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Abstract

There is a clearly increasing level of national interest in comparative effectiveness
research (CER). Due to the newness of the field and also confusion about what exactly
CER is, reliable evidence based methods on the comparative effectiveness (CE) of
treatments for medical and health policy decision makers are currently inadequate. RCTs
must have a prominent place in CER due to their reliable information and well respected
standard. However, in randomized CE trials, there may be limited information to guide
initial design choices including the patient population, the primary outcome, or the target
effect size. In the general RCT setting, adaptive designs have been proposed to address
these concerns. There are potential advantages to expanding adaptive designs to within
the CE context. Although there are many similarities between the two, CE trials have
some fundamental differences from standard clinical trials. For one, the heterogeneity in
the population studied in CE creates higher variability in outcomes. CE studies could be
underpowered if they use planning values obtained from tightly controlled clinical trials.
Additionally, the concept of a ‘minimum clinically meaningful difference’ is hard to
define in the CE context. Even assuming equal cost and safety, a range of meaningful
effect sizes could be defined with upper limit the largest effect with reasonable chance of
being observed and lower limit the minimal effect deemed sizable enough to change
practice in the study context. We first review the current state of clinical CER. Then, we
identify areas of CER that seem particularly strong candidates for the development of
novel adaptive design methodology and application. We describe the evaluative process
to determine the usefulness of these designs in CER in a number of useful two group
comparison situations. Illustrative analytic results are used to explore properties of
various adaptive sample size re-estimation designs tailored for use in CE trials. We
summarize results, make recommendations, and identify areas needing future research.

Key Words: adaptive designs, comparative effectiveness; sample size re-estimation;
power analysis

1. Introduction and Motivation

1.1 Introduction

Randomized clinical trials (RCTs) are considered to be among the most powerful and
reliable tools of medical research. Important clinical trial results can have widespread
influence on clinical and health policy decisions. Traditional clinical trial methodology is
designed to minimize bias and allow for strong comparison of hypothesized causal
relationships. Despite their strengths, traditional clinical trial designs have a number of
drawbacks in modern clinical research settings.
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For one, traditional trials are not conducted in ‘real world’ settings. RCTs in the United
States typically depend on narrowly defined efficacy endpoints. That is, they examine
whether the treatment works under ideal, highly controlled settings, and typically use
homogenous populations carefully defined by extensive and detailed inclusion and
exclusion criteria. As a result, it is difficult to determine the external validity of trial
results in conditions and populations that differ from those included in the study.

Additionally, primary controlled clinical trials in the United States are usually conducted
with an experimental treatment compared to a placebo, with both perhaps being
supplementary to a baseline of care. Thus, the goal is to determine whether a new
treatment has an incremental improvement in health outcomes versus a standard of care.
However, often, many such potential treatments exist and confusion arises as to which
treatment is in fact best for a patient or in a population.

Another drawback for traditional designs is that the designs are rigid and success is
largely dependent on a priori knowledge that is largely unknowable. In traditional clinical
trials, key design elements (e.g., primary endpoint, clinically meaningful treatment
difference, measure of variability, or control event rate) are pre-specified during study
planning. Once all data is collected, a final analysis is performed. Consequently, study
success strongly depends on the accuracy of the original assumptions. Combined with the
fact that clinical trials are extremely costly and time consuming, this is a significant
weakness in traditional designs.

1.2 Comparative Effectiveness Research

The field of comparative effectiveness research (CER) has grown as a response to the
costs and drawbacks of traditionally designed research designs. The overall desire is to
assist doctors and policy makers in deciding which treatments are preferred for a
particular patient in a given context. Decision making in CER is typically based on head
to head comparison of active treatments and the use of real-world population samples [1].
The potential evidentiary and economic benefits of CER have brought it to the forefront
of current medical research and it has become a scientifically, culturally, and
economically demanded part of healthcare reform. The American Recovery and
Reinvestment Act of 2009 included a $1.1 billion investment in CER and recent national
healthcare reform legislated the creation of a national Patient-Centered Outcomes
Research Institute to guide expansion of CER [2,3].

An Institute of Medicine Committee on Initial Priorities for CER [4] created a working
definition of CER as:

"...the generation and synthesis of evidence that compares the benefits
and harms of alternative methods to prevent, diagnose, treat and monitor
a clinical condition, or to improve the delivery of care. The purpose of
CER is to assist consumers, clinicians, purchasers, and policy makers to
make informed decisions that will improve health care at both the
individual and population levels".

We focus our attention on the "generation...of evidence" comparing "alternative methods"
allowing for "informed decisions". Methods for reliable evidence on the comparative
effectiveness of treatments for medical and health policy decision makers are currently
inadequate [5].

Tunis et al. [6] provided an excellent summary of the current policy context, need for
future methods development in CER research, and summary of existing research
infrastructure. They also clarify that CER covers a range of different approaches
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including: 1) systematic review, 2) decision modeling, 3) retrospective analysis of
existing clinical or administrative data, 4) prospective observational studies, and 5)
experimental studies, including RCTs. Although all of these areas are of interest, the
focus of this manuscript lies with the use of RCTs for conducting CER. CE research can
create a general population that can fairly compare multiple treatments that were
originally researched in very specific and differing populations and only compared versus
placebo. RCTs must have a prominent place in CER due to their reliable information and
well respected standard. However, improved approaches and CER-focused rethinking are
needed to ensure their feasibility and overcome tendencies to be slow, expensive, and
homogenous in sample [5,7]. Additionally, unique issues must be addressed in order
achieve the promised benefits of CER trials.

1.3 Motivating Example

As a motivating example, consider the planning for a two arm randomized controlled trial
comparing active depression treatments with similar safety, and availability (adapted
from [8]). The primary endpoint for the hypothesized study is 6 week decline in the
Hamilton Depression Index (HAM-D; [9]). As both treatments being considered are
proven active treatments, there is general uncertainty about the expected mean group-
wise difference (0 = u; - u2). On one hand, based on their personal beliefs, the
investigators believe that = 4 is a reasonable expectation, but also recognize that any
true value above 0 = 2 would be clearly clinically meaningful. That is, if proven, the
knowledge could potentially change first line clinical practice recommendations. In this
case, the question arises as to how to appropriately determine the sample size for the
study. For example, with respect to the mean group-wise difference (), should the
reasonable expectation (0 = 4) be used to plan a smaller study with good chance of
success for higher effect sizes? Or should a much larger study be planned, assuming 0 =
2, in order to ensure that success is achieved for smaller values? The latter case would
call for four times the upfront sample size commitment, using much more resources and
time. In our experience, the larger but reasonable effect size expectation (6 = 4) would be
the most common choice made during planning.

Consider possible research outcomes under this scenario. The best case would be
obtaining a result with one treatment clearly better than the other (§ > 4). Here the design
was appropriate and the study gives a largely definitive answer to the research question.
Another potential outcome would be finding very little difference between the two
treatments (8 < 2). Here, the treatments may be considered to more or less have
equivalent effect on depression decline over the six week period. Although the
investigators may be disappointed by an initial preference not being superior, they can
take comfort that they have made a useful contribution to the body of knowledge
comparing the two treatments. A more disappointing result in this setting would be one
with an observed treatment difference falling between two and four (e.g., § = 3). Here,
there is no statistically significant difference, but there could be a clinically meaningful
difference present. We refer to this area as the ‘statistical gray zone’. As there is no
fallback position in a CE trial, not much can be taken from this underpowered,
ambiguous result other than that more research is needed for a clearer answer to the
research question. Care must be taken to avoid this poor alignment between study goals
and design.

Another potential issue when using traditional study design is that there is often
uncertainty during planning about variance, o°. If this value is underestimated, the result
is an underpowered study. Alternatively, an overestimate contributes to study inefficiency
through increased sample size.
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2. Adaptive Comparative Effectiveness Trials
2.1 Some issues with Comparative Effectiveness Trials

Valid and meaningful trials for CER are difficult to design for a number of reasons. For
one, the concept of a ‘minimum clinically meaningful difference’ has diminished
meaning in CE trials. Even assuming equal cost and safety, a range of meaningful effect
sizes could be defined with upper limit as the largest effect with a reasonable chance of
being observed and lower limit as the minimal effect deemed sizable enough to change
practice in the study context. Additionally, smaller effect sizes are expected in CE trials
comparing proven treatments. Designs using traditional methods would require large
sample sizes or only be powered to detect large effect sizes. Thus, clinically small, but
population important, differences may be missed. Finally, heterogeneity in the ‘real-
world’ populations studied in CER creates potentially higher variability in outcomes.
Unreliable prior information could only be available from highly controlled studies from
homogeneous populations.

Adaptive designs (ADs) have been proposed to improve design characteristics in
traditional trials by allowing for greater flexibility to adjust a study based on
accumulating information. Specifically, sample size re-estimation (SSR) and group
sequential (GS) methods seem to hold promise in CER. The examination of the use of
these ADs in CER could improve trial accuracy and efficiency in this important field.

2.2 Adaptive Designs

Adaptive designs (AD) methods continue to attract substantial interest in regulatory
health science, as evidenced by the recently released U.S. Food and Drug Administration
(FDA) draft guidance document [10]. ADs give one way to address the uncertain choices
that must be made during planning for a CE trial. ADs are ‘adaptive’ in that they allow
changing characteristics of a study based on information accumulated during study
implementation. Among other items, these characteristics could include study duration,
sample size, or the number of study arms. ADs are ‘designs’ in that the adaptations are
planned. Consistent with FDA guidance, a PhRMA working group [11] stated that
adaptive designs “...modify aspects of the study as it continues, without undermining the
validity and integrity of the trial.” Additionally, they state that “...changes are made by
design, and not on an ad hoc basis”. Thus, ADs allow for planned modifications. The
flexibility they allow can translate into more efficient treatment comparisons by reducing
trial size and time, and by increasing the chance of a trial correctly answering the
question of interest. More information on adaptive designs in general can be found in a
recent review by Kairalla et al. [12]. Of particular interest for use in CE trials are group
sequential (GS) and sample size re-estimation (SSR) methods. Both GS and SSR were
developed to create more efficiency in studies and can be seen as addressing different
sources of parameter mis-specification. Each will be briefly described immediately
below.

GS designs allow stopping a trial early through interim testing if it becomes clear that a
treatment is superior or inferior. Thus, GS methods protect against effect size mis-
specification. Several approaches have been proposed to allow for repeated interim
testing while preserving the type I error rate. Well known among them are the approaches
described by Pocock [13] and by O’Brien and Fleming [14]. The method by Pocock takes
the approach of finding a single adjusted nominal significance level that can be used at
each testing time. Alternatively, the OF method has the nominal significance level
increase as more information accrues during the study. The OF approach has become
much more popular due to the preferred characteristic of preserving power to later in a
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study when more information is at hand. We believe, however, that the method described
by Pocock [13] holds promise in the CER setting and should be considered during study
planning and design evaluation. Additionally, a-spending functions [15] are important
tools that allow flexible timing of analyses regardless of the type I error preservation
method employed. For futility stopping consideration, a common method in group
sequential methods that seems promising in CER is the conditional power approach to
stochastic curtailment [16]. GS methods in general are well known and have been
extensively described [16].

SSR methods allow design parameters to be changed or re-estimated, with the study
sample size adjusted accordingly. The sample size change could be based on updated
values for the effect size or for other nuisance parameters (such as variability). Sample
size based on observed effect size has generated considerable discussion and controversy
[17-19] relating both to inefficiencies and the potential conveyance of considerable
information from the interim decisions that are made. However, there is little controversy
concerning SSR based solely on updated nuisance parameters. These designs, known
internal pilots (IP; [20]) are two stage designs with no interim testing, but with interim
sample size re-estimation based on first stage nuisance parameter estimates. The designs
protect study power at the preplanned clinical effect of interest. Also, an IP design
implemented in a setting where non-objective parties do not have access to accumulating
raw data will give no information concerning effect trends of interest [12].

Considerable focus has been put on combining GS and IP based SSR designs in order to
simultaneously achieve their benefits. Asymptotically correct methods for use of GS and
IP methods in large clinical trials have been proposed [21,22]. These methods, however,
can have type I error rate inflation in small samples. Exact distributional theory for
internal pilots with interim analysis (IPIA) has computational time advantages over
simulation methods and power and expected sample size benefits over fixed sample
methods [23]. Kairalla, Coffey, and Muller [24] identified three sources of type I error
rate inflation in IPIA designs and showed how they could be effectively controlled.

Current and ongoing research seeks to incorporate these methods into potential CE trial
designs in order to efficiently allow for sample size and study duration flexibility. A
selection of results showing their promise is included in section 3.

2.2 A Potential Adaptive CE Trial

A proposed new aspect of an adaptive CE trial would be the introduction of a primary
and secondary effect size on interest. These could represent, for example, the endpoints
of a range identified at the upper end by the largest reasonable expected effect and on the
lower end by the smallest effect deemed sizable enough to change practice in a study
context. Thus, an example AD for two group CE trials could have two stages with the
first powered to detect the larger reasonable effect size (such as 4 points in HAM-D
reduction). At the conclusion of the first stage, one of three decisions could be reached:
1) Declare efficacy (one treatment clearly better), 2) Declare futility (study unlikely to
show difference between treatments), or 3) If results suggest a smaller effect might exist,
then proceed with a second stage powered to detect the smaller effect. Thus, the range of
effect sizes of interest is covered by the study design, with smaller studies more probable
if effect sizes are large. If nuisance parameters are also uncertain, additional SSR
calculations for the second stage could also incorporate observed nuisance information
based on the first stage data. An example for continuous outcomes would be the use of
the observed variance estimate at the interim stage in determining the second stage
sample size.
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2.3 Evaluating Potential Designs

There are a number of potential settings in which to consider adaptive designs for CE
trials settings. Additionally, for each study setting, there are many potential design
variations to consider when evaluating the operating characteristics and robustness of a
design. For example, study settings and variations could include combinations of the
following:

e Outcome variable type: continuous, binary, or time-to-event

o Early stopping reason: futility, effectiveness, or both

e Sample size re-estimation reason: effect size, nuisance parameter, or both

e Stopping bound type employed: Pocock, OF, conditional power

o Theory used for critical values and power calculations: large sample (Z) or small
sample (¢) theory

Operating characteristics to evaluate include the type I error rate, power, and expected
sample size. These values depend not only on the design considerations above, but also
on the specific study parameters used for planning and that are assumed true. Extensive
sensitivity analysis should be performed in order to assess the operating characteristics
over a wide range of possibilities. Table 1 gives an idea of the parameters of interest that
should be examined for a given study type comparing two treatments with either a
continuous or binary outcome, SSR based on treatment effect or treatment effect and
nuisance parameter, and for early stopping abilities for efficacy or for efficacy and
futility.

Table 1: Parameters of Interest for Sensitivity Analysis
Sample size re-estimation based on: Treatment Trt and Nuisance
Possible first stage stopping conclusions: Eff  Effor Fut Eff  Eff or Fut
Symbol  Definition

Both o Target type I error rate X X X X
Outcomes P, Target power X X X X
ny Planned first stage sample size X X X X
ny Planned second stage sample size X X
Ny max  Maximum allowed size of final sample X X
Cm; First stage effectiveness bound X X X X
(stop if | Z] > Cp1)
Cr1 First stage futility bound X X
(stop if |Z] < Cp1)
Cro Second stage effectiveness bound X X X X
Continuous 6 True mean difference X X X X
Outcomes &y Primary effect of interest X X X X
1) Secondary effect of interest X X X X
o? True variance X X
o2 Variance value for planning X X
Binary € True proportion difference X X X X
Outcomes € Primary effect of interest X X X X
€ Secondary effect of interest X X X X
T True pooled event rate X X
o Pooled event rate for planning X X
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3. Enumeration
3.1 HAM-D Example

In order to exemplify the potential advantages of adaptive designs for use in CE trials,
enumeration will be presented for a limited subset of the possibilities listed in section 2.
Recall the HAM-D example described in subsection 1.3. Here, two active treatments are
being compared on the continuous outcome of 6 week decline in Hamilton Depression
score. For all calculations, we assume a target type I error rate of o, = 0.05 and a target
power of P, = 0.90. As previously described, the effect size of interest is given as a range
of 6 = 2 to 4 with the lower value being the smallest value that could affect first line
clinical practice recommendations and the upper value being a treatment difference that
the investigators would reasonably expect to see. The goal is an efficient study design
that will declare significance as long as ¢ > 2, with the understanding that there is good
chance ¢ is as high as 4. The design is a two stage design with first stage designed to
detect larger effect (4) and second stage designed to detect smaller effect (2).

While more complex situations would typically use simulations for sensitivity analyses,
the results in this manuscript all use exact theory developed for internal pilot with interim
analysis designs [23]. Use of the exact theory results in accurate calculations performed
much faster than simulation studies would allow. The calculations were performed with
the SAS/IML software, Version 9.2 of the SAS System (Copyright © 2002-2008, SAS
Institute Inc. SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc., Cary, NC, USA).

3.2 HAM-D Case 1: Known Variance Assumed

For the first enumeration, we will assume that the variance is a known value (¢ = 4) and
does not need to be re-estimated during the study. Also, we will only consider early
effectiveness stopping with interim SSR based on secondary effect size of interest.
Calculations will be made for true effect size: ¢ in {0, 2, 4}. Results will be calculated
using a-spending functions [15] with the common O’Brien-Fleming [14] type stopping
bounds and the bounds described by Pocock [13]. The example will result in a fairly
small sample setting, with a fixed sample design having n=44 subjects when powering
for 0 = 2. We will compare the large sample theory (Z-based) with the more exact #-based
methods. Note that in this case without nuisance parameter based sample size re-
estimation, we have a special case group sequential method. The difference between this
design and an ordinary GS design is that we would like high power to stop after the first
stage if our expected effect size is reached. Calculation for this example is based on exact
theory.

Table 2: Power and expected sample size for HAM-D Case 1
(using exact theory calculations)

Z-based t-based

Bound type  Trued Powerx 100 E(N) Powerx 100 E(N)
Fixed (6 =2) 0 5.7 44 5.0 46

O’Brn-Flem 0 5.9 43.9 5.0 46.0
Pocock 0 7.3 46.4 5.1 49.1
O’Brn-Flem 2 91.0 41.9 91.2 45.5
Pocock 2 90.3 34.5 90.0 38.0
O’Brn-Flem 4 >99.9 29.8 >99.9 38.6
Pocock 4 >99.9 16.5 >99.9 18.6
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Power and sample size results for Case 1 can be seen in Table 2. Note that all of the
bound types have unacceptable type I error rate inflation (power at & = ) when using the
large sample Z-based critical value and sample size calculations. However, the #-based
values better account for the uncertainty in the variance estimate and appropriately
control the type I error rate. Both the Pocock and OF type stopping bounds achieve the
desired power at 6 = 2 and virtually guarantee an effectiveness finding at 6 = 4. The
difference comes, however, when comparing expected sample sizes. When 6 = 2, the
Pocock bounds allow for increased power to stop early while the OF bounds will rarely
allow early stopping, translating to an average 20% additional sample size. The effect is
much more dramatic at the top of the effect range of interest. Here, the Pocock bounds
translate to less than half the sample size compared to the OF bounds. Note that no
futility stopping is included here, resulting in no sample size savings versus the fixed
sample design under no effect (J = 0).

3.3 HAM-D Case 2: Unknown Variance

The second case will be similar to the first in all aspects but one. Now we add the
element of uncertainty concerning the true variance. In this situation, the planning
variance of change is considered to be ¢’, = 4. However, we will combine early
effectiveness stopping with SSR based on secondary effect size of interest and observed
variance estimate from the first stage. Since in the previous example we showed the
benefits of t-based methods and Pocock bounds for this situation, we will constrain our
results to this setting. To help control type I error rate inherent to sample size re-
estimation designs, we will consider an approximate bounding method (Coffey and
Muller, 2001) modified from use in internal pilot designs. With o, the target type I error
rate, the actual type I error rate depends on the ratio of the true variance to the planning
value, y = /o’y The bounding method finds nominal a;, < a,, such that the test has type I
error rate no more than o, over all possible y. Work is needed on finalizing a numeric
algorithm to automatically calculate o, in this context. A few trial and error calculations
gave a,=0.0465 as a reasonable value to use here for illustrative purposes.

Table 3: Power x 100 for HAM-D Case 2: #-based with Pocock
bounds (using exact theory calculations)

True 6 y=0"/0°,  Fixed Pocock Pocock-Bound

0 0.5 5.0 5.4 5.0
0 1 5.0 54 5.0
0 2 5.0 5.2 4.8
2 0.5 >99 933 93.2
2 1 91.2 89.2 89.1
2 65.0 86.5 86.4
4 0.5 >99 >99 >99
4 1 >99 >99 >99
4 >99 >99 >99

Table 3 gives power calculations for Case 2 using only t-based calculations and Pocock
like stopping bounds, both with and without the bounding method. The Pocock without
the bounding method exhibits some type I error rate inflation. However, the Pocock-
Bounding method has virtually the same power results, but with type I error rate control.
The Pocock methods have a much more stable power control than the fixed design as
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shown in the 6 = 2, y=2 case where the variance was originally underestimated. Here the
fixed design has power of 0.65 while the Pocock methods are over 0.86.

Table 4: Expected sample size for HAM-D Case 2: t-based with
Pocock bounds (using exact theory calculations)

True 6 y=0"/0°,  Fixed Pocock Pocock-Bound

0 0.5 46 28 28
0 1 46 50 51
0 46 95 97
2 0.5 46 21 22
2 1 46 41 42
2 46 86 88
4 0.5 46 16 16
4 1 46 20 20
4 46 51 53

Table 4 displays the expected sample size information for Case 2. As expected, the
sample size benefits of the Pocock method become clear as the effect size increases due
to the chances of early stopping increasing with true effect size. Also, if the originally
specified variance value was too high, expected sample size decreases. Conversely, if the
planning variance was too low, the SSR technique increases the second stage sample size
to appropriate levels to create power stability.

4. Discussion

The methods employed are adaptive in that they can lead to early stopping or resizing the
study if it continues. They can protect against power loss from nuisance parameter under-
estimation while saving sample size if the opposite is the case. It is important to achieve
alignment between design and goals during planning. If the goal is only to achieve power
for a single effect size point, and nuisance parameters are known, then a fixed effect
design is ideal. If, however, a range of effect sizes of interest is known beforehand, or
there is considerable uncertainty concerning planning values for nuisance parameters,
then adaptive designs have much value.

There are a few ideas contained here that are new to modern clinical trial thinking. For
one, the ‘preplanned grey zone’ with a range of reasonable effects that should be
accounted for is an important idea in CER. Also, it is important to recall that small
differences have more clinical meaning and more uncertainty of variance is likely in CER
research. Accounting for both of these using traditional designs would result in very large
and inefficient studies, which is exactly the opposite of the promise of CER. Adaptive
designs have a lot of potential in this area in order to allow CE trials to successfully and
efficiently make important comparisons. A new finding is that this seems to be a rare area
where Pocock bounds seem appropriate and work quite well. Further work and discussion
should seriously consider their implementation in such designs. Work to refine and
automate methods of type I error rate control are ongoing. Other additional work is
needed to study the development and evaluation of new designs in CE trials in a
multitude of potential settings. Also, Bayesian approaches to adaptive CE trials have been
discussed somewhat in the literature [1], but are not addressed here. If successfully
implemented, they could help incorporate prior information into a study in order to boost
efficiency.
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We believe that through continued theoretical and enumerative research and discussion
among the various interested parties, adaptive designs can unlock the potential of CE
trials. It is imperative that these tools be known, developed, and available as CER rapidly
moves into the front and center of our medical research attention.
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