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Abstract
Stratification is used in sampling to create homogeneous groups. A number of methods have been

proposed for stratification of populations using covariates of the variable of interest. These in-
clude Dalenius and Hodges’ (1959) cumulative root frequency method, the Lavallee and Hidiroglou
(1988) algorithm, and the Gunning and Horgan (2004) geometric stratification method. All of these
methods assume you have one variable of interest and one correlated auxiliary variable known for
the population. Many surveys have more than one important variable of interest as well as many
auxiliary variables. The method we propose considers multiple variables of interest. We use a su-
perpopulation model to create a distance metric between elements in the population that depends
on multiple auxiliary variables. Using the proposed metric, a hierarchical clustering algorithm can
be used to implement the optimal stratification automatically by combining elements into strata that
are closest together. Our method is motivated by the NASS June Area Survey (JAS), where we have
multiple auxiliary variables to stratify sample segments and want to make estimates for several crop
and livestock parameters.

1. Motivating Problem

The National Agricultural Statistics Service (NASS) provides timely, accurate, and use-
ful statistics in service to U.S. agriculture. One tool they use to achieve this goal is the
Quarterly Agriculture survey. During one of the four surveys, the June Agriculture Sur-
vey, NASS uses an area frame, in addition to their list frame which is used in all of the
four surveys. The area frame is used to estimate the incompleteness of the list frame. An
area frame is expensive but has complete coverage of the population. Currently, every state
has an area frame with a few states having new area frames each year [2]. The process in
making each area frame is very costly because it is labor intensive and time intensive.

Two main problems in the current stratification is that unlike some other area frames,
it is not a permanent frame. It must be updated because stratum definitions become out
of date. Another problem is that recently constructed frames have PSUs that do not meet
definitions. An example of a PSU not meeting definition would be if a PSU is in a strata
defined as more than 85% cultivated land has less than 85% cultivated land.

2. Goals of Research

As an alternative to the current area frame stratification, we consider a list frame approach
that is based on permanent frame units which partition the US land area. For instance,
the Public Land Survey System (PLSS) is a division of the United States that divides the
land into townships (approximately 36 square miles) and sections (approximately 1 square
mile). The PLSS can be considered as a sampling frame for many states.

For current auxiliary information to define strata, we propose to use the Cropland Data
Layer (CDL) to characterize the sampling units into strata. The CDL uses satellite images
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to classify land into different types of land at a pixel level [1, 5]. By summarising the area
of pixels classified as a type of land, we can generate an estimate of the different types of
land in the sampling units from the frame. Figure 1 illustrates an example of the CDL from
2011. The next question we address is how to stratify the frame units using this information.

Figure 1: 2011 CDL where each color represents a different crop or land cover such as
wetlands, water, or urban/developed.

We consider methods to stratify the units to achieve efficient estimation. We will ex-
amine three stratification algorithms, including two standard stratification algorithms and
a proposed hierarchical clustering algorithm. We apply the proposed method to the June
Area Survey for a few states.

3. Stratification

In sampling, the use of a stratified sampling partitions a population into disjoint subgroups
called strata. Sampling is done within each strata, independently of the sampling in other
strata. The attribute used to define the strata must be known for each unit in the frame.
Sometimes the strata are natural partitions of the population. For example, gender, race,
and age groups when sampling from a frame of individual people. Other times, the variable
is a continuous variable without natural grouping such as income, sales, and number of
employees for businesses. After stratifying the finite population, the sampling design must
be chosen within each stratum, which includes the allocation of the sample. If the strata are
relatively homogeneous within, then a stratified sampling design will have a lower variance
of the mean than a simple random sample (SRS). If SRS is done within each strata, the
variance of the estimate of the mean and the variance of that mean are as follows

ȳST =
1

N

H∑
h=1

Nhȳh (1)

V (ȳST ) =
1

N2

H∑
h=1

N2
h

(
1− nh

Nh

)
S2
h

nh
(2)
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whereN is the population size, Nh is the size of stratum h, nh is the sample size of stratum
h, ȳh is the sample mean of stratum h, and S2

h is the sample variance of stratum h.
For a given n, one must decide how to allocate the sample size to each strata. For a

given response variable y, if one wants to have minimum variance for the estimated mean
of y of the population, Neyman allocation should be used where nh ∝ NhSh. If one
wishes to accurately estimate the mean within each stratum, proportional allocation should
be used where nh ∝ Nh. Additionally, power allocation can be used to balance between
the variance of the estimate of the population mean and the stratum means. For power
allocation, nh ∝ Np

h where 0 < p <∞.

4. Current Stratification Methods

In their paper, Dalenius and Hodges (1959) [3] state that there are four design consider-
ations in stratification which are: the choice of stratification variables; the choice of the
number of strata; the determination of the way in which the population is to be stratified;
and the choice of the size nh of the sample to be taken from the hth stratum. The methods
discussed are concerned with the third specification, the determination of the way in which
the population is to be stratified. The Dalenius and Hodges algorithm and the Lavallée
and Hidiroglou (1988) algorithm both choose break points for univariate strata given the
number of strata desired. Other stratification methods include the method introduced by
Gunning and Horgan (2009) [4] which uses the idea of cumulative root frequency from
Dalenius and Hodges but removes the arbitrary choice of number of classes which will be
discussed later.

4.1 Lavallée and Hidiroglou Algorithm

The Lavallée and Hidiroglou algorithm (1988) [6] was intended to stratify a univariate,
skewed population. When given a number of strata, L, the algorithm chose breakpoints
such that y(0) < b1 < b2 < · · · < bL−1 < y(N) where N is the number of elements in the
population and y(h) is the hth smallest value of the study variable. The final stratum with
the largest elements is a take-all stratum while sampling is done in the other L− 1 stratum.
Some standard notation that will be used is

• L is the number of strata;

• Wh = Nh/N for h = 1, . . . , L is the relative weight of stratum h, Nh is the size of
stratum h, and N =

∑
Nh is the population size;

• nh for h = 1, . . . , L is the sample size in stratum h and fh = nh/Nh is the sampling
fraction;

• Ȳh and ȳh are the population and sample means of Y within stratum h;

• Syh is the population standard deviation of Y within stratum h.

Strata will be constructed using a stratification variable X . Stratum h consists of all units
with an X − value in the interval (bh−1, bh] where −∞ < b0 < b1 < · · · < bL−1 < bL =
∞ are the stratum boundaries. If we use SRS in the strata, ȳst =

∑
Whȳh with variance

Var(ȳst) =
L∑
h=1

W 2
h

(
1

nh
− 1

Nh

)
S2
yh (3)
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Since nL = NL, the sample size in the other stratum can be written as (n−NL)ah where
n is the total sample size and ah define the allocation such that

∑L−1
h=1 ah = 1 and ah > 0

∀ 1 ≤ h ≤ L−1. For example, one could use Neyman allocation if one assumes a uniform
cost per unit and wishes to achieve minimum variance of the mean.

Solving Equation (3) for n leads to

n = NWL +

∑L−1
h=1 W

2
hS

2
yh/ah

Var(ȳst) +
∑L−1

h=1 WhS
2
yh/N

(4)

Then the optimal stratum boundaries are the values of b1, . . . , bL−1 that minimize n sub-

ject to a constraint on the precision of Var(ȳst) = Ȳ 2c2 where c =

√
V (Ȳ )

Ȳ
is the target

coefficient of variation, CV. Alternatively, you can minimize Var(ȳst) for a fixed n.
Since y is not known, one can use a model for discrepancy between the stratifica-

tion variable and the survey variable. In 2002, Rivest [7] introduce the idea of using a
model between a known variable and the study variable. Let {xi, i = 1, . . . , n} denote
a known stratification variable that is available for all N units in the population. Stratum
h consists of the population units in the interval (bh−1, bh]. To optimize the stratifica-
tion, E(Y |bh ≥ X > bh−1) and Var(Y |bh ≥ X > bh−1) must be known. One model
that could be considered is the log-linear model where log(Y ) = α + βlog log(X) + ε
where ε ∼ N(0, σ2

log). Another model is the linear model where Y = βlinX + ε where
ε ∼ (0, σ2

linX
γ where γ ∈ (0,∞). The model chosen depends on the actual relation be-

tween stratification variable and study variable where these are common relationships. One
uses the model to calculate E(Y |bh ≥ X > bh−1) and Var(Y |bh ≥ X > bh−1).

To find the optimal boundaries, it is suggested to use the Sethi algorithm [8]. The
algorithm Sethi introduces is for stratification when using proportional, equal, and optimal
(Neyman) allocation. The main difference between the Sethi algorithm and the Lavallée
algorithm is the use of a take-all stratum. Lavallée and Hidiroglou specify how to find the
optimal boundaries for the log-linear case, but it should follow similarly for other models.
To begin, we should consider Wh =

∫ bh
bh−1

f(x)dx, φh =
∫ bh
bh−1

xβf(x)dx, and ψh =∫ bh
bh−1

x2βf(x)dx where β is the slope from the log-linear model. These quantities are
considered because the optimal stratification is a function of Wh, φh, and ψh. We can
rewrite Equation (4) as follows using conditional means and variances,

n = NWL +

∑L−1
h=1 W

2
hVar(Y |bh ≥ X > bh−1)/ah,X

Ȳ 2c2 +
∑L−1

h=1 WhVar(Y |bh ≥ X > bh−1)/N
(5)

where ah,X denotes the allocation rule written in terms of X . Given a model between Y
and X , Var(Y |bh ≥ X > bh−1) and E(Y |bh ≥ X > bh−1) can be written in terms of Wh,
φh, and ψh. For example, if one uses the linear model E(Y |bh ≥ X > bh−1) = φh and
Var(Y |bh ≥ X > bh−1) = ψh. Thus the partial derivatives on n with respect to bh can be
evaluated for h < L− 1 using the chain rule as follows,

∂n

∂bh
=

∂n

∂Wh

∂Wh

∂bh
+
∂n

∂φh

∂φh
∂bh

+
∂n

∂ψh

∂ψh
∂bh

+
∂n

∂Wh+1

∂Wh+1

∂bh
+

∂n

∂φh+1

∂φh+1

∂bh
+

∂n

∂ψh+1

∂ψh+1

∂bh
(6)

where
∂Wh

∂bh
= −∂Wh+1

∂bh
= f(bh)

∂φh
∂bh

= −∂φh+1

∂bh
= bβhf(bh)

∂ψh
∂bh

= −∂ψh+1

∂bh
= b2βh f(bh)
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so that the partial derivative of n with respect to bh simplifies to

∂n

∂bh
= f(bh)

{(
∂n

∂Wh
− ∂n

∂Wh+1

)
+

(
∂n

∂φh
− ∂n

∂φh+1

)
bβh +

(
∂n

∂ψh
− ∂n

∂ψh+1

)
b2βh

}
.

(7)
Also,

∂n

∂bL−1
= f(bL−1)

{
−N +

∂n

∂WL−1
+

∂n

∂φL−1
bβL−1 +

∂n

∂ψL−1
b2βL−1

}
. (8)

Note that this is a quadratic function in bh except that Wh, φh, and ψh are functions of bh.
However, we can iteratively find new bβh for h < L− 1 as follows,

bβ,newh = −
(
∂n

∂φh
− ∂n

∂φh+1

)
/

{
2

(
∂n

∂ψh
− ∂n

∂ψh+1

)}

+

{(
∂n
∂φh
− ∂n

∂φh+1

)2
− 4

(
∂n
∂ψh
− ∂n

∂ψh+1

)(
∂n
∂Wh
− ∂n

∂Wh+1

)}1/2

2
(
∂n
∂ψh
− ∂n

∂ψh+1

)
and for h = L− 1,

bβ,newL−1 =

− ∂n
∂φL−1

+

{(
∂n

∂φL−1
− 4 ∂n

∂ψL−1

(
∂n

∂WL−1
−N

))2
}1/2

2 ∂n
∂ψL−1

(9)

One can start with initial values for b1, . . . , bL−1 and continue updating bh with bnewh

until convergence.

4.2 Dalenius and Hodges Algorithm

First, let us assume we know the distribution of a variable. Consider a density f(x) with
mean µ =

∫
tf(t)dt. The range x0, xL of the estimation variable x is cut up into L parts at

points x1 < · · · < xh < · · · < xL−1 where each part corresponds to a stratum. For the hth

stratum

Wh =

∫ xh

xh−1

f(t)dt (10)

Whµh =

∫ xh

xh−1

tf(t)dt (11)

σ2
h =

∫ xh
xh−1

t2f(t)dt

Wh
− µ2

h (12)

A sample of n =
∑

h nh observations is taken from f(x) and µ is estimated by

x̄ =
∑
h

Whx̄h (13)

and the estimate has variance

σ2
s(x̄) =

∑
h

W 2
h

σ2
h

nh
. (14)
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Under Neyman allocation, the minimum variance is achieved and the variance equals

σ2
min(x̄) =

1

n

(∑
h

Whσh

)2

. (15)

Dalenius demonstrated that the set of {xh : 1 ≤ h ≤ L} which corresponds to minimum
variance stratification satisfies the following

σ2
h + (xh − µh)2

σh
=
σ2
h+1 + (xh − µh+1)2

σh+1
(16)

However, in practice, the distribution of the study variable is unknown. Only the stratifica-
tion variable is known. It has been shown that an approximation to Equation (16) when L
is large is

Whσh = constant. (17)

A rule of thumb is introduced under the assumption that relative variance does not vary
much stratum to stratum and leans to the following condition

Whµ
′
h = constant (18)

where µ′h refers to the measure of a highly correlated variable to the study variable.
Next, Dalenius and Hodges introduce an approximation which will be useful in real

problems. The first transformation introduced is

y(u) =

∫ u

−∞

√
f(t)dt. (19)

Let limu→∞ y(u) = H . Then the roots x′1, . . . , x
′
h, . . . , x

′
L−1 to the following equations

are taken as the first approximations to the points which satisfy Equation (16)

y(u) =
h

L
H, h = 1, . . . , L− 1 (20)

Since the distribution of the study variable is never known, the following algorithm is
applied to an auxiliary variable to construct strata. J is chosen arbitrarily, but should be
much larger than the desired number of strata. Let L denote the number of strata.

1. Arrange the stratification variable X in ascending order

2. Group X into J classes

3. Determine the frequency in each class for the frame: fi (i = 1, 2, . . . , J)

4. Determine the square root of the frequencies in each class

5. Cumulate the square root frequencies,
∑J

i=1

√
fi

6. Divide the sum of the square root of the frequencies by the number of strata: Q =
1
L

∑J
i=1

√
fi

7. Take the upper boundaries of each stratum to be the X values corresponding to

Q, 2Q, 3Q, . . . , (L− 1)Q,LQ.

It is not common to use a model between the auxiliary variable and the study variable,
but one idea is to find a an estimate of the study variable using a model and the auxiliary
data and then apply the algorithm to the estimate of the study variable.
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5. Proposed method

The proposed method uses a hierarchical algorithm to minimize a distance function which
is the equivalent to minimizing the variance of the estimate of a mean under a stratified
design where the variance is V (ȳst) = N−2

∑H
h=1N

2
hS

2
h/nh. Under Neyman allocation,

nh ∝ NhSh leads to V (ȳst) ∝
∑H

h=1NhSh. Note that S2
h = (Nh − 1)−1

∑
i∈Uh

(yi −
Ȳh)2 = N−1

h (Nh − 1)−1
∑

i∈Uh

∑
j∈Uh

(yi − yj)
2. Let dij = (yi − yj)

2. Minimizing

Q =
∑H

h=1

(∑
i,j∈Uh

dij

)1/2
is essentially the same as minimizing

∑H
h=1NhSh. One

way to minimize Q is through a hierarchical algorithm as follows where H∗, the number
of desired stratum is given.

1. Set H = N .

2. Compute the distance between strata by d∗h,h′ =
(∑

(i,j)∈Uh∪Uh′
dij

)1/2
−
(∑

(i,j)∈Uh
dij

)1/2
−(∑

(i,j)∈U ′h
dij

)1/2

3. Find the pair with the smallest value of d∗h,h′ . Merge strata h and h′. Then we now
have H − 1 partitions because of merge. Set H = H − 1

4. Go back to Step 2. Continue until H = H∗.

In practice, the study variable yi is unknown for the population. Assume we have
xi which is closely related to the variable yi. Also consider that both xi and yi may be
vectors of length p. Let Σ = Cov(xxx). Now, we can define dij = (xi − xj)′Σ−1(xi − xj).
Then the algorithm follows as above. Note, that if xi is univariate that this is equivalent to
using squared difference which is the motivation. Σ−1 is used to weight distances by the
inverse of their variance which is the square of the Mahalanobis distance. Other distances
will be considered in the future. For example, dij =

(∑p
k=1(xik − xjk)4

)1/4 or dij =
max{dij1/m1, . . . , dijp/mp} where dijk = (xik − xjk)2 and mk = max{dijk : 1 ≤ i ≤
n, 1 ≤ j ≤ n}.

6. Numerical Studies

We first compare the three algorithms discussed on simulated data so that we know the
truth. Then we used CDL data to stratify a few states for an agricultural survey. We use the
NASS’s current methodology as well as the proposed method to stratify the segments. We
then compare the sample sizes necessary to achieve target CVs of estimates. sadgsag

6.1 Comparing Stratification Algorithms using Generated Data

Since our segments are bounded, we created a population of segments that are each 100
square units. Let y1 and y2 be the respective areas for Crop 1 and Crop 2 and y3 be the area
of the rest of the segment. Then z = y1 + y2 is the total crop acreage. We will construct
the population as follows

x1 ∼ χ2
1

x2 ∼ χ2
1

x3 ∼ χ2
1
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where xi ⊥ xj . Then let

yi = 100
xi∑3
j=1 xj

The sample size is N = 5, 000. Our goal is to stratify the population using different
algorithms and compare the variance of the estimate of the total of the three variables
y1, y2, and y3. The population was stratified univariately by each of y1, y2, and z using
three different methods - Lavallée and Hidiroglou, Dalenius-Hodges, and the new method.
Additionally, we stratified the population using the new multivariate method with p =
0.5. In one of the multivariate stratifications, we used Σ = I and the other we used the
true variance. We used Mahalanobis distance for the unit level distance. For each of the
stratifications, ten strata were used.

To compare the stratifications, we used design effect which is the ratio of the variance
under the stratified design to the variance under a simple random sample. In Figure 2,
the design effects are illustrated using a bar graph. The top-left panel illustrates the three
algorithms that used only y1 to stratify. Since y1 was used in the stratification, the design
effect for y1 is very low. However, y2 and z have a design effect of greater than 1 for each
of the algorithms which indicates that a simple random sample has a lower variance for
these values than a design using solely y1. Similar results are seen when using y2 and z
solely in stratification in the top-right and bottom-left panel, respectively.

When using the multivariate stratification, which has results illustrated in the right-left
panel of Figure 2, the design effect for all three variables is less than 0.2 for all variables
using Σ = I and less than 0.1 for all variables when using the true variance. Since, we want
to be able to estimate both the total of y1 and y2 with similar precision, the multivariate
stratification is a good compromise in reduction of the design effect.

6.2 Stratifying PLSS Sections using Current Method and the Proposed Method

For five study states, we will be comparing the NASS’s current method of stratification to
the proposed method. We will use sample size as a comparison between the stratifications
where a smaller sample size is desired. The Public Land Survey System (PLSS), which is
managed by the Bureau of Land Management, will serve as a sampling frame. We will use
its one-square mile sections as the Primary Sampling Unit (PSU). One of the study states,
Pennsylvania, is not covered by the PLSS so we lay down a grid on that state with square
mile segments to mimic the PLSS elsewhere in the country. For each of these sections, we
have CDL information. The CDL has categories such as corn, soy, durum wheat, urban,
forest, and water. It is an estimate but, at the national level, is 85%-95% accurate for major
crops. The CDL data in this study is from 2011.

The current stratification method used by the NASS has strata that are defined by per-
cent agriculture and urban. An example of the stratification for Pennsylvania is in Table 1.
Since we are going to consider the PLSS as our frame, we will not have variable segment
size depending on strata. Using the CDL data, each PLSS section’s composition of culti-
vation and urban is determined and the section is put into a strata of class 10,20,30, 40 or
50.

For the new method, in each of the states, percent corn, percent wheat, percent cotton
(when applicable), and percent cultivated are derived for each PLSS section. Then, we
used previous JAS data to model JAS responses on CDL data. These estimated models
were used to then estimate the acreage in each section for the quantities mentioned before.
We used these as inputs into the hierarchical stratification algorithm with number of strata
varying from 2 to 20.
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Design Effect for Different Stratifications

Variable

D
es

ig
n 

E
ffe

ct

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Univariate: Stratified with y1

Univariate: Stratified with z

y1 y2 z

Univariate: Stratified with y2

Bivariate: Stratified with y1 and y2

y1 y2 z

Algorithm

DH

LH

New

Sigma=I

True Sigma

Figure 2: Design effect on each of the variables under each stratification.

Stratum Target Segment Size Stratum Definition
13 1.00 50%+ Cultivated
20 1.00 15-50% Cultivated
31 0.25 Agri-urban: 100+ Homes per Sq Mi
32 0.10 Commercial: 100+ Homes per Sq Mi
40 2.00 0-15% Cultivated
50 pps Non-ag

Table 1: Example of strata definitions for Pennsylvania currently used by the NASS.

Sample sizes were allocated to strata using the same method after the two types of
stratifications were complete. The NASS has target CVs for estimates at a national level.
However, we are only looking at a small set of states. To overcome this, we calculated the
CVs that were achieved in 2010 on the state level for each of these states and made these the
target CVs for this study. The allocation of the sample is a problem in convex programming.
An iterative, nonlinear programming algorithm is used to provide the sample allocations.
The algorithm used is guaranteed to converge [2].

To compare the two stratifications, we can look at the total sample size required to
achieve the target CVs. In Figure 3, the sample sizes required to reach the target CVs
are plotted where the sample size is

∑H
h=1 nh. In all states except for Indiana, we can

achieve the target CVs with a smaller sample size with the hierarchical method than the
current method used by the NASS. We hypothesize the reason for Indiana being different is
that its agriculture is fairly homogeneous and thus a multivariate stratification considering
multiple crops is similar to a univariate stratification only considering percent cultivation
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and percent urban.
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Figure 3: Sample sizes required to achieve target CVs using current method and hierarchi-
cal method of stratification with number of strata varying for the hierarchical method.

7. Conclusion and Future Work

Multivariate stratification is promising for multi-purpose surveys. We plan to examine the
effect of different unit-level distance functions, the dij as well as the allocation rule, which
comes down to the choice of your p. As with all allocations, it depends on whether you
would like to accurately estimate within strata or across strata.

For the NASS survey, we also intend on using the 2012 CDL, which none of the strat-
ification depended on, to act as a proxy and estimate variances of estimation for quantities
that the NASS is interested in. We will also examine how to incorporate geography into
the stratification and possibly using geographic distance in the distance function for the
hierarchical algorithm.

References

[1] USDA-NASS-RDD spatial analysis research section. http://www.nass.usda.
gov/research/Cropland/SARS1a.htm. Accessed: 09/18/2012.

[2] J. Cotter, C. Davies, J. Nealon, and R. Roberts. Agricultural survey methods, chapter
Area frame design for agricultural surveys, pages 169–192. Wiley, 2010.

[3] T. Dalenius and J.L. Hodges Jr. Minimum variance stratification. Journal of the Amer-
ican Statistical Association, 54(285):88–101, 1959.

[4] P. Gunning, J. Horgan, and W. Yancey. Geometric stratification of accounting data.
Contadurı́a y Administración, (214), 2009.

Section on Survey Research Methods – JSM 2012

4799



[5] W. Han, Z. Yang, L. Di, and R. Mueller. Cropscape: A web service based application
for exploring and disseminating US conterminous geospatial cropland data products
for decision support. Computer and Electronics in Agriculture, 84:111–123, 2012.

[6] P. Lavallée and M. Hidiroglou. On the stratification of skewed populations. Survey
Methodology, 14(1):33–43, 1988.

[7] L.P. Rivest. A generalization of the Lavallée and Hidiroglou algorithm for stratification
in business surveys. Survey Methodology, 28(2):191–198, 2002.

[8] VK Sethi. A note on optimum stratification of populations for estimating the population
means. Australian Journal of Statistics, 5(1):20–33, 1963.

Section on Survey Research Methods – JSM 2012

4800


