
Journal of Molecular Biology, vol. 205, pp. 165-177, 1989.

C. R. Loader, “Large-deviation approximations to the distribution of scan statistics.” Advances in

Applied Probability, vol. 23, pp. 751-771, 1991.

D. E. K. Martin and D. Coleman, “Distributions of Clump Statistics for a Collection of Words.”

Journal of Applied Probability, vol. 48, pp. 1049-1059, 2011.

V. N. Murty, “Counting the integer solutions of a linear equation with unit coefficients.”

Mathematics Magazine, vol. 54 (2), pp. 79-81, 1981.

J. Naus, “Probabilities for a generalized birthday problem,” Journal of the American Statistical

Association, 69, 810-815, 1974.

J. Naus, “Approximations for distributions of scan statistics,” Journal of the American Statistical

Association, vol. 77, pp. 377-385, 1982.

P. Ribeca, and E. Raineri, “Faster exact Markovian probability functions for motif occurrences: a

DFA-only approach.” Bioinformatics , vol. 24(24), pp. 2839-2848, 2008.

S. Robin, F. Rodolphe, and S. Schbath, DNA, Words and Models, Cambridge University Press,

2005.

Y. V. Sun, D. M. Jacobsen, and S. L. R. Kardia (2006). “ChromoScan: a scan statistic application

for identifying chromosomal regions in genomic studies,” Bioinformatics, vol. 22(23), 2945-
2947.

A. Wagner, “Genes regulated cooperatively by one or more transcription factors and their

identification in whole eukaryotic genomes,” Bioinformatics, vol. 15, pp. 776-784, 1999.

Section on Statistical Computing – JSM 2012

2575

	Scan statistic distribution through slack equations

