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Abstract 
Evaluating the robustness of integrated control systems with clusters of unmanned aerial 

vehicles (UAVs) flying in stable formation is of primary concern in the aerospace 

industry. This paper describes the use of robust statistical control metrics to assess the 

level of synchronization existing between chaotic systems or networks comprised of local 

chaotic subsystems. Distance measures based on chordal and spherical displacements 

were used to determine the closeness of companion dynamical systems. The success of 

such metrics for predicting linear control stability is well documented. This paper 

addresses the extension and statistical limitations of these metrics to highly nonlinear 

systems where robust statistical control is sensitive to both parameter and disturbance 

input noises. In this work these systems are modeled as chaotic units where disturbances 

can arise in a myriad of ways and robustness must be properly characterized. The 

proposed statistical metrics will aid this study and provide insight about dynamical 

interactions among UAVs. 
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1. Introduction 

 
In a prior paper on chaotic control, Morgan and Morgan (2011) dealt primarily with 

structured uncertainties that arose in “complete” synchronized systems through 

coefficients of the equations or fluctuations introduced via the controller gains. These 

statistical uncertainties ultimately manifested themselves as additions to either the 

diagonal (equation coefficients) or off-diagonal terms (introduced via controller 

structure) of the overall linearized system control matrix that governs global stabilization. 

Specifically, the impact of stochastic noise introduced via these terms was of primary 

concern where the overriding objective was to devise a strategy for the design of reliable 

control systems for chaotic oscillators (a network) that was robust to such factors. Also, 

understanding the impact of these quantities on the performance of large integrated 

networks was likewise a critical concern. The initial phase of that study was limited to 

analyzing complete (dual) chaotic system behavior with respect to three generic control 

issues: 

 

 Identifying controller numbers and selecting control variables, 

 Determining the error propagation patterns arising via either 

initial condition disturbances or via uncertainties in model 

parameters, and 
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 Assessing the effectiveness of unit redundancy as a tool for 

enhancing overall system robustness and reliability.   

 

Synchronization bundling was established as a way to enhance overall system reliability 

in the presence of additive coefficient noise. That approach involved connecting multiple 

independent and identical receivers (drives) to a single transmitter (response). Thus, an 

“or gate” connection/parallel processing configuration could be structured in sufficient 

numbers to guarantee successful signal transmission at a given synchronization 

probability level (SPL). A quantitative procedure was devised to determine the number of 

bundling units for a given controller combination given that the SPL requirement varied 

with both controller number and gain. The present study, however, focuses on the 

specification of the minimum controller gain level needed to stably synchronize a 

connected system of dissimilar (general) chaotic oscillators that have fundamental 

different dynamical behavior. Such problems are intimately linked to the controllability 

of clusters of unmanned aerial vehicles (UAVs) and are of vital interest to the aerospace 

industry. 

 

1.1 Basic Methodology 
Our current method is based on the premise that it is possible to construct an interval 

approximation model (crisp fuzzy model) of the system of ordinary differential equations 

that describes an individual chaotic (response) oscillator. Such systems where there are 

parameter uncertainties in the coefficients are referred to as extended or fuzzy parameter 

uncertain systems. The initial step in this process involved constructing interval 

approximation for each dependent variable in the chaotic model using descriptive 

statistics shown in Table 1 of the unsynchronized response system. The chaotic 

oscillators analyzed in Table 1 are all described in detail in Sprott (2003). The volume 

contraction (C) and (E) expansion values are measured relative to the Halvorsen volume 

since it serves as the Lead or driver for synchronization. Next, armed with these interval 

approximations the local stability of each term in the model is assessed and used to 

determine the global stability requirement for a given drive- response combination. Under 

this paradigm the stability of the drive system is not necessary for establishing overall 

system synchronization. An obvious extension of the current effort is to focus on 

improving such interval estimates by using nearest-interval approximations that have 

generated much excitement in the fuzzy set community. Specifically, there are plans to 

use fuzzy number  - cuts to more precisely narrow the interval estimates for 

stabilization. This approach will necessitate developing a membership function for each 

dependent term in our response model. Furthermore, it will be assumed that these 

membership functions mirror the respective dependent variable frequency distributions. 

Once equipped with this membership function, it will be used to obtain a nearest interval 

approximation that is best for estimating distances between fuzzy numbers. This 

mathematical operation has the net effect of converting a fuzzy system with uncertainties 

into one with interval certainties that is more tractable. The success of the present 

exploratory inquiry does however justify the merits of the current approach. 
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Table 1: Statistical Data Summary of Chaotic Model Variables 
 

 

 Type of Oscillator 

(see Sprott, 2003) 

 

Metric 

Halvorsen  Lorenz  Rossler  Diffuse 

Lorenz  

Moore- 

Spiegel  

Chen  Burke-

Shaw  

Rucklidge  

Volume  3882  52,092  4558  253  3397  65,413     ----  2134  

x-mean  -3.440  0.296  0.152  0.2632  -0.005  0.1564     ----  0.007  

y-mean  -3.440  0.304  -0.947  -0.246  -0.005  0.1624     ----  -0.433  

z-mean  -3.540  24.300  0.925  0.0065  0.052  25.200     ----  6.403  

x-range  19.560  38.310  20.500  5.740  4.810  50.900     ----  24.62  

y-range  19.560  52.700  18.630  9.370  12.800  58.300     ----  10.64  

z-range  19.560  49.260  22.800  9.050  105.600  42.100     ----  15.56  

x-Fuzzy  -13.3,6.3  -19.,19  -9.1,11.  -3.1,2.7  -2.5,2.3  -25,25.     ----  -9.6,15  

y-Fuzzy  -13.3,6.3  -26.,26.  -11.,7.8  -4.2,5.2  -6.8,6  -29.,29     ----  -5.2,5.5  

z-Fuzzy  -13.3,6.3  2.1,47.2   0,22.8  -4.8,4.2  -46,60  6.3,48.     ----  0.56,15  

Lyapunov 

Sum  

-3.810  -13.667  -5.323  -1.000  -1.000  -12.000  -11.000  -3.000  

Contraction 

(C) - 

Expansion 

(E) 

 Lead       C       C           E         E       C       C         E  

Distance 

Norm  

8.983  26.746  7.237  1.891  8.931     -----     -----     -----  

Chordal 

Norm 
    0  0.080  0.066  0.8473  0.164     -----    -----     -----  
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Table 1 provides a summary of the specific statistical metrics used to evaluate and assess 

process dynamics. Estimates of the respective uncoupled oscillator dependent variable 

means (x, y and z), the corresponding ranges and chordal distance norm were obtained 

using a sample size of two hundred. This latter distance metric represented the mean 

spatial displacement between the Halvorsen (driver) and a given responder. These various 

statistical quantities were also used to construct fuzzy intervals estimates for each of the 

response system dependent variables and to determine the equivalent ellipsoidal volume 

occupied by each chaotic oscillator. Both the ellipsoidal volume estimates and the 

Lyapunov sums (trace) were used to determine whether a given system synchronization 

process involved an expansion or contraction of size.   

 

2. Discussion 

 
As noted earlier, previous work by Morgan and Morgan (2011) addressed the related 

problems of controller selection and number.  The current effort focuses on individual 

controller stabilization and the estimation of the minimum gain needed to synchronize all 

units of a system as shown in Figure 1.  

  

Figure 2: Uniform Connectivity of Dissimilar State Models

Figure 1: Uncoupled Connectivity in Dissimilar State Models

 
 

Figure 1 shows the original uncoupled phase portraits of several dissimilar chaotic 

oscillator states prior to any synchronization. The driver for this system was the 

Halvorsen’s chaotic oscillator that was linked dynamically to four distinct response 

oscillators (Lorenz, Rossler, Moore-Spiegel and Chen) and  controller stability ranges 

inferred from statistical metrics obtained from the uncoupled  dynamics of individual 

response oscillators. Figure 2 highlights the desired goal of a uniform synchronization 

under a minimum gain requirement that specifies a high level of fidelity based on the 

correlation coefficient between driver and responder dynamics. 
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The phase portraits of Figure 3 describe the physical states manifested as a typical 

oscillator system transforms from an uncoupled to coupled configuration. Interestingly, 

this type of transition pattern was observed across each of the oscillator systems 

investigated in this study. Each transition process started with the formation of an un-

entangled volume state followed by a morphing into the final desired configuration. It 

was always noted that the beginning state configuration had to be destroyed, go through a 

local critical point and reassembled into a final form. The nature of this critical point – 

whether it was a local minimum or maximum - appears to be related to its classification 

as a contraction or expansion system which could be predicted a prior from either the 

Lyapunov sum (trace) or the ellipsoidal volumes of the respective chaotic oscillators.  
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Based on the data of Table 1, two methods were developed for predicting the controller 

stabilization gain needed to achieve general synchronization across these chaotic 

oscillators. The first one involved using the respective fuzzy intervals of Table 1 to 

construct a fuzzy model representation of the original chaotic oscillator system. The 

notion of fuzzy numbers was first introduced by Dubois and Prade (1980) to model and 

handle imprecise information. The details of this current approach, as outlined in Table 2   

using the Lorenz model, begins with the identification of all positive coefficient terms in 

each ordinary differential equation of the response system and requires adding a 

controller to each of these respective terms to address or overcome an instability that 

could arise via that term. Next, the requirement that each of these bracketed terms should 

be less than or equal to zero for stability provides numerical estimates of the controller 

stabilization gain for each. Since overall stability is demanded, the most stringent 

requirement for stability must be exceeded. An upper bound stabilization value estimate 

for the Lorenz model using this approach was 26 while a lower bound was 10.  
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Table 2:  Fuzzy Model of Original Lorenz System

Original Model Fuzzy Model

dx/dt= 10(y-x)              dx/dt= [10-k]y-10x      

dy/dt= -xz +28x-y         dy/dt=[28-k-zs]x-y

dz/dt= xy-2.67z            dz/dt= [ ys-k]x-2.67z

Selection Rule: 

Identify positive terms add controller and construct fuzzy interval 

with zs =2.1 and ys =26. 

Maximum Interval, [0,26] and Minimum, [0,10]

 

 

The second approach simply involves using the largest absolute bounds obtained directly 

from the fuzzy interval arising from the dependent variables. There is some indication 

that the lower bound values for controller stabilization are linked with the formation of 

the un-entangled state identified in Figure 3. In addition it was also observed that 

increasing the controller gain in this region shifted all initial frequency distributions 

toward a limiting gamma distribution. Although not investigated as part of this study, it 

would be interesting to see if there is a unique frequency distribution pattern associated 

with the un-entangled state.  

 

Figure 4 shows the relationship between controller gain and the correlation coefficient 

and reveals the presence of two distinct zones (unstable and stable regions) separated by a 

critical gain value. It’s noteworthy to see that a single regression model appears to be 

adequate for describing the general dependency for all the chaotic oscillators studied 

here.   
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Figure 4: Correlation coefficient versus Controller Gain, k 

 

 

3. Conclusions 

 
Two methods were devised for determining the stable controller gains from descriptive 

statistics of the unsynchronized response (chaotic) oscillators.  A simple regression model 

was found to adequately predict the relationship between synchronization fidelity and 

controller gain. Both the ellipsoidal volume and Lyapunov sum (trace) were excellent 

metrics for characterizing the synchronization transition process. The size of the 

instability region was found to be bounded by the length of the maximum fuzzy interval 

while the minimum fuzzy interval enclosed the un-entangled (critical) point. 
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