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Abstract 
Scan statistics are used in many areas of applied probability and statistics to study local 
clumping of patterns.  Testing based on a scan statistic requires tail probabilities.  
Whereas the distribution of various scan statistics has been studied extensively, most of 
the results are approximations, due to the difficulties associated with the computation.  
Results have been given to compute exact p -values for the statistic over a binary 
sequence that is independent or first-order Markovian. However, in many practical 
applications, the variables under study take on multiple values, and/or a model with 
higher-order dependence provides a better fit.  The present paper fills this gap by 
obtaining the distribution of the univariate scan statistic for multi-state trials that are 
Markovian of a general order of dependence.  A deterministic finite automaton is 
developed to index the computation, and a matrix corresponding to automaton transitions 
is used to update probabilities.  Examples are given to illustrate the algorithm. 
 
Key Words: clustering of patterns, deterministic finite automaton, higher-order 
Markovian trials, multi-state trials, one-dimensional scan statistic 
 
 

1. Introduction 
 
For a sequence 1, , nX X=X   of random variables taking values in a finite discrete 
space, the discrete scan statistic is typically defined by 
 
  { }1

( ) max  for , 1, ,i
i jj i w

S w X i w w n
= − +

= = +∑  . (1) 

 
The statistic is frequently used to detect local clustering of patterns in X .  As examples, 
Wagner (1999) used the statistic to detect clusters of transcription factor binding sites in 
DNA nucleotides, Hoh and Ott (2000) to search for new genes, and Sun et al. (2006) to 
identify choromosomal regions that are associated with disease, DNA copy number 
variations, and other genome-based measurements.   
 Tail probabilities of ( )S w  are needed for statistical tests.  However, most of the 
results in this area are approximations and bounds on the probabilities [see, e.g. Naus 
(1982), Glaz (1989), Loader (1991), and Chen (1998)].  Results for the exact distribution 
of ( )S w  are relatively scarce, even in the case of independent binary trials, due to the 
difficulty in computing the distribution.  Naus (1974) obtained an exact combinatorial 
result for i.i.d. Bernoulli trials that by its nature has limited applicability.  Fu (2001) 
computed p -values for the statistic that apply to independent and first-order Markovian 
binary trials, and displayed the statistic’s entire distribution for window sizes as large as 
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5w = .  Ebneshahrashoob et al. (2005) set up a system of conditional probability 
generating functions and used a matrix corresponding to the system to extend the latter 
results to larger window sizes.  However, to date there have been no exact results for 
multi-state trials or higher-order Markovian sequences, both of which can be very useful 
in modeling. 
 An application where multi-state trials arose was in locating significant clusters of 
charges in protein sequences (Karlin et al. 1989).  In the study, arginine, lysine and 
histidine were represented by “1” (a positive charge), aspartic and glutamic acid by “-1” 
(a negative charge), and all other residues by “0,” a neutral charge.  An application where 
a higher-order Markov model is particularly useful is to model the “background noise” 
when searching for exceptional patterns in biological sequences [Robin et al. (2005)].   
 We allow X  to be a sequence of multi-state trials that is higher-order Markovian, 
and compute the exact distribution of the scan statistic (1).  The computation is carried 
out by forming a deterministic finite automaton with final states that indicate that 

( )S w s≥  for each fixed value of s , setting up an initial distribution and transition 
probability matrix for automaton state transitions, and using vector-matrix updates of 
probabilities.  Thus the computation has some similarities to the automaton-based 
approach to compute distributions of patterns of Ribeca and Ranieri (2008), as well as the 
finite Markov chain embedding approach used in Fu (2001), with deviations to improve 
computational efficiency that will be mentioned in what follows.      
 The paper is organized as follows.  The next section contains details of the algorithm.  
Section 3 gives examples to illustrate the algorithm and its use, and the final section is a 
summary. 
 
 

2. Computation of the Distribution of the Scan Statistic 
 
Let X  be a stationary m th-order Markovian sequence with realized values denoted by 

1, , nx x , where { }0 1 1, , ,i kx σ σ σ −∈Σ =   with 0 1 1kσ σ σ −< < < .  For simplicity we 
focus on the case where 1j jσ σ δ+ = +  for some integer δ  and 0,1, , 2j k= − , though 
the general case can be handled in a similar manner.  In the linear case that is assumed, 
we can without loss of generality use { }0,1, , 1kΣ = −  so that the scan statistic takes 

values in ( ){ } ( ){ }0 1 1, , , 0,1, , 1w k w kν ν ν −Φ = = −  , since if  { }0 1 1, , , kσ σ σ −′ ′ ′ ′Σ =   with  

0j jσ σ δ′ ′= +  for 0,1, , 1j k= −  and some fixed δ , the elements of 

( ){ }0 1 1, , , w kν ν ν −
′ ′ ′ ′Φ =   correspond in a one-to-one fashion to Φ  through 0j jv w sσ δ′ ′= + .   

 We compute probabilities ( )( )P S w s≥  that give p -values for a given initial 

distribution π  over m -tuples m
mx ∈Σ  and transition matrix T .  Here ( )1, ,t t m tx x x− +≡  , 

, 1, ,t m m n= +   and T  gives transition probabilities for transitions of tx  to 1tx + , or 
equivalently probabilities ( )1t tP x x+  .  The basic steps of the algorithm are: 
 

 Set up a deterministic finite automaton [DFA, Hopcroft et al. (2001)] with states 
that index progress into terminal strings that indicate that ( )S w s≥ .     

 Use π  to set up an initial distribution π  over automaton states, and T  to set up 
a transaction probability matrix Ω  for transitions of those states.   

 Carry out matrix-vector updates to compute the desired probability.       
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Next we give more details on the computation algorithm. 
 
2.1 Setup of automaton states 
For a fixed s , let s∆  be the set of automaton states that is needed to compute 

( )( )P S w s≥ , and let 
( 1)

2

w k
ss

−

=
∆ ≡ ∆


.  For a state 1 jd d d= ∈∆  of length j , define 

the window sum (denoted by ( )win d ) to be 
1

j
ii

d
=∑ .   

 The shortest strings in s∆  are those of m m
sΣ ⊂ Σ , the m -tuples mx  for which 

( )mwin x s< .  This implies that all transient automaton states carry the last m  values of 
the X  sequence.  m

sΣ  is required in s∆  due to the Markovian assumption.   
 We then add to s∆  the following strings of lengths 1, , 1j m w= + − : 

( )( ) ( ) [ ]{ }, 1 0;  max 1, 1 min ( 1), 1s jD d d s k w j win d j k s= >  − − −  ≤ ≤ − −  . 

  
The inequality  
  ( )( ) ( )1s k w j win d− − − ≤  (2)  

guarantees that from every state of ,s s jj
D D≡


, a sum 1 2 wd d d s+ + + ≥

 
is possible.   

On the other hand, the inequality  

  ( ) 1win d s≤ −   (3) 

ensures that all states of  sD  are transient.  We add the absorbing state sA  to s∆  to 
correspond to terminal DFA strings d  with ( )win d s≥ .  Then 

1

,
1

w
m

s s s j s
j m

D A
−

= +

 
∆ = Σ ∪ ∪ 

 


, a disjoint union.     

 No string d  of length w  is needed because either such strings have ( )win d s≥  (and 
thus are represented by the absorbing state), or their window sums can’t possibly reach s  
because their length is already w .   
 The states of sD  may be set up using what we call slack variables 1, jς  and 2, jς  that 
respectively indicate when the inequalities (2) and (3) no longer are satisfied.  The slack 
variables for string 1, , jx x x=   are  

  ( ) ( ) ( )1, 1 1j w k s j k win xς = − − − − −    

  ( )( ) ( )( )1w j k s win x= − − − − ; (4) 

  ( )2, 1j s win xς = − − . (5)  
 
Slack 1, jς  decreases from the initial (before any symbols are observed) “leeway” 

( )1w k s− −  by 1 ik x− −  for each symbol 1ix k< − .  Its negative value indicates that the 
string can no longer reach s , and thus isn’t needed in the state space.  On the other hand, 

2, jς  decreases from the initial value 1s −  by ix .  If 2, 0jς < , then ( )win x s≥ .  An m -
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tuple of  mΣ  not satisfying (3) for j m=  (i.e. with 2, 0mς < ) is not contained in m
sΣ , and 

strings of length j m>  are only in sD  if 1, 0jς ≥  and 2, 0jς ≥ .  

 The number of strings in ∆  is ( )( )2 11m m w wk k k k k− −∆ = + − + + = .  This 
shouldn’t be surprising since strings of ∆  correspond in a one-to-one fashion to the 
( )1w − -tuples 1w−Σ  by deleting all leading zeroes from the latter strings (the one 
exception being the m -tuple consisting of all zeroes, which corresponds to the ( )1w − -
tuple consisting of all zeroes).  An advantage of computing p -values is that the size of 
each s∆  is typically much less than 1wk − .  
 In the Appendix we derive a combinatorial formula for the number of states s∆  of 

s∆ .  Using those results, Table 1 and 2 give s∆  for 1m = , { }0,1,2Σ = , and various 
values of w .  This information is useful for dimensioning vectors when programming the 

algorithm.  Note that s∆  is maximized for s ξ=    , where ( )1
1

2
w k

ξ
−

≡ + .  Also, we 

observe symmetry in s∆  (actually in sD ) for different values of s .  This symmetry is 

explored next.  We first define what we mean by “complementary” strings ( )ax  and ( )bx  
and corresponding complementary values ( )as  and ( )bs .  
 
Table 1.  State space size s∆ , 2,3, ,2s w=   for { }0,1,2Σ = , 3k = , 1m = , and various 

values of w . 
 

s  4w =  5w =  6w =  7w =  8w =  9w =  10w =  11w =  12w =  
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

5 
11 
17 
20 
17 
11 
6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 
16 
31 
46 
52 
46 
31 
16 
7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 
22 
51 
91 
127 
142 
127 
91 
51 
22 
8 
 
 
 
 
 
 
 
 
 
 
 
 

8 
29 
78 

162 
267 
358 
394 
358 
267 
162 
78 
29 
9 
 
 
 
 
 
 
 
 
 
 

9 
37 

113 
267 
505 
785 

1017 
1108 
1017 
785 
505 
267 
113 
37 
10 
 
 
 
 
 
 
 
 

10 
46 

157 
415 
883 
1555 
2305 
2908 
3140 
2908 
2305 
1555 
883 
415 
157 
46 
11 
 
 
 
 
 
 

11 
56 

211 
616 

1453 
2851 
4741 
6766 
8351 
8954 
8351 
6766 
4741 
2851 
1453 
616 
211 
56 
12 
 
 
 
 

12 
67 

276 
881 

2278 
4918 
9043 

14356 
19856 
24069 
25654 
24069 
19856 
14356 
9043 
4918 
2278 
881 
276 
67 
13 
 
 

13 
79 

353 
1222 
3433 
8075 

16237 
28315 
43253 
58279 
69577 
73790 
69577 
58279 
43253 
28315 
16237 
8075 
3433 
1222 
353 
79 
14 
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Table 2.  s∆  for 13,  14 and 15w = , 1s wξ= = + , { }0,1,2Σ =  ( 3k = ) and 1m = . 
 

s  13w =  14w =  15w =  
14 
15 
16 

212942 
 
 

 
616228 

 
 

1787608 
 
 
 
 
Definition 2.1. Strings ( ) ( )( ) ( ) ( )

1 2, , ,a a a a
jx x x x≡   and ( ) ( )( ) ( ) ( )

1 2, , ,b b b b
jx x x x≡   are called 

complementary if ( ) ( )
1 1

a bx x k+ =  and ( ) ( ) 1a b
i ix x k+ = −  for any { }2, ,i j∈  .   

 
Definition 2.2.  Complementary integer values ( )as  and ( )bs  for the problems 

( )( )( ) rP S w s≥ , ,r a b=  are such that ( )as qξ= −  and ( )bs qξ= +  for some q ξ< .    

 
Theorem 2.2. Consider complementary strings ( )ax  and ( )bx  of arbitrary length 

{ }, 1, , 1j m m w∈ + −  and complementary values ( )as  and ( )bs  respectively 

corresponding to ( )ax  and ( )bx .  If ( ) ( )( )1, 2,,r r
j jς ς  denotes the value of ( )1, 2,,j jς ς  for string 

( )rx , ,r a b= , then ( ) ( )( ) ( ) ( )( )1, 2, 2, 1,, ,a a b b
j j j jς ς ς ς= .   

 
Proof. First note that by definition,  ( )( ) ( )

1 1
1j ja b

i ii i
x x kj j

= =
+ = − −∑ ∑ , 1m j w≤ ≤ − .  

We have from (4) and (5), 
  ( ) ( )( ) ( )( )( )

1, 1
1 ja a a

j ii
w j k s xς

=
= − − − −∑ , 

  
( ) ( ) ( ) ( )( )1

1
1 1 1 1

2
j b

ii

w k
w k j k q kj j x

=

  − 
= − − − − + − + − − +  

   
∑  

  ( ) ( )
2,1

1 j b b
i ji

q xξ ς
=

= + − − =∑ . 
Also, 

( ) ( ) ( )
2, 1

1 ja a a
j ii

s xς
=

= − −∑ , 

( ) ( )( )( )
1

1
1 1 1

2
j b

ii

w k
q kj j x

=

 − 
= + − − − − − − 
 

∑  

( ) ( ) ( ) ( )
1

1
1 1 1

2
j b

ii

w k
w k j k q x

=

−
= − − − − − − +∑  

( )( ) ( )( ) ( )
1,1

1 j b b
i ji

w j k q xξ ς
=

= − − − + − =∑ .  

  ▄ 
 
Since ( ) ( )( ) ( ) ( )( )1, 2, 2, 1,, ,a a b b

j j j jς ς ς ς=  and the states of sD  are those that have non-negative slack 

variables, we have the following corollary.   
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Corollary 1.  Let ( )as  and ( )bs  be complementary values.  Then for every state in the set 

( )as
D  for computing ( )( )Pr ( ) aS w s≥ , there is a corresponding state in ( )bs

D  for the 

problem of computing ( )( )Pr ( ) bS w s≥ .  This implies that ( ) ( )a bs s
D D= . 

 
 This discussion leads to the following method to obtain state spaces when the 
complete distribution of ( )S w  is needed. 
 

 First form the states of ( )bs
D  for ( ) ( )1 , , 1

2
bs w kξ = + −  

  using slack variables 

as filters, as described above.   
 Form states ( ) ( ) ( )

( ) ( ) ( )
1 2, , , a

a a a a
j s

x x x x D= ∈

 
for ( ) 1, 2, ,2as ξ ξ= − −   from states 

( ) ( ) ( )
( ) ( ) ( )
1 2, , , b

b b b b
j s

x x x x D= ∈

 
formed above using the symmetric of states for 

complementary values ( )as qξ= −  and ( )bs qξ= + .  This is carried out by setting 
( ) ( )( ) ( ) ( ) ( )

1 2 3, 1 , 1 , , 1a b b b b
jx k x k x k x k x= − − − − − − − .   

 Add in m -tuples mx  with ( )mwin x s<  for the various values of s . 
 

If 1s = , ( ) ( )Pr ( ) 1 Pr ( ) 0 1 0,0, ,0 0 0,0, ,0

n m
m m

S w s S w pπ

−
   
   ≥ = − = = −

        

 


  . 

 
2.2 Setup of initial distribution and transition matrix for automaton states  
 To set up the initial distribution π  over automaton states, set ( ) ( )m mx xπ π=   , 

m
m sx ∈Σ , and ( ) 1sAπ ς= − , where ς  is the sum of probabilities for m -tuples m

m sx ∈Σ .  

( ) 0dπ =  for all other states sd ∈∆ .   

 For state sd ∈∆  of length j  and symbol x∈Σ , if 2, 0j xς − < , then d  transitions to 

sA  on symbol x .  If 2, 0j xς − ≥  then d d ′→ , where d ′  is the longest suffix (ending) of 

dx  that is a state of s∆ .  (Here dx  denotes the concatenation of x  to the right of d ).  
The transition probability associated with the transition d d ′→  (or sd A→ ) is exactly 
the entry of T  for m mx x′→  , where mx  is the m -tuple suffix of d , and  mx′  is the m -
tuple suffix of d ′  (or of dx  when sd A→ ).  Transition probabilities for automaton states 
are stored in a matrix Ω . 
   
2.3 Implementation of computation 
The vector n m

nψ π −= ×Ω  has elements ,n dψ  that give the probability that the automaton 

lies in state d  at time n .  Then ( ) ,Pr ( )
sn AS w s ψ≥ = , the probability of the absorbing 

state.    
  Since there are only k  non-zero elements in each row of Ω , that matrix is stored in 
a sparse fashion.  Probability vectors rψ  are updated sequentially using 1r rψ ψ −= Ω , 

1, ,r m n= +  , with initial condition mψ π=  .  Each update requires about sk ∆  
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multiplications and additions, for a total of ( ) sn m k− ∆  of each operation.  Thus the 
computation is linear in n , but s∆ , though smaller than 1wk −∆ = , nonetheless grows 
very quickly with window size w .   
 Note that we could compute n m−Ω  in relatively few multiplications using “matrix 
doubling” (as was done in Martin and Coleman 2011), however the sparseness of uΩ  
goes away as the power of u  increases, so that the advantage of using sparse matrix 
algebra disappears.  Multiplying two square matrices of order s∆  uses ( )3

sO ∆
 

operations.  Thus for large w  (and corresponding large values of s∆ ), it is more 
economical to sequentially update rψ  instead of first forming n m−Ω  and then multiplying 
π  by it. 
     
 

3. Numerical Examples 
 
We wrote a FORTRAN program to implement the algorithm described in Section 2.  The 
program contains a subroutine designed for computing the complete distribution by using 
the complementary nature of the state spaces for ( )bs qξ= +  and ( )as qξ= − .  It also has 
a subroutine for computing p -values ( )Pr ( )S w s≥  for specified values of s .  Below are 
basic examples to illustrate the steps of the algorithm, and to give some numerical output.   
 Consider first a case where X  is a first-order Markov chain ( 1m = ), with 

{ }0,1,2Σ =  so that 3k = .  Tables 1 and 2 given earlier give the number of states used to 
compute ( )Pr ( )S w s≥ .  If 4w =  and 7 and 3s = , complementary values that are 

symmetric about ( )1
1 5

2
w k

ξ
−

= + = , 1 1
7 3Σ = Σ = Σ ,  { }7 12,21,22,122,212,221,222D =  

and { }3 20,11,10,200,110,101,100D = , where we have listed states so that state i  of 7D  
is complementary to state i  of 3D  (for example state 12 of 7D  and 20 of 3D  are 
complementary, with respective slack values ( )0,4  and ( )4,0 ).   
  Using the transition matrix  

1

0.5 0.2 0.3
0.4 0.2 0.4
0.6 0.1 0.3

T
 
 =  
 
 

 

 

and stationary initial distribution 52 17 32, ,
101 101 101

π  =  
 

 (computed using stationary 

Tπ π= ) as input to the algorithm (the corresponding states are listed in lexigraphical 
order, so that, for example, ( )1 0 52 /101P X = = ), we obtained p -values for  

1, ,12w =   and 2 ,2 1, ,1s w w= −   (Table 3).  The CPU times were all less than a 
second for 4 8w≤ ≤ , but increase greatly with w .  The computations were terminated if  

( )Pr ( ) 0.99995S w s≥ >  since probabilities are listed to four significant digits and Table  
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Table 3.  Probabilities ( )Pr ( )S w s≥ , 1,2, ,2s w=   for 100n = , transition matrix 

2T , { }0,1,2Σ =  ( )3k = , 1m = , and various values of w . 
 

s  4w =  5w =  6w =  7w =  8w =  9w =  10w =  11w =     12w =  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 

Time  

1 
1 
1 
1 
1 

0.9959 
0.8058 
0.4509 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
0.0s 

1 
1 
1 
1 
1 

0.9999 
0.9878 
0.8684 
0.4202 
0.1605 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
0.0s 

1 
1 
1 
1 
1 
1 

0.9994 
0.9839 
0.8334 
0.5264 
0.1664 
0.0503 

 
 
 
 
 
 
 
 
 
 
 
 
 

0.0s 

1 
1 
1 
1 
1 
1 
1 

0.9985 
0.9708 
0.8344 
0.5131 
0.2382 
0.0587 
0.0152 

 
 
 
 
 
 
 
 
 
 
 

0.1s 

1 
1 
1 
1 
1 
1 
1 

0.9999 
0.9960 
0.9600 
0.8051 
0.5359 
0.2464 
0.0927 
0.0197 
0.0045 

 
 
 
 
 
 
 
 
 

0.8s 

1 
1 
1 
1 
1 
1 
1 
1 

0.9995 
0.9922 
0.9418 
0.7889 
0.5216 
0.2734 
0.1030 
0.0336 
0.0065 
0.0013 

 
 
 
 
 

 
 
6.5s 

1 
1 
1 
1 
1 
1 
1 
1 

0.9999 
0.9986 
0.9855 
0.9243 
0.7605 
0.5186 
0.2760 
0.1212 
0.0400 
0.0117 
0.0021 
0.0004 

 
 
 

 
 
59.6s 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9998 
0.9967 
0.9769 
0.9016 
0.7375 
0.5023 
0.2834 
0.1282 
0.0497 
0.0149 
0.0040 
0.0007 
0.0001 

 
 
 
9m14s 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9993 
0.9936 
0.9650 
0.8789 
0.7094 
0.4898 
0.2810 
0.1369 
0.0551 
0.0194 
0.0054 
0.0014 
0.0002 
0.0000 

 
82m44s 

 
 
 

( ) ( )Pr ( ) 1 Pr ( )S w s S w s≥ − > ≥ .  In Table 4, p -values were computed for 
13,  14,  and 15w = and 2 ,2 1,s w w= −  ; in this case the computation was terminated 

when ( )Pr ( ) 0.05S w s≥ > .  These computations are useful for determining critical values 
of test procedures.   
 We also display output for the case where X  is a second-order Markov chain 
( 2m = ), with { }0,1Σ = .  Table 5 gives s∆  for 4, ,20w =   and , 1, ,2s w w= −  .  Only 

1max s ξ +∆ = ∆  is shown for 18,  19, and 20w = .  Table 6 has complete distributions for 

the various values of w , and using transition matrix 
 

2

0.7 0.3 0     0
0 0 0.4  0.6

0.6 0.4 0    0
 0        0    0.9  0.1

T

 
 
 =
 
 
 
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and the corresponding stationary initial distribution 3 3 3 1, , ,
7 14 14 7

π  =  
 

 as input.   

 As in Ebneshahrashoob et al. (2005), we also computed ( )( )P S w w≥  for large values 
of n  and w .  These probabilities may be used to obtain the distribution of the longest 
success run by varying w .  For 610n = , 1Pr 1 1 0.75t tX X − = =  =  , 

1Pr 1 0 0.25t tX X − = =  =   and the stationary probability of success 0.5p = , our 

probabilities ( )( )P S w w≥  matched those listed in Table 3 of the latter paper.    We also 
show output for 

3

0.7 0.3 0     0
0 0 0.4  0.6

0.6 0.4 0    0
 0        0    0.4  0.6

T

 
 
 =
 
 
   

 

and the stationary initial distribution 4 2 2 3, , ,
11 11 11 11

π  =  
 

 in Tables 7 and 8 for window 

sizes { }40,50,60,70,80w∈  and 610n = .    
 
 

 
Table 4.  Probabilities ( )Pr ( )S w s≥ , 2 ,2 1,s w w= −   for 100n = , transition matrix 2T , 

{ }0,1,2Σ = , 1m = , and various values of w . 
 

s  13w =  14w =  15w =  
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

 
Time 

0.0611 
0.0225 
0.0074 
0.0019 
0.0005 
0.0001 
0.0000 

 
 
 
 
 

4m6s 

 
0.0648 
0.0259 
0.0089 
0.0027 
0.0007 
0.0002 
0.0000 
0.0000 
 
 
 
49m22s 

 
 

0.0682 
0.0285 
0.0106 
0.0034 
0.0010 
0.0002 
0.0000 
0.0000 
0.0000 

 
575m17s 

 
   

Summary 
 
We have given a method to compute exact p -values or the complete distribution of the 
one-dimensional scan statistic for multi-state trials and higher-order Markovian 
sequences.  The basic algorithm is to set up a deterministic finite automaton with final 
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states that correspond to strings that indicate that ( )S w s ≥   , form a transition matrix 
for transitions of automaton states, and then update probabilities held in a probability 
vector using matrix-vector updates.  Symmetry in the number of states was used to make 
the computation more efficient when the entire distribution is desired.  
 
 
 
Table 5.  State space size s∆ , 2,3 ,s w=   for { }0,1Σ = , 2m = , and various values of 

w . 
  

 
s  4w =  5w =  6w =  7w =  8w =  9w =  10w =  11w =     12w =  
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

5 
7 
6 
 
 
 

 
 
 

 

6 
11 
11 
7 
 
 
 
 
 
 

 

7 
16 
21 
16 
8 
 
 

 
 

 
 

8 
22 
36 
36 
22 
9 
 
 
 
 

 

9 
29 
57 
71 
57 
29 
10 
 
 
 

 

10 
37 
85 

127 
127 
85 
37 
11 
 
 

 

11 
46 

121 
211 
253 
211 
121 
46 
12 
 

 

12 
56 

166 
331 
463 
463 
331 
166 
56 
13 

13 
67 

221 
496 
793 
925 
793 
496 
221 
67 
14 

 
s  13w =  14w =  15w =  16w =  17w =  18w =  19w =  20w =   
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

14 
79 
287 
716 
1288 
1717 
1717 
1288 
716 
287 
79 
15 

15 
92 
365 
1002 
2003 
3004 
3433 
3004 
2003 
1002 
365 
92 
16 

16 
106 
456 
1366 
3004 
5006 
6436 
6436 
5006 
3004 
1366 
456 
106 
17 

17 
121 
561 

1821 
4369 
8009 

11441 
12871 
11441 
8009 
4369 
1821 
561 
121 
18 

18 
137 
681 

2381 
6189 

12377 
19449 
24311 
24311     
19449 
12377 
6189 
2381 
681 
137 
19 

 
 
 
 
 
 
 
 

48621 

 
 
 
 
 
 
 
 

92379 

 
 
 
 
 
 
 
 
 

184757 

 

 

Section on Statistical Computing – JSM 2012

2570



Table 6.  Distributions ( )Pr ( )S w s≥ , 1,2, , ( 1)s w k= −  for 1000n = , transition matrix 

2T , { }0,1Σ = , 2m = , and various values of w .  “Time” stands for CPU time.   
 

s  4w =  5w =  6w =  7w =  8w =  9w =  10w =  11w =     12w =  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
 

Time 

1 
1 
1 

0.7243 
 
 
 
 
 
 
 
 
 

0.0s 

1 
1 
1 
1 

0.1203 
 
 
 
 
 
 
 
 

0.0s 

1 
1 
1 
1 

0.9962 
0.0127 

 
 
 
 
 
 
 

0.0s 

1 
1 
1 
1 
1 

0.5579 
0.0013 

 
 
 
 
 
 

0.0s 

1 
1 
1 
1 
1 

0.9998 
0.1030 
0.0001 

 
 
 
 
 

0.0s 

1 
1 
1 
1 
1 
1 

0.8724 
0.0135 
0.0000 

 
 
 
 

0.1s 

1 
1 
1 
1 
1 
1 

0.9996 
0.3183 
0.0016 
0.0000 

 
 
 

0.1s 

1 
1 
1 
1 
1 
1 
1 

0.9404 
0.0602 
0.0002 
0.0000 

 
 

0.2s 

1 
1 
1 
1 
1 
1 
1 

0.9991 
0.5288 
0.0091 
0.0000 
0.0000 

 
0.6s 

 
 

s  13w =  14w =  15w =  16w =  17w =  18w =  19w =  20w =   
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
 

Time 

1 
1 
1 
1 
1 
1 
1 
1 

0.9394 
0.1496 
0.0013 
0.0000 
0.0000 

 
 
 
 
 
 
 
 

1.3s 

1 
1 
1 
1 
1 
1 
1 
1 

0.9974 
0.6262 
0.0297 
0.0002 
0.0000 
0.0000 

 
 
 
 
 
 
 

5.1s 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9306 
0.2432 
0.0051 
0.0000 
0.0000 
0.0000 

 
 
 
 
 
 

14.5s 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9941 
0.6489 
0.0636 
0.0008 
0.0000 
0.0000 
0.0000 

 
 
 
 
 

68.3s 

1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9997 
0.9114 
0.3021 
0.0134 
0.0001 
0.0000 
0.0000 
0.0000 

 
 
 
 

5m11s 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9876 
0.6475 
0.0995 
0.0025 
0.0000 
0.0000 
0.0000 
0.0000 

 
 
 

17m41s 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9990 
0.8870 
0.3289 
0.0259 
0.0004 
0.0000 
0.0000 
0.0000 
0.0000 

 
 

83m16s 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9999 
0.9771 
0.6294 
0.1263 
0.0058 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 

 
376m39s 

 
 

 

Section on Statistical Computing – JSM 2012

2571



Table 7.  ( )Pr ( )S w w≥  for 610n = , transition matrix 3T , { }0,1Σ = , 2m = , and 
various values of w .  CPU times are listed below the probabilities. 

 
 

40w =  50w =  60w =  70w =  80w =  
0.0004 

 
5.2s 

2.45e-6 
 

6.5s 

1.48e-8 
 

7.7s 

8.95e-11 
 

8.9s 

5.41e-13 
 

10.1s 
 
 

Table 8.  ( )Pr ( ) 1S w w≥ −  for 610n = , transition matrix 3T , { }0,1Σ = , 2m = , and 
various values of w .  CPU times are listed below the probabilities. 

 
 

40w =  50w =  60w =  70w =  80w =  
0.0070 

 
1m34s 

5.361e-5 
 

2m28s 

4.000e-7 
 

3m35s 

2.756e-9 
 

4m56s 

1.907e-11 
 

6m31s 
 
 

Appendix 
 
In this Appendix we obtain an expression for the number of states in s∆ .  
  
Theorem A.1.  Let { }0,1, , 1kΣ = −  and consider the string 1 cx x .  The number of 
integer solutions ( ), ,k cη µ  of 1 2 cx x x µ+ + + = , where µ  is a positive integer and 

ix ∈Σ , is  

  ( ) ( )
/

0

1
, , 1

       1

k
j

j

c c jk
k c

j c

µ µ
η µ

  

=

− + −  
= −   −  
∑ . (A.1) 

Proof:  The result is obtained by considering the series expansion of ( )1

0

ck i
i

y−

=∑  for 

1y <  [see Murty, (1981)].  Taking 1xy  from the first factor, 2xy  from the second,  , 
and cxy  from the c th factor and multiplying, we obtain 1 2 cx x xy + + +  , and thus the 
coefficient of yµ  in the expansion is precisely the total number of solutions of 

1 2 cx x x µ+ + + = .   

 Since ( )( )1 1

0
1 1k i k

i
y y y− −

=
= − −∑ , 

( ) ( ) ( )1

0
1 1

c ck ci k
i

y y y− −

=
= − −∑  

( )0 0

1
1

   1
c j jk r
j r

c c r
y y

j c
∞

= =

   + −   
= −      −      
∑ ∑ . 

 
The term of order µ  is  
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( )
1

1
   1

j jk rc c r
y

j c
++ −  

−  −  
∑ , 

where the summation runs over values of j  and r  such that jk r µ+ = ; 0r ≥ , 
0 j c≤ ≤ , or  

r jkµ= − ; j
k
µ
≥ ; 0 j c≤ ≤ , i.e. 0 j

k
µ

≤ ≤ . 

Hence the required coefficient is ( ) ( )
/

0

1
, , 1

       1

k
j

j

c c jk
k c

j c

µ µ
η µ

  

=

− + −  
= −   −  
∑ . ▄ 

 
Theorem A.2 The number of automaton states in s∆  is 
  

( )
( )min 1 , 1

0
1 , ,  

m k s

s k m
µ

η µ
− −  

=

∆ = +   ∑    

( )
( )( )

( )

( )
( )( )

( )( )min 1 , 1 min 1 1 , 11

1 max 1, 1 max 1, 1

+ , , , 1,
c k s c k sw

c m s w c k s w c k

k c k c
µ µ

η µ η µ
− − − − −   −    

= + = − − − = − − −      

    −  −     
  

∑ ∑ ∑   

 
Proof: The number of strings of length m  with window sums  1 2 mx x x µ+ + + =  is 

( ), ,k mη µ for ( )0,1, ,min 1 , 1m k sµ =  − −   .  Based on this fact, 

( )
( )min 1 , 1

0
, ,

m k s
m
s k m

µ

η µ
− −  

=

Σ = ∑ .  To obtain sD , ( )
( )( )

( )min 1 , 11

1 max 1, 1

, ,
c k sw

c m s w c k

k c
µ

η µ
− − −  

= + = − − −  

 
    

 
∑ ∑  gives 

the number of strings of lengths 1, , 1c m w= + −  with window sums µ  in the 
acceptable range.  However, we must subtract the number of strings ( ), 1,k cη µ−  that 
have the same window sum µ  but begin with zero.  For strings that begin with zero, the 
upper bound for µ  may be smaller because the string length after the first symbol is only 

1c −  and not c .  The additional state is the absorbing state.  The result follows.    ▄ 
  
For ( 1)s w k= −  or ( 1) 1s w k= − − , we give a more compact form of sD . 
 
Theorem A.3 If ( 1)s w k= − , 1sD w m= − −  so that m

s k w m∆ = + − .  For 
( 1) 1s w k= − − , 

( )

1 2
,   3,4,

   2    2

1 2
,   2

   2    2

s

w m
k

D
w m

w m k

 + +   
− =   

   = 
+ +    − − − =      



 

and again 1m
s sD k∆ = + + . 

 
Proof: If ( 1)s w k= − , 1,0 0ς = , and all strings in sD must be of the form 

( )1, 1, , 1k k k− − − .  There is then exactly one string in sD  for each of the lengths 
1, , 1m w+ − , for a total of  1w m− −  of such strings.   
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  If ( 1) 1s w k= − −  and 3k ≥ , there is exactly one m -tuple with 1, 1mς = , m  with 

1, 0mς = , and the rest have 1, 0mς < .  Strings of length j , , , 2j m w= −  with 1, 0jς =  
produce one automaton string of length 1j +  (by concatenating 1k −  as the last 
component), while the one string of each length with 1, 1jς =  produces two automaton 

strings (by concatenating 1k −  to produce a string with 1, 1 1jς + =  or by concatenating 
2k − ).  Thus sD  has 1j +  strings of length j , 1, , 1j m w= + − , for a total of number 

of strings equal to  

  
( ) ( )( )1 1 2

2
2 2

w w m m
m w

+ + +
+ + + = − .   

If 2k = , the m -tuple 


1

0,1, ,1
m− 

  
 

  has slack 1, 0jς = , however this state isn’t included in 

the automaton, and its offspring shouldn’t be either.  There is one such string for each of 
the lengths 1, , 1m w+ − , for a total of 1w m− −  strings that should be subtracted.  In 

addition, the string 
1

1,1, ,1
w− 

 
 
 



  has 1, 1 1wς − = , however for that string 2, 1 1wς − = −  as it is 

absorbed.  Thus it should not be counted, and a total of ( )1 1w m w m− − + = −  strings 
should be subtracted from the count when 2k >  to obtain the count when 2k = . 
 In each case, mk  m -tuples and also an absorbing state are included in s∆ , and thus  

1m
s sD k∆ = + + . ▄ 
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