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Introduction 

IBM SPSS Statistics
i ii

 is a comprehensive statistical package providing a large number of statistical 

algorithms, data transformation and management features, a matrix language, graphics, and presentation 

formats. Although it has an extensive command language in addition to its point and click interface, it 

was not designed to be a platform for users to develop new statistical or graphical algorithms, although 

this was possible to some degree. As such, development of new procedures was in the main a task that 

required SPSS developers to perform. 

The system was also limited in its ability to react to results and to use the output from statistical 

procedures as input to other procedures. In version 12, the Output Management System was introduced to 

allow all results to be used as data, and a version of the Basic programming language provided some 

higher level control, but there was little ability to apply programming logic in an integrated way. 

Beginning in version 14 of the system, Statistics introduced the ability to use a general purpose, open 

source programming language to interact with and control the system. In that version, the Python 

programming language was integrated into the system and provided with a set of APIs that could be used 

to interact with and control Statistics. Provision for Microsoft .NET languages such as VB.NET and C# to 

run Statistics and call similar APIs was also introduced, but this can only be used in external mode and 

will not be discussed in this paper. There is also a C-callable API set made available through a SDK 

(Software Development Kit). 

Beginning in version 16 of Statistics, support for the R language was introduced, providing access to the 

large library of statistical and graphical packages implemented in that language, and a mechanism for 

better integration of Python and R programs appeared. In version 17, an integrated tool for easy 

construction of dialog boxes in the regular Statistics style was added, and in version 18, a packaging 

mechanism was added to simplify distribution of user-written packages. The SPSS Developer product 

was introduced to provide an inexpensive platform without most statistical capabilities to facilitate use by 

customers who wish to supply their own statistical routines but take advantage of the infrastructure 

capabilities of Statistics. 

In the current version, 20, it is therefore possibly and practical for anyone to extend and customize SPSS 

Statistics using Python and/or R, to provide a point and click interface to these extensions, and to provide 

traditional Statistics syntax. In short, user-created enhancements appear as if native to the product. This 

paper will illustrate several applications of these tools and show the basics of how to use these features. 

By combining the strengths of Statistics with the capabilities of R and Python, custom features can be 

rapidly developed and made available to any user. 
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The Python and R Languages 

Python
iii

 is an open source, highly portable, easily integrated, object-oriented language that is both 

powerful and easy to learn. Invented by Guido van Rossum and now supported by the Python Software 

Foundation, it appears in the top ten languages listed in the TIOBE
iv
 programming community index. The 

Python Package Index
v
, which is a repository of software for the Python language, currently lists 20672 

available packages, of which 1282 are classified as scientific/engineering. The classification system is, 

however, incomplete. Statistics version 20 is integrated with Python version 2.7 

R is "a freely available language and environment for statistical computing and graphics which provides a 

wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time 

series analysis, classification, clustering, etc"
vi
 It is widely used in statistics, and CRAN currently lists 

3761 available packages. Statistics Version 20 is integrated with R version 2.12. The integrated R version 

changes with the Statistics release. 

The two languages are very different, and both are very different from the traditional Statistics syntax 

language. Both have excellent facilities for statistical and graphical development, and both are integrated 

with Statistics, albeit with some differences in functionality. Both are supported by a large community of 

users and developers. R and most of the contributed packages are distributed under the GNU General 

Public License. Python is distributed under the less restrictive PSF license
vii

, which does not require that 

modifications be made available as open source and does not have the GPL "viral" property. 

The Benefits and Drawbacks of Using Python or R with Statistics 

Using Python or R with Statistics provides four types of benefits 

 Generalization of jobs 

 Automation of manual steps 

 Extension of capabilities 

 Integration with other applications 

It is common in organizations using Statistics or other statistical packages to accumulate many versions of 

basically the same job. By using programmability, similar jobs can be generalized, abstracting away from 

specific variable names, file locations, and other details. 

It is common for a project to spend as much or more time on the result reporting aspects as on the analysis.  

The ability to inspect and programmatically edit publication quality results means that time consuming 

but routine parts of the reporting of a statistical analysis can often be done without human intervention. 

The ability to read and write the Statistics active dataset, inspect and manipulate the metadata, run 

arbitrary R and Python code, and write text, pivot tables and charts to the Statistics Viewer means that 

procedures implemented in such code can take advantage of Statistics built-in capabilities and can behave 

the same as built-in procedures. In the case of Python, using open source libraries such as numPy and 

sciPy
viiiix

, which are the fundamental Python scientific computing packages, is a powerful aid to algorithm 

implementation. The Partial Least Squares procedure in Statistics is implemented in Python with the use 

of these libraries. R, of course, also provides many tools and packages for this purpose. 
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The ability to inspect the environment for inputs and to route results by various channels to downstream 

consumers using programmability logic means that integration is easier and more smoothly accomplished. 

There are two drawbacks to using the integrated programmability features. Simply because Python and R 

are different from the Statistics command language, developers need to know more, and users may be 

confused when encountering different languages. Extension commands and custom dialogs can be used to 

mitigate this difficulty for users. 

The integration requires that Python or R code run in a different computer process from the main 

Statistics application. While the provided APIs mean that developers need not concern themselves with 

this, if large volumes of data must be transmitted between the processes using interprocess 

communication protocols, performance will suffer to a degree. Passing case data through R or Python 

code is slower than native data passing. The ability to aggregate data or start with results from Statistics 

helps to mitigate this problem as well as reducing the R memory constraint, but this cannot always be 

avoided. 

How Programmability Works 

Python or R code is included in the regular Statistics command stream between BEGIN PROGRAM and 

END PROGRAM commands. When END PROGRAM is read, the entire program is executed, after 

which regular Statistics command processing resumes. The program state is preserved from one program 

to another within a session. For Python, but not for R, external mode can also be used. In that mode, the 

Statistics functionality is embedded in a Python program, and the normal Statistics user interface does not 

appear. 

A large set of APIs is provided for use by the Python or R code. The Python and R versions are similar, 

but there are some differences in functionality. The APIs provide for 

 reading and writing Statistics datasets 

 reading and writing variable metadata 

 examining the state of Statistics 

 reading Statistics results into Python or R objects 

 running Statistics commands (Python only) 

 creating Statistics pivot tables 

 manipulating Viewer contents (Python only) 

R charts and ordinary Python or R print statement output automatically appears in the Statistics Viewer. 

The R browser function can be used to work interactively in R within the program. Python IDEs that 

provide for external debugging such as Wingware IDE
x
 can be useful in developing Python programs. 

Detailed documentation for the R and Python APIs is accessible from the Help menu in Statistics, and see 

this book
xi
, which can be downloaded in PDF form from the SPSS Community site for an expository 

treatment. 

The examples in the following sections will illustrate these points, focusing particularly on extending 

Statistics with new procedures. The examples to be shown all use material from the SPSS Community 
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website (www.ibm.com/developerworks/spssdevcentral) from which these and other useful materials can 

be downloaded. 

R Examples 

A simple integrated R program can be written in a few lines of code. 

 

This program prints a greeting and then reads three variables from the active Statistics dataset and creates 

an R data frame containing them. The output from print and the summary function appears in the 

Statistics Viewer along with a scatterplot. Statistics system-missing values are converted to the R NA 

value, and categorical variables are converted to R factors. 

The following program computes a linear model and displays its results as a Statistics pivot table. 

 

This is the output. 
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Parameterizing Programs and Creating Extension Commands 

To make these programs useful, the inputs need to be parameterized. There are two ways to do this. One 

is to build a custom dialog box where the parameter values are substituted into the code from the control 

field values in the dialog. The second and more powerful way is to create a Statistics extension command. 

An extension command has three parts 

 A syntax definition expressed in a small XML file 

 A Run function that receives the parsed syntax and maps it to program variables 

 An implementation function that does the work. 

The following diagram illustrates the process of executing an extension command 

 

 

The user input is parsed by the Statistics parser using the xml file that defines valid syntax and is passed, 

if correct, to the user-written Run function. The Run function uses the extension module provided by 

Statistics for further checking and mapping to program variables. The worker function does the 
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computations and produces the output. Because of the work done by the parser and extension module, the 

worker code is relieved of most of the need for validating the inputs and can focus on the task. 

Statistics commands are generally structured as a command that has subcommands, including an 

anonymous unnamed subcommand. Subcommands have keywords that take values of various types. For 

the simple linear model example above, one might design the following extension command syntax. 

SIMPLE LINEAR DEPENDENT=varname INDEP = list-of-varnames 

/OPTIONS MISSING=LISTWISE* | FAIL 

/SAVE RESIDUALSDATASET=datasetname COEFSDATASET=datasetname 

/HELP. 

where all of the explicit subcommands are optional, and the missing value treatment defaults to 

LISTWISE. The first line implicitly contains the anonymous subcommand with the DEPENDENT and 

INDEP keywords. The SAVE subcommand can specify a dataset to be created containing the residuals 

and another containing the estimated coefficients. The HELP subcommand will display some help text 

and do nothing else. 

This structure is expressed in a small extension XML file that looks like this. 

 

The command name is SIMPLE LINEAR; it is implemented in R source form. It takes a single dependent 

variable and a list of independent variables. The possible keyword types are described in the schema 

installed with Statistics and provided at http://www.ibm.com/software/analytics/spss/xml/ and in the 

online documentation. The types include VariableName, VariableNameList, DatasetName, Integer, 

Number, Keyword, QuotedString, InputFile, OutputFile and others. The structure of the XML file is the 

same for both Python and R. For R, the mode can be Source or Package, which refers to a compiled R 

package. 
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When the command is executed, the Statistics parser first compares the user input with the definition in 

the XML file. Any violations cause the command execution to be halted and an appropriate error message 

to be displayed. 

Otherwise, the command parameters are packaged into an appropriate Python or R structure, and the Run 

method of the implementation file, which must match the command name, is called with that structure as 

the parameter. All installed extension commands are automatically available in a session without any user 

action. 

The Run function for this command adds details to the syntax definition and prepares the input for 

execution by the target function. For SIMPLE LINEAR, the R code looks like this. 

 

This specification adds the information that the variable names have to be not only syntactically valid as 

variable names but that they have to appear in the active dataset (ktype="existingvarlist"). The parameter 

type can be bool (values of "true", "false", "yes", or "no"), str (string or quoted literal), int (integer with 

optional range), float (number with optional range), varname (arbitrary, syntactically valid variable or 

dataset name), or existingvarlist (names of variables that exist in the dataset.).  

processcmd also maps each input, either as a list or a single value, to a parameter of the implementing 

function in R or Python – simpleLinear in this case. The implementing function is introspected to 

determine whether each parameter is required or optional, and an error is raised if a required parameter is 

not supplied. The call to spsspkg.processcmd validates the inputs, maps the variables appropriately, and 

calls the target function. The Run function handles the display of the help text. 

At the point where the implementing function receives control, all of the input specifications have been 

checked, so the function can assume that its input is valid. In some cases, additional validation would 

need to be carried out by that function for conditions that cannot be expressed in the XML or Run 

specification. Error messages that appear prior to the worker function automatically appear in the current 

Statistics output language, and there is a mechanism available to worker functions to display translated 

output. 

The implementing function is the same as it would be if it were not an extension command, but it can 

assume valid input. If the implementing function terminates by raising an error condition, the error 
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message is automatically turned into a Statistics Warnings object that is displayed in the Viewer. We 

show here only the function signature for this example. 

 

The dep and indep arguments are required while the other three have default values. 

 A Python Example: TURF 

TURF, Total Unduplicated Reach and Frequency, is a popular technique in market research. Given a 

survey of preferences, it finds the combination of a specified number of variables in a survey that gives 

the best coverage (reach) of positive responses. Examples include 

 Which frozen yoghurt flavors to offer in shops that have three dispensing machines to maximize 

the chance that a visitor to the shop will like at least one flavor 

 What sports events to advertise on to maximize coverage of sports viewers 

 Where to locate a set of repeated regional conference offerings to maximize the number of 

attendees who will attend one of them. 

While conceptually simple, TURF is computationally expensive, since all possible combinations of 

variables must be tried, and the number of combinations grows rapidly with the number of choices. In 

Statistics TURF is implemented as the SPSSINC TURF extension command using Python. First we will 

show the user interface and output for a set of yoghurt flavors and then discuss how this was implemented.  

The package includes a custom dialog box built with the Statistics Custom Dialog Builder. The CDB 

provides a no-programming, drag and drop tool for building dialog boxes that can be added to Statistics 

and appear in other SPSS products as well. 

 

The extension command syntax for this procedure looks like this. 
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Here is some of the output. 

 

 

The XML syntax definition indicates that the command is implemented in Python, and that it has an 

anonymous main subcommand with one keyword, and OPTIONS, IMPORTANCE, and HELP 

subcommands. Keyword types used include VariableNameList, Integer, Number, OutputFile, and 

TokenList. A TokenList is a more general form of a keyword list. 
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Statistics will call the Run function in SPSSINC_TURF.py. That function augments the Statistics parser 

specification with this code. 

 

This code also defines value checking through the vallist keyword. The BESTN parameter, for example, 

has a minimum value of 1 – show at least the best one variable. Three of these parameters are lists. The 

definition code is nearly identical to the equivalent code in R. 

The final validation, variable mapping, and invocation of the computational module is specified by this 

code. 

 

The turf function definition begins with this. 

 

The first three arguments are required while all others have default values. Again, introspection is used to 

determine whether all required arguments were supplied. Because of the way that Python defines 
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functions, certain defaults, for example, the criteria default, which is a list of values, are specified in the 

definition as None and created in the code. 

Altogether, the SPSSINC TURF implementation is 900 lines of code, including comments, docstrings, 

and help text. The original version, which was about half the current size, was produced in only two days, 

including the dialog box interface, the syntax definition, the code implementation, and the help. Working 

with these tools enables a developer to be extremely productive. 

Python is a scripting language and is generally slower than would be compiled code in languages such as 

C and Java, but Python, like R, allows C code to be integrated. For a computationally intensive procedure 

such as TURF, this could be a disadvantage, but the largest part of the time goes into calculating set 

unions and other set operations. These operations are built into the Python language and are implemented 

in C code. TURF builds a set of positive responses for each question. The set members are the positive 

response case ids. The set unions for all possible question combinations of a given size are computed for 

each size up to the requested number of variables. For the "best four" example above, this requires 

6,175,000 set union operations. Doubling to the "best eight" variables requires 263,929,00 set union 

operations, so this work and calculating the set sizes quickly comes to dominate the execution time. This 

larger problem executed in ten seconds on a Lenovo W500 laptop computer. 

Python or R? 

For many purposes either Python or R can be used, and the choice may be based on personal preference 

and knowledge, organizational constraints, licensing restrictions, or the existence of specific packages and 

tools. There are also differences in functionality with SPSS Statistics stemming from the different roles 

intended for these two integrations. Python was originally implemented primarily for controlling and 

interacting with Statistics and secondarily for extending functionality. R, on the other hand, was 

implemented primarily for extending the statistical and graphical capabilities of Statistics. Thus using 

Python one can build and run Statistics syntax while this is not possible with R. Python also provides a set 

of apis in the SpssClient module that can access and manipulate objects in the Statistics Viewer and in the 

user interface. These APIs do not have an R equivalent. With either language, however, the Output 

Management System (OMS) can be used to write Statistics output objects to an in-memory XML 

workspace or as a new dataset, and both of these are accessible from either language. Python can be run 

in either external or internal mode while R can only be run in internal mode. 

Packaging and Distribution 

A complete package generally consists of a custom dialog box, a syntax definition, and Python or R code 

files. It may also include translation files. Combining these into an Extension Bundle via the Statistics 

Utilities >Extension Bundles > Create Extension Bundle menu makes it easy for a user to install the 

package without concern about the individual pieces. Any required R packages are downloaded at 

installation time if possible. Using this mechanism also facilitates managing bundles as there is a standard 

way to see what bundles are installed and view their descriptions and dependencies. Since the installation 

process for a bundle consists only of copying files, it is possible to do a push install for high volume 

distribution of a package and the prerequisite Python or R plugins. 

Conclusion 

Using IBM SPSS Statistics in combination with R and Python provides these advantages 
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 High developer productivity due to the ability to use the Statistics infrastructure for data 

acquisition and manipulation, output management, graphics and other facilities while coding in R 

or Python 

 Ease of development of robust packages due to the extension command mechanism for validation 

of input and error handling 

 Ease of producing publication quality output and exporting in various formats 

 Ease of producing a user interface consistent with the general appearance of Statistics using the 

Custom Dialog Builder and the extension mechanism 

 Ease of distributing packages to SPSS users via the Extension Bundle Mechanism 

All of the materials discussed here except for SPSS Statistics itself are free and available from the SPSS 

Community website at www.ibm.com/developerworks/spssdevcentral. 

                                                             
i Older versions were known as SPSS or PASW Statistics. This paper will use the current name when referring to any 
version. 
ii http://www-01.ibm.com/software/analytics/spss/products/statistics/ 
iii http://www.python.org/ 
iv http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html 
v http://pypi.python.org/pypi 
vi
 http://cran.r-project.org/ 

vii http://docs.python.org/license.html 
viii http://numpy.scipy.org/ 
ix "NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a 
multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of 
routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, 
discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more." 
 
"SciPy is an Open Source library of scientific tools for Python. It depends on the NumPy library, and it gathers a 
variety of high level science and engineering modules together as a single package. SciPy provides modules for 
 
  statistics 
  optimization 
  numerical integration 
  linear algebra 
  Fourier transforms 
  signal processing 
  image processing 
  ODE solvers 
  special functions" 
x http://wingware.com/ 
xi Programming and Data Management 
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