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Abstract 
There is a clearly increasing level of national interest in comparative effectiveness 
research (CER). Due to the newness of the field and also confusion about what exactly 
CER is, reliable evidence based methods on the comparative effectiveness (CE) of 
treatments for medical and health policy decision makers are currently inadequate. RCTs 
must have a prominent place in CER due to their reliable information and well respected 
standard. However, in randomized CE trials, there may be limited information to guide 
initial design choices including the patient population, the primary outcome, or the target 
effect size. In the general RCT setting, adaptive designs have been proposed to address 
these concerns. There are potential advantages to expanding adaptive designs to within 
the CE context. Although there are many similarities between the two, CE trials have 
some fundamental differences from standard clinical trials. For one, the heterogeneity in 
the population studied in CE creates higher variability in outcomes. CE studies could be 
underpowered if they use planning values obtained from tightly controlled clinical trials. 
Additionally, the concept of a ‘minimum clinically meaningful difference’ is hard to 
define in the CE context. Even assuming equal cost and safety, a range of meaningful 
effect sizes could be defined with upper limit the largest effect with reasonable chance of 
being observed and lower limit the minimal effect deemed sizable enough to change 
practice in the study context. We first review the current state of clinical CER. Then, we 
identify areas of CER that seem particularly strong candidates for the development of 
novel adaptive design methodology and application. We describe the evaluative process 
to determine the usefulness of these designs in CER in a number of useful two group 
comparison situations. Illustrative analytic results are used to explore properties of 
various adaptive sample size re-estimation designs tailored for use in CE trials. We 
summarize results, make recommendations, and identify areas needing future research.  
 
Key Words: adaptive designs, comparative effectiveness; sample size re-estimation; 
power analysis 
  

1. Introduction and Motivation 

1.1 Introduction 
Randomized clinical trials (RCTs) are considered to be among the most powerful and 
reliable tools of medical research. Important clinical trial results can have widespread 
influence on clinical and health policy decisions. Traditional clinical trial methodology is 
designed to minimize bias and allow for strong comparison of hypothesized causal 
relationships. Despite their strengths, traditional clinical trial designs have a number of 
drawbacks in modern clinical research settings.  

ENAR – JSM 2012

1301



For one, traditional trials are not conducted in ‘real world’ settings. RCTs in the United 
States typically depend on narrowly defined efficacy endpoints. That is, they examine 
whether the treatment works under ideal, highly controlled settings, and typically use 
homogenous populations carefully defined by extensive and detailed inclusion and 
exclusion criteria. As a result, it is difficult to determine the external validity of trial 
results in conditions and populations that differ from those included in the study.  

Additionally, primary controlled clinical trials in the United States are usually conducted 
with an experimental treatment compared to a placebo, with both perhaps being 
supplementary to a baseline of care. Thus, the goal is to determine whether a new 
treatment has an incremental improvement in health outcomes versus a standard of care. 
However, often, many such potential treatments exist and confusion arises as to which 
treatment is in fact best for a patient or in a population. 

Another drawback for traditional designs is that the designs are rigid and success is 
largely dependent on a priori knowledge that is largely unknowable. In traditional clinical 
trials, key design elements (e.g., primary endpoint, clinically meaningful treatment 
difference, measure of variability, or control event rate) are pre-specified during study 
planning. Once all data is collected, a final analysis is performed. Consequently, study 
success strongly depends on the accuracy of the original assumptions. Combined with the 
fact that clinical trials are extremely costly and time consuming, this is a significant 
weakness in traditional designs.  

1.2 Comparative Effectiveness Research 

The field of comparative effectiveness research (CER) has grown as a response to the 
costs and drawbacks of traditionally designed research designs. The overall desire is to 
assist doctors and policy makers in deciding which treatments are preferred for a 
particular patient in a given context. Decision making in CER is typically based on head 
to head comparison of active treatments and the use of real-world population samples [1]. 
The potential evidentiary and economic benefits of CER have brought it to the forefront 
of current medical research and it has become a scientifically, culturally, and 
economically demanded part of healthcare reform. The American Recovery and 
Reinvestment Act of 2009 included a $1.1 billion investment in CER and recent national 
healthcare reform legislated the creation of a national Patient-Centered Outcomes 
Research Institute to guide expansion of CER [2,3]. 

An Institute of Medicine Committee on Initial Priorities for CER [4] created a working 
definition of CER as:  

"...the generation and synthesis of evidence that compares the benefits 
and harms of alternative methods to prevent, diagnose, treat and monitor 
a clinical condition, or to improve the delivery of care. The purpose of 
CER is to assist consumers, clinicians, purchasers, and policy makers to 
make informed decisions that will improve health care at both the 
individual and population levels". 

We focus our attention on the "generation...of evidence" comparing "alternative methods" 
allowing for "informed decisions". Methods for reliable evidence on the comparative 
effectiveness of treatments for medical and health policy decision makers are currently 
inadequate [5].  

Tunis et al. [6] provided an excellent summary of the current policy context, need for 
future methods development in CER research, and summary of existing research 
infrastructure. They also clarify that CER covers a range of different approaches 
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including: 1) systematic review, 2) decision modeling, 3) retrospective analysis of 
existing clinical or administrative data, 4) prospective observational studies, and 5) 
experimental studies, including RCTs. Although all of these areas are of interest, the 
focus of this manuscript lies with the use of RCTs for conducting CER. CE research can 
create a general population that can fairly compare multiple treatments that were 
originally researched in very specific and differing populations and only compared versus 
placebo. RCTs must have a prominent place in CER due to their reliable information and 
well respected standard. However, improved approaches and CER-focused rethinking are 
needed to ensure their feasibility and overcome tendencies to be slow, expensive, and 
homogenous in sample [5,7]. Additionally, unique issues must be addressed in order 
achieve the promised benefits of CER trials. 

1.3 Motivating Example 

As a motivating example, consider the planning for a two arm randomized controlled trial 
comparing active depression treatments with similar safety, and availability (adapted 
from [8]). The primary endpoint for the hypothesized study is 6 week decline in the 
Hamilton Depression Index (HAM-D; [9]). As both treatments being considered are 
proven active treatments, there is general uncertainty about the expected mean group-
wise difference (δ = μ1 - μ2). On one hand, based on their personal beliefs, the 
investigators believe that δ = 4 is a reasonable expectation, but also recognize that any 
true value above δ = 2 would be clearly clinically meaningful. That is, if proven, the 
knowledge could potentially change first line clinical practice recommendations. In this 
case, the question arises as to how to appropriately determine the sample size for the 
study. For example, with respect to the mean group-wise difference (δ), should the 
reasonable expectation (δ = 4) be used to plan a smaller study with good chance of 
success for higher effect sizes? Or should a much larger study be planned, assuming δ = 
2, in order to ensure that success is achieved for smaller values? The latter case would 
call for four times the upfront sample size commitment, using much more resources and 
time. In our experience, the larger but reasonable effect size expectation (δ = 4) would be 
the most common choice made during planning.  

Consider possible research outcomes under this scenario. The best case would be 
obtaining a result with one treatment clearly better than the other (  > 4). Here the design 
was appropriate and the study gives a largely definitive answer to the research question. 
Another potential outcome would be finding very little difference between the two 
treatments (  < 2). Here, the treatments may be considered to more or less have 
equivalent effect on depression decline over the six week period. Although the 
investigators may be disappointed by an initial preference not being superior, they can 
take comfort that they have made a useful contribution to the body of knowledge 
comparing the two treatments. A more disappointing result in this setting would be one 
with an observed treatment difference falling between two and four (e.g.,  = 3). Here, 
there is no statistically significant difference, but there could be a clinically meaningful 
difference present. We refer to this area as the ‘statistical gray zone’. As there is no 
fallback position in a CE trial, not much can be taken from this underpowered, 
ambiguous result other than that more research is needed for a clearer answer to the 
research question. Care must be taken to avoid this poor alignment between study goals 
and design. 

Another potential issue when using traditional study design is that there is often 
uncertainty during planning about variance, σ2. If this value is underestimated, the result 
is an underpowered study. Alternatively, an overestimate contributes to study inefficiency 
through increased sample size. 
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2. Adaptive Comparative Effectiveness Trials 

2.1 Some issues with Comparative Effectiveness Trials 

Valid and meaningful trials for CER are difficult to design for a number of reasons. For 
one, the concept of a ‘minimum clinically meaningful difference’ has diminished 
meaning in CE trials. Even assuming equal cost and safety, a range of meaningful effect 
sizes could be defined with upper limit as the largest effect with a reasonable chance of 
being observed and lower limit as the minimal effect deemed sizable enough to change 
practice in the study context. Additionally, smaller effect sizes are expected in CE trials 
comparing proven treatments. Designs using traditional methods would require large 
sample sizes or only be powered to detect large effect sizes. Thus, clinically small, but 
population important, differences may be missed. Finally, heterogeneity in the ‘real-
world’ populations studied in CER creates potentially higher variability in outcomes. 
Unreliable prior information could only be available from highly controlled studies from 
homogeneous populations. 

Adaptive designs (ADs) have been proposed to improve design characteristics in 
traditional trials by allowing for greater flexibility to adjust a study based on 
accumulating information. Specifically, sample size re-estimation (SSR) and group 
sequential (GS) methods seem to hold promise in CER. The examination of the use of 
these ADs in CER could improve trial accuracy and efficiency in this important field. 

2.2 Adaptive Designs 

Adaptive designs (AD) methods continue to attract substantial interest in regulatory 
health science, as evidenced by the recently released U.S. Food and Drug Administration 
(FDA) draft guidance document [10]. ADs give one way to address the uncertain choices 
that must be made during planning for a CE trial. ADs are ‘adaptive’ in that they allow 
changing characteristics of a study based on information accumulated during study 
implementation. Among other items, these characteristics could include study duration, 
sample size, or the number of study arms. ADs are ‘designs’ in that the adaptations are 
planned. Consistent with FDA guidance, a PhRMA working group [11] stated that 
adaptive designs “…modify aspects of the study as it continues, without undermining the 
validity and integrity of the trial.” Additionally, they state that “…changes are made by 
design, and not on an ad hoc basis”. Thus, ADs allow for planned modifications. The 
flexibility they allow can translate into more efficient treatment comparisons by reducing 
trial size and time, and by increasing the chance of a trial correctly answering the 
question of interest. More information on adaptive designs in general can be found in a 
recent review by Kairalla et al. [12]. Of particular interest for use in CE trials are group 
sequential (GS) and sample size re-estimation (SSR) methods. Both GS and SSR were 
developed to create more efficiency in studies and can be seen as addressing different 
sources of parameter mis-specification. Each will be briefly described immediately 
below. 

GS designs allow stopping a trial early through interim testing if it becomes clear that a 
treatment is superior or inferior. Thus, GS methods protect against effect size mis-
specification. Several approaches have been proposed to allow for repeated interim 
testing while preserving the type I error rate. Well known among them are the approaches 
described by Pocock [13] and by O’Brien and Fleming [14]. The method by Pocock takes 
the approach of finding a single adjusted nominal significance level that can be used at 
each testing time. Alternatively, the OF method has the nominal significance level 
increase as more information accrues during the study. The OF approach has become 
much more popular due to the preferred characteristic of preserving power to later in a 
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study when more information is at hand. We believe, however, that the method described 
by Pocock [13] holds promise in the CER setting and should be considered during study 
planning and design evaluation. Additionally, α-spending functions [15] are important 
tools that allow flexible timing of analyses regardless of the type I error preservation 
method employed. For futility stopping consideration, a common method in group 
sequential methods that seems promising in CER is the conditional power approach to 
stochastic curtailment [16]. GS methods in general are well known and have been 
extensively described [16]. 

SSR methods allow design parameters to be changed or re-estimated, with the study 
sample size adjusted accordingly. The sample size change could be based on updated 
values for the effect size or for other nuisance parameters (such as variability). Sample 
size based on observed effect size has generated considerable discussion and controversy 
[17-19] relating both to inefficiencies and the potential conveyance of considerable 
information from the interim decisions that are made. However, there is little controversy 
concerning SSR based solely on updated nuisance parameters. These designs, known 
internal pilots (IP; [20]) are two stage designs with no interim testing, but with interim 
sample size re-estimation based on first stage nuisance parameter estimates. The designs 
protect study power at the preplanned clinical effect of interest. Also, an IP design 
implemented in a setting where non-objective parties do not have access to accumulating 
raw data will give no information concerning effect trends of interest [12]. 

Considerable focus has been put on combining GS and IP based SSR designs in order to 
simultaneously achieve their benefits. Asymptotically correct methods for use of GS and 
IP methods in large clinical trials have been proposed [21,22]. These methods, however, 
can have type I error rate inflation in small samples. Exact distributional theory for 
internal pilots with interim analysis (IPIA) has computational time advantages over 
simulation methods and power and expected sample size benefits over fixed sample 
methods [23]. Kairalla, Coffey, and Muller [24] identified three sources of type I error 
rate inflation in IPIA designs and showed how they could be effectively controlled.  

Current and ongoing research seeks to incorporate these methods into potential CE trial 
designs in order to efficiently allow for sample size and study duration flexibility. A 
selection of results showing their promise is included in section 3. 

2.2 A Potential Adaptive CE Trial 

A proposed new aspect of an adaptive CE trial would be the introduction of a primary 
and secondary effect size on interest. These could represent, for example, the endpoints 
of a range identified at the upper end by the largest reasonable expected effect and on the 
lower end by the smallest effect deemed sizable enough to change practice in a study 
context. Thus, an example AD for two group CE trials could have two stages with the 
first powered to detect the larger reasonable effect size (such as 4 points in HAM-D 
reduction). At the conclusion of the first stage, one of three decisions could be reached: 
1) Declare efficacy (one treatment clearly better), 2) Declare futility (study unlikely to 
show difference between treatments), or 3) If results suggest a smaller effect might exist, 
then proceed with a second stage powered to detect the smaller effect. Thus, the range of 
effect sizes of interest is covered by the study design, with smaller studies more probable 
if effect sizes are large. If nuisance parameters are also uncertain, additional SSR 
calculations for the second stage could also incorporate observed nuisance information 
based on the first stage data. An example for continuous outcomes would be the use of 
the observed variance estimate at the interim stage in determining the second stage 
sample size. 
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2.3 Evaluating Potential Designs 

There are a number of potential settings in which to consider adaptive designs for CE 
trials settings. Additionally, for each study setting, there are many potential design 
variations to consider when evaluating the operating characteristics and robustness of a 
design. For example, study settings and variations could include combinations of the 
following:  

 Outcome variable type: continuous, binary, or time-to-event 

 Early stopping reason: futility, effectiveness, or both 

 Sample size re-estimation reason: effect size, nuisance parameter, or both 

 Stopping bound type employed: Pocock, OF, conditional power 

 Theory used for critical values and power calculations: large sample (Z) or small 
sample (t) theory 

Operating characteristics to evaluate include the type I error rate, power, and expected 
sample size. These values depend not only on the design considerations above, but also 
on the specific study parameters used for planning and that are assumed true. Extensive 
sensitivity analysis should be performed in order to assess the operating characteristics 
over a wide range of possibilities. Table 1 gives an idea of the parameters of interest that 
should be examined for a given study type comparing two treatments with either a 
continuous or binary outcome, SSR based on treatment effect or treatment effect and 
nuisance parameter, and for early stopping abilities for efficacy or for efficacy and 
futility. 

 

 

 

Table 1: Parameters of Interest for Sensitivity Analysis
Sample size re-estimation based on: Treatment Trt and Nuisance

Possible first stage stopping conclusions: Eff Eff or Fut Eff or Fut
Symbol Definition

Both
Outcomes

Eff

α>

>

Target type I error rate X X X X
Target powerT X X X X
Planned first stage sample size X X X X
Planned second stage sample size X X
Maximum allowed size of final sample X X
Firs

8
8
8
G
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2

ß

I"
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t stage effectiveness bound X X X X
(stop if )
First stage futility bound X X
(stop if )
Second stage effectiveness b

l^l   G
G

l^l Ÿ G
G

I"

J"

J"

I# ound X X X X
True mean difference X X X X
Primary effect of interest X X X X
Secondary effect of interest X X X X
True va

Continuous
Outcomes

$
$
$

5

"

#
2

riance X X
Variance value for planning X X
True proportion difference X X X X
Primary effect of interest X X X X
Secondar

5
%
%
%

!
#

#

Binary
Outcomes 1

y effect of interest X X X X
True pooled event rate X X
Pooled event rate for planning X X

1
1!
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3. Enumeration 

3.1 HAM-D Example 

In order to exemplify the potential advantages of adaptive designs for use in CE trials, 
enumeration will be presented for a limited subset of the possibilities listed in section 2. 
Recall the HAM-D example described in subsection 1.3. Here, two active treatments are 
being compared on the continuous outcome of 6 week decline in Hamilton Depression 
score. For all calculations, we assume a target type I error rate of αt = 0.05 and a target 
power of Pt = 0.90. As previously described, the effect size of interest is given as a range 
of δ = 2 to 4 with the lower value being the smallest value that could affect first line 
clinical practice recommendations and the upper value being a treatment difference that 
the investigators would reasonably expect to see. The goal is an efficient study design 
that will declare significance as long as δ ≥ 2, with the understanding that there is good 
chance δ is as high as 4. The design is a two stage design with first stage designed to 
detect larger effect (4) and second stage designed to detect smaller effect (2). 

While more complex situations would typically use simulations for sensitivity analyses, 
the results in this manuscript all use exact theory developed for internal pilot with interim 
analysis designs [23]. Use of the exact theory results in accurate calculations performed 
much faster than simulation studies would allow. The calculations were performed with 
the SAS/IML software, Version 9.2 of the SAS System (Copyright © 2002-2008, SAS 
Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered 
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA). 

3.2 HAM-D Case 1: Known Variance Assumed 

For the first enumeration, we will assume that the variance is a known value (σ2 = 4) and 
does not need to be re-estimated during the study. Also, we will only consider early 
effectiveness stopping with interim SSR based on secondary effect size of interest. 
Calculations will be made for true effect size: δ in {0, 2, 4}. Results will be calculated 
using α-spending functions [15] with the common O’Brien-Fleming [14] type stopping 
bounds and the bounds described by Pocock [13]. The example will result in a fairly 
small sample setting, with a fixed sample design having n=44 subjects when powering 
for δ = 2. We will compare the large sample theory (Z-based) with the more exact t-based 
methods. Note that in this case without nuisance parameter based sample size re-
estimation, we have a special case group sequential method. The difference between this 
design and an ordinary GS design is that we would like high power to stop after the first 
stage if our expected effect size is reached. Calculation for this example is based on exact 
theory. 

Table 2: Power and expected sample size for HAM-D Case 1 
(using exact theory calculations) 

  Z-based t-based 
Bound type True δ Power x 100 E(N) Power x 100 E(N) 

Fixed (δ = 2) 0 5.7 44 5.0 46 
O’Brn-Flem 0 5.9 43.9 5.0 46.0 
Pocock 0 7.3 46.4 5.1 49.1 
O’Brn-Flem 2 91.0 41.9 91.2 45.5 
Pocock 2 90.3 34.5 90.0 38.0 
O’Brn-Flem 4 >99.9 29.8 >99.9 38.6 
Pocock 4 >99.9 16.5 >99.9 18.6 
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Power and sample size results for Case 1 can be seen in Table 2. Note that all of the 
bound types have unacceptable type I error rate inflation (power at δ = 0) when using the 
large sample Z-based critical value and sample size calculations. However, the t-based 
values better account for the uncertainty in the variance estimate and appropriately 
control the type I error rate. Both the Pocock and OF type stopping bounds achieve the 
desired power at δ = 2 and virtually guarantee an effectiveness finding at δ = 4. The 
difference comes, however, when comparing expected sample sizes. When δ = 2, the 
Pocock bounds allow for increased power to stop early while the OF bounds will rarely 
allow early stopping, translating to an average 20% additional sample size. The effect is 
much more dramatic at the top of the effect range of interest. Here, the Pocock bounds 
translate to less than half the sample size compared to the OF bounds. Note that no 
futility stopping is included here, resulting in no sample size savings versus the fixed 
sample design under no effect (δ = 0). 

3.3 HAM-D Case 2: Unknown Variance 

The second case will be similar to the first in all aspects but one. Now we add the 
element of uncertainty concerning the true variance. In this situation, the planning 
variance of change is considered to be σ2

o = 4. However, we will combine early 
effectiveness stopping with SSR based on secondary effect size of interest and observed 
variance estimate from the first stage. Since in the previous example we showed the 
benefits of t-based methods and Pocock bounds for this situation, we will constrain our 
results to this setting. To help control type I error rate inherent to sample size re-
estimation designs, we will consider an approximate bounding method (Coffey and 
Muller, 2001) modified from use in internal pilot designs. With αt the target type I error 
rate, the actual type I error rate depends on the ratio of the true variance to the planning 
value, γ = σ2/σ2

0. The bounding method finds nominal αb ≤ αt, such that the test has type I 
error rate no more than αt over all possible γ. Work is needed on finalizing a numeric 
algorithm to automatically calculate αb in this context. A few trial and error calculations 
gave αb=0.0465 as a reasonable value to use here for illustrative purposes. 

 

Table 3: Power x 100 for HAM-D Case 2: t-based with Pocock 
bounds (using exact theory calculations) 

True δ γ =σ2/ σ2
o Fixed Pocock Pocock-Bound 

0 0.5 5.0 5.4 5.0 
0 1 5.0 5.4 5.0 
0 2 5.0 5.2 4.8 
2 0.5 >99 93.3 93.2 
2 1 91.2 89.2 89.1 
2 2 65.0 86.5 86.4 
4 0.5 >99 >99 >99 
4 1 >99 >99 >99 
4 2 >99 >99 >99 

 

Table 3 gives power calculations for Case 2 using only t-based calculations and Pocock 
like stopping bounds, both with and without the bounding method. The Pocock without 
the bounding method exhibits some type I error rate inflation. However, the Pocock-
Bounding method has virtually the same power results, but with type I error rate control. 
The Pocock methods have a much more stable power control than the fixed design as 
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shown in the δ = 2, γ=2 case where the variance was originally underestimated. Here the 
fixed design has power of 0.65 while the Pocock methods are over 0.86. 

 

Table 4: Expected sample size for HAM-D Case 2: t-based with 
Pocock bounds (using exact theory calculations) 

True δ γ =σ2/ σ2
o Fixed Pocock Pocock-Bound 

0 0.5 46 28 28 
0 1 46 50 51 
0 2 46 95 97 
2 0.5 46 21 22 
2 1 46 41 42 
2 2 46 86 88 
4 0.5 46 16 16 
4 1 46 20 20 
4 2 46 51 53 

 

Table 4 displays the expected sample size information for Case 2. As expected, the 
sample size benefits of the Pocock method become clear as the effect size increases due 
to the chances of early stopping increasing with true effect size. Also, if the originally 
specified variance value was too high, expected sample size decreases. Conversely, if the 
planning variance was too low, the SSR technique increases the second stage sample size 
to appropriate levels to create power stability. 

4. Discussion 

The methods employed are adaptive in that they can lead to early stopping or resizing the 
study if it continues. They can protect against power loss from nuisance parameter under-
estimation while saving sample size if the opposite is the case. It is important to achieve 
alignment between design and goals during planning. If the goal is only to achieve power 
for a single effect size point, and nuisance parameters are known, then a fixed effect 
design is ideal. If, however, a range of effect sizes of interest is known beforehand, or 
there is considerable uncertainty concerning planning values for nuisance parameters, 
then adaptive designs have much value. 

There are a few ideas contained here that are new to modern clinical trial thinking. For 
one, the ‘preplanned grey zone’ with a range of reasonable effects that should be 
accounted for is an important idea in CER. Also, it is important to recall that small 
differences have more clinical meaning and more uncertainty of variance is likely in CER 
research. Accounting for both of these using traditional designs would result in very large 
and inefficient studies, which is exactly the opposite of the promise of CER. Adaptive 
designs have a lot of potential in this area in order to allow CE trials to successfully and 
efficiently make important comparisons. A new finding is that this seems to be a rare area 
where Pocock bounds seem appropriate and work quite well. Further work and discussion 
should seriously consider their implementation in such designs. Work to refine and 
automate methods of type I error rate control are ongoing. Other additional work is 
needed to study the development and evaluation of new designs in CE trials in a 
multitude of potential settings. Also, Bayesian approaches to adaptive CE trials have been 
discussed somewhat in the literature [1], but are not addressed here. If successfully 
implemented, they could help incorporate prior information into a study in order to boost 
efficiency. 

ENAR – JSM 2012

1309



We believe that through continued theoretical and enumerative research and discussion 
among the various interested parties, adaptive designs can unlock the potential of CE 
trials. It is imperative that these tools be known, developed, and available as CER rapidly 
moves into the front and center of our medical research attention.  
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