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Abstract

In longitudinal clinical trials, epidemiologic, or genetic studies, a quantitative outcome may be
altered by the administration of a non-randomized, non-trial intervention during follow up. The re-
sulting effect of the non-trial intervention may seriously bias the study results, including treatment
or exposure effects or associations. Current methods to address this issue including multilevel mod-
els (White et al 2001) or multiple imputation (MI) (Cook 1997, Cook 2006), are either restricted
to a specific longitudinal data structure or are valid only under special circumstances. We propose
two new methods for general longitudinal data – a modified Expectation-Maximization (EM)-type
model and a modified Monte Carlo EM-MI model. These combine Monte Carlo EM (Wei and Tanner
1990) and MI, and are extensions of Censored Normal Regression (Tobin et al 2005) to longitudinal
data. These replace the intractable calculation of a multi-dimensionally truncated MVN posterior
distribution with a simplified but sufficiently accurate approximation. Simulation shows that the
two proposed methods have the least biased treatment effect estimate in a majority of simulated
scenarios amongst six methods applied.

Key Words: Censored Normal Regression; Monte Carlo EM; Multiple imputation; Non-ignoreable
Missingness; Rescue Medication; Truncated MVN.

1 Introduction

In clinical trials and in epidemiologic or genetic studies, the value of a quantitative outcome may be
altered by the administration of a non-randomized, non-trial therapeutic intervention. The resulting
effect of the non-randomized, non-trial intervention may seriously distort the analysis and undermine
the scientific aims of the study.

1.1 DCCT/EDIC Example

The Diabetes Control and Complications Trial (DCCT, 1982-93) was a landmark type 1 diabetes clinical
trial funded by the National Institute of Diabetes and Digestive and Kidney diseases (NIDDK). At
enrollment, 1,441 type 1 diabetics were randomly assigned to intensive (INT) versus conventional (CON)
diabetes therapy. DCCT demonstrated that INT reduced the risk of development and progression of
retinopathy, nephropathy, and neuropathy compared to CON (DCCT Research Group 1993, 1995, 1998).
In 1994, after completion of the DCCT, 1375 subjects agreed to participate in the follow-up study, the
Epidemiology of Diabetes Interventions and Complications (EDIC, 1994-2016), which aimed to examine
the longer-term effects of the original DCCT interventions on cardiovascular and more advanced stages
of retinal and renal disease.

Among many others, two objectives EDIC aimed to address are, “What is the prolonged treatment
effect of the former intensive therapy on blood pressure (BP) and albuminuria excretion rate (AER)
twenty years after the start of the DCCT?”, and “What are the genetic determinants for eleveated BP
or AER in the DCCT/EDIC cohort?”. These two questions, however, are complicated by the non-
randomized administration of antihypertensive medications (ACEI or ARBs) in the EDIC cohort. Dur-
ing the DCCT, participants were proscribed from taking antihypertensive medications. This restriction
was relaxed, however, during the EDIC follow up. Figure 1 shows the prevalence of anti-hypertensive
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Figure 1: Medication use (ACEI or ARBs) in DCCT and EDIC.

medication use in DCCT and EDIC. Medication use started six years after DCCT baseline and reached
50% in both groups twenty years after the start of the DCCT. Overall, patients were intervened at 20%
of the visits in CON and 15% in INT in the combined DCCT and EDIC study.

ACEI/ARBs are used primarily in the treatment of hypertension, though they can also be used to
treat diabetic nephropathy. DCCT/EDIC patients took ACEI/ARBs for different reasons – hyperten-
sion (10.4%), albuminuria (0.9%), or prophylactic reasons (1.6%), Another 4.8% of patients were on
medication but did not report reasons because this information was not collected in early EDIC. Sub-
jects intervened for hypertension or who did not report intervention reasons had higher SBP that those
intervened for renal or prevention reasons. The latter had about the same SBP levels after intervention
as those free of intervention.

The administration of antihypertensives altered the distribution of the underlying Y . Throughout
this paper, “underlying” outcome refers to the true value of Y if a patient were not intervened. This
underlying outcome is not observed once a patient is intervened. The observed outcome Yobs, after
non-trial intervention, was lower than the underlying true value Y . The difference between the two
depended upon how large the effect of medication was for each patient, which may vary according to
age, gender, the level of Y prior to intervention, and genetic susceptibility to the medication. Figure 2
shows the distribution of SBP prior to and post use of ACEI/ARBs in the DCCT/EDIC. The x axis was
rescaled to make Year 0 an index intervening visit. SBP dropped immediately after the administration
of medication and discontinued the previous increasing trend.

Therefore, the real questions EDIC aimed to address are, “What is the prolonged treatment effect of
the former INT on BP or AER, had no one on non-randomized, non-trial medication, twenty years after
DCCT baseline”, and “What are the genetic determinants for elevated BP or AER in the DCCT/EDIC
cohort, had no one on non-randomized, non-trial medication?”.

1.2 Impact of therapeutic intervention on scientific interest

In clinical trials, the analysis of interest can be ”explanatory” (Schwartz and Lellouch 1967), i.e., the
group difference that would have been observed in the absence of rescue medication, or ”pragmatic”,
i.e., the observed difference between the two treatment groups with intervention as necessary. In this
paper, we focus on the ”explanatory” evaluation. In epidemiologic or genetic studies, the scientific aim
is usually to identify risk factors/exposures associated with, or etiological genetic determinants of the
increased risk of future disease, which is often the more informative underlying outcome.

White et al. (2001) argued that in clinical trials, if there is a therapeutic difference between trial
treatments, rescue medication may well be more used in the inferior treatment group, and the true differ-
ence between the treatment groups would be reduced. Tobin et al. and others (Tobin et al. 2005, Levy
et al. 2000, Cui et. al. 2003, White et al. 1994) showed that in cross-sectional epidemiologic/genetic
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Figure 2: SBP prior to and post medication use

studies, if without appropriate correction, analysis based on the observed outcome Yobs can seriously
distort the analysis and undermine the scientific aims of the study. Analysis of Yobs ignoring the effect of
non-trial intervention leads to a substantial shrinkage in the estimated effects of etiological determinants
of scientific interest (bias), and a marked reduction in statistical power.

Section 2 reviews current statistical methods for a quantitative outcome censored by therapeutic
intervention. Section 3 introduces a model of a multivariate Gaussian data with multi-dimensionally
right-censored data and two proposed methods. Section 4 compares the performance of four existing
methods versus the proposed two models in various simulation scenarios. Application of the proposed
methods in the DCCT/EDIC example is deferred to future clincial papers. We conclude with overall
recommendation and discussion in Section 5.

2 Current statistical methods for a quantitative outcomes cen-
sored by therapeutic intervention

Current methods to address a quantitative outcome altered by a non-randomized, non-trial therapeutic
intervention are mainly for cross-sectional studies, including the ’Ignore’ method (Schunkert et al. 1998;
Matsubara et al. 2001; Iwai et al. 2001; Brand et al. 2003), the ’exclude’ method (Schunkert et al. 1998;
Rice et al. 2000; Matsubara et al. 2001; Iwai et al. 2001; Brand et al. 2003), the ”median” approach
(White et al. 1994, 1996), censored normal regression (Tobin et al. 2005), or adding a constant to
the treated outcome (Cui et al. 2005). For longitudinal data, the proposed methods including multi-
level models (White et al. 2001), multiple imputation (MI) (Cook 1997, 2006), or a two-step approach
(McClelland et al. 2008), are either restricted to a specific longitudinal data structure or are valid only
under special circumstances.

White et al (1994) were the first to address this problem in statistical literature. They proposed
a median approach which assumed that only hypertensive patients were intervened and no more than
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50% of the sample were undergoing intervention. White et al. suggested imputing the underlying
unobserved BP by some arbitrarily large values (larger than the median). A between-group comparison
using median as the measure of location would be robust to the imputed values. In a series of subsequent
papers (White 1996, 1998, 1999, 2000, 2001, 2003 I, 2003 II, 2004), they discussed different variations of
the median approach and applied them to clinical trials and epidemiology studies and extended to time
to event data. Tobin et al. (2005) reviewed nine ad-hoc and post-hoc statistical approaches currently
used to assess genetic association with BP when BP is modified by antihypertensive medication in cross-
sectional data. Based on the simulation results, Tobin recommended two methods out of nine, which
performed well across a range of realistic settings, namely, adding a constant to the treated BP values
(Cui et al. 2005) and a censored normal regression, or a modified Tobit model (Tobin 2005). Adding a
constant, however, requires a pre-specified size of treatment effect based on prior knowledge, which may
not be available in practice. Masca, Sheehan and Tobin (2011) conducted a simulation study to test
the influence of pharmacogenetic interactions on various methods to analyses of BP in a cross-sectional
genetic association study.

For longitudinal data, White et al. (2001) proposed a multilevel regression model for longitudinal
clinical trial data. It is basically a LMM with time-dependent use of medication as a confounder.
White et al. concludes that adjustment for rescue medication will not radically alter the randomized
treatment comparison unless rescue medication is substantially imbalanced between randomized groups
and has a substantial effect on the outcome. Cook (1997) proposed an imputation method for a special
longitudinal data set where post-medication measurements were all missing by design, medication was
prescribed to hypertensives only, and an out-of-study measurement prior to intervention was assumed
to be measured which should exceed a single known threshold. Cook proposed an EM algorithm and
a nested random effect model to impute the BP values that are missing not at random (MNAR), and
model the treatment effect on the augmented BP. Cook 2006 was a variation of Cook’s 1997 paper where
the extra out-of-study measurement prior to medication intervention was observed. This is not common
in a typical study though. McClelland et al. (2008) proposed a two-stage imputation method for a
special longitudinal epidemiology context with only two repeated measurements. It performed better
than the censored normal regression when there were different intervening thresholds for two groups
especially when medication has a big treatment effect on the outcome.

The aim of this paper is to develop methods for a more general longitudinal data set altered by
therapeutic intervention that can be used in clinical trials and epidemiologic and genetic studies. In
particular, our aim is to extend Cook’s (1997) multiple imputation method for a restrictive longitudinal
data structure to a more general longitudinal data set up, and to extend Tobin et al.’s (2005) censored
normal regression model for cross-sectional data to one for longitudinal data.

3 Structural Model: A Multivariate Gaussian Mixture Distri-
bution with Multi-dimensional Right censoring and Available
Methods

Suppose in a long-term clinical trail or epidemiologic or genetic study, a quantitative outcome Y is
measured at multiple time points for each subject; the time points can be equally or unequally spaced.
Assume at the beginning of the study, all participants are free of non-trial medication. During the
follow up, some patients are intervened by non-study medications for treatment, or intolerance of trial
medication, or prevention. Here we assume that once intervened, a patient will continue to be intervened
in subsequent visits. The objective is to assess the effect of treatment, or an exposure, or genetic factors
on the rate of change or slope of the underlying outcome Y over time.

Let yn be the value of a tn-dimensional vector of underlying outcome for subject n, which can be
partitioned into a pn-dimensional vector of observed underlying value prior to intervention, yo1,n, and
a qn-dimensional vector of missing underlying value post intervention, ym,n. Let yobs,n be the value of
a tn-dimensional vector of observed outcome for subject n. Likewise, it is composed of observed value
prior to intervention which is equivalent to the underlying value, yo1,n, and observed or treated value
post intervention, yo2,n. For simplicity of notation, the subscript n denoting subject n is sometimes
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omitted.

3.1 Assumption

Two assumptions are made for each subject. First, conditional upon covariates, the underlying outcome
Y is assumed to be normally distributed. For longitudinal data, this is a MVN. Second, the underlying
outcome Y is assumed to be at least as high as the treated value yobs once intervention has begun.
That is, Y is right censored at yobs, Y ≥ yobs. These are the same assumptions as in censored normal
regression (Tobin et al. 1958, Tobin et al. 2005). In reality, most of the medication effect is to reduce
the elevated level of a disease. For few cases when medication improves the outcome Y , similar approach
can be easily derived for left-censoring.

In Tobin et al.’s (2005) censored normal regression, a third assumption is made that conditional
upon covariates, the distribution for those above any specific value is the same in treated (R = 1) and
untreated individuals (R = 0), or f(y | X,Y ≥ c,R = 1) = f(y | X,Y ≥ c,R = 0). This assumption
is often not true in reality. In Tobin et al.’s (2005) simulated cases, departure from this assumption
does not affect the estimate of treatment/exposure effect on Y . McClelland (2008), however, showed
that when this assumption is seriously violated, the estimate from censored normal regression is biased
(McClelland 2008). In this paper, this assumption is relaxed.

3.2 Model

Following Cook (1997, 2005)’s structure, the joint distribution of the observed underlying Y prior to
intervention, Yo1,n,and the missing underlying Y post intervention, Ym,n, which is right censored at the
observed treated value yo2,n, Ym,n ≥ yo2,n, is,[

Yo1,n
Ym,n

]
∼ N

([
µo1,n(β)
µm,n(β)

]
,

[
Σo1,n(Rn, D) Σ(o1,m),n(Rn, D)

Σ(m,o1),n(Rn, D) Σm,n(Rn, D)

])
Parameters β, Rn, and D are from a general linear mixed model (LMM) of the underlying outcome,

ynj = u+ αGn + b0n + (β1 + β2Gn + b1n)Tj +WT
n γ + εnj ,

where u denotes the intercept or overall mean when all the covariates are 0, Gn is the treatment group
or exposure or genetic factor for subject n (Gn = 1 for treatment/exposure and Gn = 0 for reference), α
is the intercept for the treatment/exposure group when all other covariates are 0, Tj is the visit number,
β1 is the slope or rate of change in yn per unit of time for the reference group, β1 + β2 is the slope
for the treatment/exposure group, β2 is the slope difference between the two groups, Wn is a group of
other covariates adjusted for in the model, γ is a vector of parameters for Wn, εnj is the measurement
error for subject n at visit j, and b0n and b1n are the random intercept and random slope for subject n
covering individual departure from the population average intercept and slope. The distribution of the
random components is assumed to be a MVN, (b0n, b1n)

′ ∼ N (0, D),
independently for each subject n = 1, ..., N . Here D can be any 2× 2 variance-covariance matrix

like unstructured or compound sysmmetry. The joint distribution of εn for subject n across tn visits
is,(εn1, . . . , εn,tn)

′ ∼ N (0, Rn), where Rn can be any variance covariance matrix.
The objective here is to estimate the rate of change or slope of Y for each group (β1, β1 + β2) and

the slope difference between groups (β2) to assess treatment or exposure or genetic effect on rate of
change in Y . For simplicity, we assume a linear slope, though other non-linear growth curves can also
be defined.

3.3 EM approach?

When no individuals are intervened by a non-trial medication, or the underlying ynj can be directly
observed, this is a regular LMM model which can be solved by standard methods (Laird and Ware 1982,
Lindstrom and Bates 1988). When the underlying ynj is missing for some visits of certain subjects, a
natural approach is the EM algorithm. The expected complete data log likelihood conditioned upon the
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observed data yobs (including the pre-medicated outcome yo1 and treated outcome yo2 after intervention)

under the current estimate of the parameter Θ(t) = (β(t), R
(t)
N , D(t)) can be derived as follows,

Q(Θ | yobs,Θ(t)) = E(l(Θ) | yobs,Θ(t))

=
∑N

n=1

(
−1

2
ln |Σn(Rn, D)| − 1

2
tr
(
Σn(Rn, D)−1

[
ETE + V

]))
,

where E =

(
yo1,n − µo1,n(β)

E(Ym,n | yobs,n,Θ(t))− µm,n(β)

)
, V =

(
0 0
0 V (Ym,n | yobs,n,Θ(t))

)
with

E(Ym,n | yobs,n,Θ(t)) = E(Ym,n | yo1,n, Ym1,n
≥ yo21,n, ....., Y n

mqn,,n
≥ yn02qn,n

,Θ(t))

and V (Ym,n | yobs,n,Θ(t)) = V (Ym,n | yo1,n, Ym1,n ≥ yo21,n, ....., Ymqn,n ≥ yo2qn,n ,Θ
(t)).

3.4 Difficulties in calculating and maximizing Q(Θ | yobs,Θ(t))

There are two complications involved in estimating parameters Θ = (β, b, Rn, D) based on the above
Q(Θ | yobs,Θ(t)) if using a traditional EM approach, namely, the intractable calculation of the posterior
distribution of the missing underlying outcome Ym conditioned upon the observed data yo1 and a
qn-dimensional censored distribution, f(ym | yo1, Ym1

≥ yo21 , ..., Ymqn
≥ yo2qn ,Θ

(t)), and the use of
complicated LMM with parameters Θ = (β, b, Rn, D) in the M step for a censored MVN mixture data.

In details, the calculation of Q(Θ | yobs,Θ(t)) entails solving the first and second moments of the
posterior censored MVN distribution for the missing underlying outcome after intervention for each
subject n, i. e. E(Ym | y01, Ym1 ≥ y021 , ....., Ymqn

≥ y02qn ,Θ
(t)).and V (Ym | y01, Ym1 ≥ y021 , ....., Ymq ≥

y02qn ,Θ
(t)). As Cadez et al. (2002) stated, multivariate integration often entail numerical integration,

which is usually subject to exponential time complexity and numerical instability as the dimension
of integration increases, so called ”the curse of dimensionality”. Numerical integration allows mod-
erate accurate multivariate normal probabilities to be quickly computed for problems with as many
as ten dimensions (Cadez et cal 1993). However, studies may not be limited to ten visits. For a
multi-dimensionally censored MVN, these moments are computationally difficult and time-consuming.
Furthermore, estimates of the two moments need to be done for each subject at each post-intervention
visit in each iteration. The dimension of missing data qn is also different for each subject n. All of these
adds to the complexity of the computation.

A second complexity comes from the complex regression parameters, Θ = (β, b, Rn, D). Most papers
with censored multivariate Gaussian mixture data aim to estimate simple component parameters µi and
Σi where there are K component distributions among N subjects (N > K) (Cadez et al 2002, Makarim
et al 2006). In our case, not only is it a mixture of N censored component MVN among N subjects,
but also the aim is to estimate complex regression parameters Θ = (β, b, Rn, D), which was non-trivial
when there was complete data (Laird and Ware 1982).

3.5 Extensions to parameter estimation Θ = (β, b, Rn, D) in a MVN mixture
distribution with multi-dimensional censored data

3.5.1 Proper imputation using Monte Carlo in EM to simplify the integration and opti-
mization of Q

When it is hard to calculate or maximize Q(Θ | yobs,Θ(t)) analytically, a viable alternative is to use
Monte Carlo as in the Monte Carlo EM (Wei and Tanner 1990, McLachlan and Krishnan 2008, Hughes
1999). In Wei and Tanner’s (1990) paper, Monte Carlo was used in the E step by random drawing m
samples from the posterior predictive distribution of the missing data f(ym | yobs,Θ(t)) at each iteration
to avoid an otherwise intractable calculation of conditional expectation of log likelihood. The Q function
can be estimated by averaging the conditional log-likelihoods of m simulated sets of ”complete” data

Qt+1(Θ | Θ(t)) =
1

m

∑m

j=1
l(θ | yobs, y(j)m ,Θ(t)).
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Maximization is then simplified based on complete data loglikelihoods on the right side. When m = 1
and ym is imputed by some ”good” summary of the posterior distribution f(ym | yobs, θ(t)), this reduces
to an ”EM-type” algorithm (McLachlan and Krishnan 1997).

In the application in this paper, if we can find the posterior predictive distribution of the missing
data conditional upon the observed data and a multi-dimensionally censored data, f(Ym | y01, Ym1

≥
y021 , ....., Ymqn

≥ y02qn ,Θ
(t)), we can then follow the logic of MCEM or EM-type algorithm to draw

samples (random or deterministic) from the posterior distribution. According to Rubin (1996), this
would be a proper or confidence proper imputation because the imputation is based on the posterior
predictive distribution of the missing data, P (Ym | yobs), which is an approximate Bayesian method.
Following the EM-type algorithm, if one good draw is taken in the E step (m = 1), and assuming
that the imputed data is the true data, one then get an augmented ”complete” data ỹ. The originally
intractable Q(Θ | yobs,Θ(t)) is then reduced to a regular log-likelihood for LMM,

Q(Θ | yobs,Θ(t)) = log l(Θ | ỹ) =
∑N

n=1
−1

2
ln |Σn(Rn, D)| − 1

2
trΣn(Rn, D)−1ETE,

where E = (ỹ − Un(β)).
The term E(Ym,n | yobs,n,Θ(t)) is replaced by the imputed post-intervention data ỹm,n, and V (Ym,n |

yobs,n,Θ
(t)) disappeared due to the replacement of the ”complete” data. An originally intractale data

reference is then reduced to a complete data inference for LMM. One can then follow the regular
procedures of LMM to get the MLE or REML estimates of parameters using available software. This
would simplify the computation significantly and provide a lot of modeling convenience like utilizing the
existing model of fit, existing variance-covariance matrices, and univariate-multivariate inference.

3.5.2 A simplified calculation for a multi-dimensionally censored MVN posterior distri-
bution f(ym | yo1, Ym1

≥ yo21 , ..., Ymqn
≥ yo2qn ,Θ

(t))

The next question is how to derive the posterior predictive distribution of the missing data in a N -
component MVN mixture data in presence of a multi-dimensionally censored data, and the dimension
of missing data qn varies for each component MVN. Given the computational complexity and instability
of numerical integration for larger dimensions, can we find a simple yet sufficiently accurate method to
achieve this without numerical integration?

The posterior predictive distribution of the underlying Ym given a multi-dimensionally truncated
distribution is skewed. However, according to Schafer (1997), MVN is robust in imputation to distri-
butions that are manifestly not normal when the amount of missing data is not large. Several authors
showed that approximate methods for sampling from the posterior distribution of parameter estimates
may be sufficient when the proportion of information lost of censoring is moderate or small (Rubin 1996,
Dorey et al 1993). Furthermore, MVN has a nice property that any subset of a MVN is still distributed
as a MVN which other distributions do not possess. Therefore, MVN is employed to get the posterior
predictive distribution of Ym. Transformations can be applied to deviations from MVN within the frame
work of MVN. For MVN, the first and second moments are sufficient to define the distribution.

Next question is how to get around multiple dimension intergration without numerical integration?
One thought is to take only the most informative subset of MVN to do the imputation. In order to
impute the underlying value of Ym at a post-medication visit mi, data that gives the most information
are 1) the pre-medicated data yo1 which gives the exact location of the prior data, and 2) the treated
value at the visit of interest mi, yo2

i
, which gives a lower boundary for the underlying value Y at that

visit. Often times the rest treated data yo2
(−i)

do not add much more information than yo1 and yo2
i

as

they do not give exact location for values at the rest of the visits, nor do they give direct information
for the value at the visit of interest mi. For a MVN, a subset of the MVN is still distributed as a MVN.
Therefore, the pre-medicated pn−dimensional data yo1 and the treated value at a specific visit mi after
medication, yo2i , are distributed as follows,[

Yo1
Ymi

]
∼ N

([
µo1(β)
µmi(β)

]
,

[
Σo1(Rn, D) Σo1,mi(Rn, D)

Σmi,o1(Rn, D) Σmi(Rn, D)

])
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The first two moments are then simplified to,

E(Ymi | yo1, Ym1 ≥ yo21 , ....., Ymqn
≥ yo2qn ,Θ

(t)) ' E(Ymi | yo1, Ymi ≥ yo2i ,Θ),

V (Ymi
| yo1, Ym1

≥ yo21 , ....., Ymqn
≥ yo2qn ,Θ

(t)) ' V (Ymi
| yo1, Ymi

≥ yo2i ,Θ),

which can be analytically derived.
Likewise, the posterior pairwise covariance of the underlying outcome (Ymi

, Ymj
) at any two post-

medication visits mi and mj , can be simplified as,

Cov(Ymi , Ymj | yo1, Ym1 ≥ yo21 , ....., Ymqn
≥ yo2qn ,Θ

(t)) ' Cov(Ymi , Ymj | yo1, Ymi ≥ yo2i , Ymj ≥ yo2j ,Θ).

For brevity, the results of these derivation are not shown. The complete posterior variance-covariance
matrix is then composed of diagonal entry V (Ymi | yo1,Ymi ≥ yo21 ,Θ), and (i, j) off-diagonal entry
Cov(Ymi , Ymj | yo1,Ymi ≥ yo2i , Ymj ≥ yo2j ,Θ). Since it is a simplified version of the true variance-
covariance matrix, the resulting posterior var-covariance matrices, V (Ym | yobs,Θ) for some patients can
be negative definite. Similar to ridge regression (Hoerl 1962, 1970), diagonal inflation can be used to
increase the diagonal values of the matrix and force the resulting var-covariance matrix to be positive
definite. Diagonal inflation is performed by adding the largest eigen-value in absolute value to the
diagonal of the negative definite matrix. Simulation later proves the robustness of this approximation.

3.6 A Modified EM-type algorithm; single deterministic imputation

Following the EM-type algorithm, we propose a modified EM-type algorithm and a single deterministic
imputation. That is, only one draw is taken in the E step (m = 1) and a good summary of the posterior
distribution of the missing data, the posterior expectation, is used for imputation. Since the posterior
predictive distribution is approximated by a simplified calculation, one can call this a modified EM-type
algorithm.

3.6.1 Starting data

There are different ways of choosing a starting data. A good starting value is usually vital to the
convergence or a faster convergence of any algorithm. In this paper, the observed data yobs (observed
pre-medicated data yo1and treated post-medicated data yo2) turned out to be the best starting data.
Another option is to use the complete case data, or the observed yobs for those never on intervention.
However, since those without intervention tend to have a much lower underlying Y , this will introduce

more bias than the observed data. For subject n, the starting data is,ỹn
(0)

= [yo1,n, yo2,n]
′
.

3.6.2 Starting model

Among the current methods for a longitudinal quantitative data modified by a non-trial medication
intervention, the Multi-level model (White et al. 2001), a LMM model after adjustment for use of
medication as a time-dependent covariates, was selected as the starting model in this paper because
it is the only available method that can handle a general longitudinal data structure. The others are
restricted to some special longitudinal data set up (Cook 1997 and 2006, McClelland et al 2008).

The Multi-level model is specified as:

ynj = u+ β0Gn + bon + (β1 + β2Gn + b1n)Tj +MnjGn +Wnγ + εnj ,

where Mnj is the time-dependent use of medication. To make the model robust to a heterogeneous
medication effect on Y between groups, an interaction term between the medication use and treat-
ment/exposure group, MnjGn, is employed. Otherwise, a main medication effect Mnj would suffice.

Starting data ỹn
(0)

is fit into the Multi-level model.
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3.6.3 E-step or Imputation Model

In each iteration, the missing underlying value of Ymi
at a specific post-medication visit mi for a

subject is replaced by a good summary of its posterior distribution, a simplified approximation of the
posterior expectation conditional upon the observed pn−dimensional yo1, and a 1-dimensional truncated
distribution based on the treated value at the visit of interest mi, Ymi ≥ yo2i , under the current estimate
of the parameters Θ, as previously discussed, E(Ymi | yo1, Ymi ≥ yo2i ,Θ).The augmented data ỹn is
composed of the observed value yo1,n prior to medication, and the imputed underlying value after

medication, ỹm,n = E(Ymi
| yo1, Ymi

≥ yo2i ,Θ), ỹn =
[
yo1,n, ỹm, n

]′
.

3.6.4 M step or Analysis Model: LMM

Assuming the augmented ỹnj is the true underlying Y for the nth subject (1 ≤ n ≤ N) at the jth visit
(1 ≤ j ≤ tn). The LMM can be modeled as previously defined,

ỹnj = u+ β0Gn + bon + (β1 + β2Gn + b1n)Tj +WT
n γ + εnj .

Iterate between the E and M step, or between the imputation and analysis model, until a pre-specified
stopping rule is satisfied, for example,

∣∣β(t+1)−β(t)
∣∣ < ε, or the log-likelihood is stablized, where ε is a

prescribed extremely small number. The MLE estimate is the final estimate of Θ.

3.7 MCEM-MI algorithm - Combination of Monte Carlo EM and MI

Single imputation is often subject to the criticism of under-estimating the true variability of the param-
eters. To overcome this, a multiple imputation approach, the Modified Monte Carlo EM-MI algorithm is
proposed which combines the Monte Carlo EM algorithm and multiple imputation. In Wei and Tanner’s
(1990) MCEM, m random draws were taken from the posterior predictive distribution of the missing
data in the E step to simplify the computation of Q(Θ | yobs,Θ(t)).For the modified MCEM-MI algo-
rithm, we propose to take one random draw from the posterior predictive distribution in the E step at
each iteration, rather than taking one deterministic draw as in the modified EM-type algorithm. Follow
the rest modified EM-type algorithm, and iterate to get one set of parameter estimates. Repeat this
whole process m times to get m set of parameters. Rubin’s combination rule (1987) is then employed
to get the final parameter estimates.

3.8 Convergence complications

For the EM-type algorithm, Chauveau (1995) proved that it converges linearly to the strongly consis-
tent MLE of θ with suitable starting values. For a regular MI, Rubin (1987, 1996) concluded that when

repeated imputations are proper or confidence proper for the complete data inference (Q̂, U) and the
complete data inference is randomization-valid for the estimandQ, then the large-m repeated-imputation
inference given by (Q − Q∞) ∼ N(0, T∞) is randomization or confidence valid for the scientific esti-
mand Q under the posited response mechanism. Rubin suggested that imputation with a Bayesian or
approximate Bayesian imputation. The proposed modified MCEM-MI algorithm used an approximate
Bayesian method, i.e. taking random draws from a simplified approximation of the posterior predictive
distribution of the missing data given the observed data.

For the proposed modified EM-type and MCEM-MI algorithms, however, the convergence is more
complicated due to the following reasons. First, a simplified approximation of the posterior predictive
distribution of the missing data was employed. This may introduce a bias when the amount of imputation
is large or when the data is noisy, e.g. when between-visit correlation is low. Secondly, in the proposed
methods, the posterior moments are based on a truncated distribution which sets a lower boundary
for the underlying outcome Ymi

, i.e., the treated value, yo2i , but not an upper boundary. This may
over-estimate the parameter of interest sometimes. When there is a larger percentage of missing data
or when the data is noisy, a modest departure in the beginning may lead to a larger deviation by the
end of iteration.
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These considerations lead to the proposal of three sub-algorithms within the class of modified EM-
type algorithms. In order to incorporate the above convergence complications, we propose to implement
the modified EM-type and MCEM-MI algorithms in three ways, yielding full-iteration, one-step and two-
step sub-algorithm. When the amount of imputation is modest and data is not noisy, a full iteration
algorithm can be employed. In case of a large amount of imputation or a noisy data, a one- or two-step
iteration would be sufficient.

4 Simulation

A numerical study is conducted to compare the bias and precision of current methods vs. proposed
methods in estimating the slope or rate of change in the underlying Y when Y is altered by the admin-
istration of a non-randomized, non-trial therapeutic intervention.

4.1 Simulated data sets

For the nth subject (1 ≤ n ≤ N), the underlying outcome Y at the jth visit is generated from a LMM
as previously introduced,

ynj = u+ bon + (β1 + β2Gn + b1n)Tj + εnj

Baseline u is simulated to be 65. Slopes between the two groups can be 2 vs. 1, or 5 vs. 1, or 2 vs. 2
unit per year. The variance structure of the random components are simulated based on a coefficient of
variability of 0.2 in Y . The residual term can have a first-order auto-regressive or compound symmetry
variance-covariance structure with different correlation coefficient ρ = 0.6− 0.9. Group Gn is generated
from a binomial distribution with probability of 0.5. Time Tj can have up to 3 or 5 or 10 visits. It can
also be annual, every half-year or quarterly visit. Patients can be intervened for treatment (100% or
80% on med once ynj > 80 or 90), or for prevention (20% on med if ynj < 80 or 90). Once a patient
is intervened, a random variate N(−20,−52) or N(−10,−22) is deducted from the underlying y which
generates an observed outcome y obs. Each simulated data is generated by a combination of different
factors listed above. For each simulated scenario, 100 data sets are generated. Every data contains 1000
subjects, each with a number of visits.

4.2 Applied methods

Methods applied are 0) the true model or no medication model where no one is intervened; 1) the
”ignore” model where the observed Y is treated as the underlying Y ; 2) the ”exclude” model where
only complete case data is used for analysis; 3) the Multilevel Model (White. et al. 2001) which is
a LMM after adjustment for use of medication and an interaction term between medication use and
group; 4) a class of Modified EM-type algorithms implemented in three ways, 4.1) a full iteration, 4.2) a
one-step iteration. and 4.3) a two-step iteration algorithm; 5) a class of Modified MCEM-MI algorithms
including 5.1) a full iteration, 5.2) a one-step iteration, and 5.3) a two-step iteration algorithm; 6) adding
a constant to the treated value yobs (Tobin et al. 2005, Cui et al. 2003), including 6.1) adding 5, 6.2)
adding 10, 6.3) adding 15, and 6.4) adding 20 to the treated value yobs.

4.3 One Scenario

We simulated over 60 scenarios. One scenario is given here as an example. This data was generated
from a LMM allowing for random intercept and slope, and a first-order auto-regressive serial correlation
matrix with ρ = 0.9. The progression rates are 2 vs. 1 unit per year for the treatment/risk group and
the control group. Once the underlying outcome exceeds 80, 80% of the patients are put on medication,
resulting in 33.4% and 29.3% of medication use in the two groups. Medication effect is random and
heterogeneous across Y (N(−20,−52) if Y > 90, and N(−10,−22) if 80 < Y ≤ 90).

The ignore and exclude methods severly underestimate the slope in both groups and none of the
95% confidence intervals cover the true values. The medication adjustment method produces estimates
that are less biased, but they are still negatively biased and confidence interval coverage is poor (less
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Figure 3: Histogram of the true underlying Y variable.

than 20%). The EM algorithm produces estimates with little bias, but standard errors are a bit small
to give adequate coverage (less than 70% for the two slopes). Doing just two steps of the EM algorithm
produces nearly the same estimates of slopes, but larger standard errors and better coverage (nearly
90% fo the two slopes). Mutiple imputation (MI) does the best: little bias in estiamtes and slightly
above 95% coverage. MI with two iterations does about as well as the full MI. Add a constant (10, 15, or
20) to the observations censored by rescue medication produce better estimates than ignore or exclude,
but only work well for point estimates if the amount adjustment is correct on average (15 in this case)
and do not do well in terms of confidence interval coverage. A two-step or full iteration MCEM-MI or
EM type algorithm give the best estimates of the slopes for both individual groups and group difference.

To examine the performance of the simulated Ỹ against the true underlying Y , Figure 3 shows the
distribution of the true underlying Y for those on intervention. Notably, although the data is heavily
skewed to the right with the peak at 80, there is a small tail on the left side below 80. This is because
due to the within-subject variation, or regression to the mean. Some patients may still experience a
measurement below 80 after commencement of intervention, especially in the control group where the
progression is flat over time.

The histogram of the imputed underlying Y from a modified EM-type algorithm with full-iteration
is shown in Figure 4. It basically resembles the skewed distribution of the true underlying Y as in Figure
3 except for minor differences.

A scatter plot is drawn between the true and imputed underlying Y to check the reliability of the
two (Figure 5). Data are about evenly distributed above and below the symmetry line (green).

4.4 Simulation Results

Simulation results is summarized as following based on over 60 simulated scenarios.

4.4.1 Two proposed methods vs. other four methods applied

Overall speaking, similar to what was observed in the cross-sectional studies as shown in Tobin et al.
2005, in longitudinal studies, when the quantitative outcome is altered by a non-trial, non-randomized
intervention, if without appropriate correction, analysis based on the observed outcome Yobs (the ”ig-
nore” or ”exclude” method) can lead to a substantial bias in the estimated treatment or exposure or
association effects, seriously distort the analysis and undermine the scientific aims of the study.

Simulation shows that at least one of the sub-algorithms within the proposed two classes of methods
have the least biased treatment effect estimates in a majority of simulated scenarios amongst six meth-
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Figure 4: Histogram of the Imputed Underlying Y Variable

ods applied. These scenarios include when there is homogeneous or heterogeneous medication effect
across different Y levels, when patients are intervened for single reason (treatment) or multiple reasons
(treatment or prevention), when there are fixed effects and/or random effects, when there are more or
fewer visits, or when the proportion of medication use is large or small.

The other four simple methods give biased estimates for group-specific slopes in almost all of the
simulated scenarios, and give biased estimates for slope difference between groups in most of the sce-
narios except for when medication assignment is balanced between the two arms. In the latter case,
the medication adjustment model and ”ignore” and ”exclude” model give unbiased estimate for slope
difference between groups, although these methods still under-estimate slopes for individual groups.

Notably, there are two scenarios where other simple models apply better.
First, if therapeutic intervention is randomly assigned, i.e., the assignment is unrelated to the out-

come of interest Y , then the Multi-level mode and the ’exclude’ model are the best models which
give unbiased estimates of both group-specific slopes and slope differences between groups. In reality,
however, most likely the administration of non-trial medication is not randomized, but related to the
underlying Y .

Second, if a prior knowledge of the true average size of medication effect is known, adding an exact
constant to the treated Y will give unbiased estimates of the slopes for both individual groups and group
differences, no matter how large the amount of missing data is. However, it is often hard to get a prior
knowledge of the true medication effect, and medication effect is usually heterogeneous across different
brands, different dosage levels, different levels of underlying Y, and different subjects. According to a
meta-analysis by Low et al. (2003), higher dosage has more reduction in BP, and anti-hypertensives
have more reduction at a higher BP level. Medication effect for each subject also varies according to age,
gender, and genetic susceptibility. Therefore, it is often hard to get the true average size of medication
effect. The method of adding a constant, however, is very sensitive to the added constant. The bias can
be large if the added constant departs from the true average size of medication effect.

4.4.2 Between two proposed methods - Modified EM-type vs. Modified MCEM-MI
Model

A modified EM-type algorithm and modified MCEM-MI algorithm perform similarly in point estimates
of slopes for individual groups and group differences. As expected, a modified MCEM-MI algorithm has
a better coverage of the true parameters due to the inclusion of between-imputation variation, whereas
a modified EM-type algorithm converges very fast, usually within 7 iterations, contrary to the slow
convergence of a regular EM algorithm.
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4.4.3 Comparing three proposed sub-algorithms within each class of methods - Full Iter-
ation vs. 1 step vs. 2 steps

Depending upon different scenarios, one of the three sub-algorithms would fit the data the best. A rule
of thumb is that the larger the amount of imputation, the more noisy the data is, less iteration gives
more accurate estimates than a full-iteration. A full iteration gives the best slope estimates when the
amount of missing data is small to moderate (<20%), and when the data is not noisy (between-visit
correlation ≥ 90%. A one step iteration gives the least biased estimate when the percentage of missing
data is > 30%, or the data is noisy (between-visit correlation < 0.7). A two-step iteration fits in between.
Although approximate methods works the best when the proportion of missing data is moderate or small
(Rubin 1996, Dorey et al 1993), the extension to one step iteration relaxed this condition.

5 Discussion and Conclusions

Methods were successfully applied to data from the DCCT/EDIC study. Results were presented in Sun
(2012). Due to space limitations, results are not presented in this proceedings paper. Rather, extensive
applied results will be deferred to a clinical paper.

The proposed methods are an improvement over the current available methods for a quantitative
outcome censored by a non-trial, non-randomized intervention, by applying to more general scenarios
and more general longitudinal data structure while reducing their restrictive assumptions. These include
when there is homogeneous or heterogeneous medication effect across different Y levels, when patients
are intervened for single reason (treatment) or multiple reasons (treatment or prevention), when there
are fixed effects and/or random effects, when there are more or fewer visits, or when the proportion
of medication use is large or small. The proposed methods extend Tobin et al.’s (2005) censored
normal regression for cross-section data to one for longitudinal data, extend Cook’s 1997 MI method
from a restrictive longitudinal data to a more general longitudinal data. These methods revise Wei
and Tanner’s Monte Carlo EM (1990) for a different application, and can be viewed as a variation of
Gibbs Sampling in the frequentist framework. Different from methods using numerical integration, the
proposed methods replace the intractable calculation of a multi-dimensionally censored MVN posterior
distribution with a simplified approximation yet maintain sufficient accuracy. It gets around ”the curse
of the dimensionality” by avoiding complicated numerical integration of MVN probability. The proposed
methods enjoy straightforward implementation using existing software in the M step. This simplifies
the computation significantly, at the same time, provide a lot of modeling convenience (a variety of
existing complex variance-covariance structures, existing model of fit and multivariate inference within
the LMM and MI framework. The proposed methods also converge fast, especially the modified EM-type
algorithm, usually within 7 iterations.

The limitations of the proposed methods are summarized as follows. First, even though a general
guideline is given regarding which of the three sub-algorithms should be selected for different scenarios,
it is not as convenient as having one single algorithm for all the scenarios. A sensitivity analysis needs
be done by comparing different approaches to locate a best model. Second, as previously mentioned,
there are two scenarios where other simple models apply better, although these two conditions are not
realistic in practice.

Our suggestion is that when medication assignment is randomized or when the medication reduction
effect is prior known, simple ad hoc methods are the best approach to go, i.e. the ”exclude” method,
medication adjustment model, or adding a constant to the treated outcome. However, when medication
assignment is not randomized but related to the outcome Y, and when there is no or insufficient prior
knowledge about medication reduction effect, the proposed methods are viable alternatives. In both
cases, however, sensitivity analysis should be done to verify the results from the main analysis.

Several generalizations were discussed in Sun (2012) and will be considered in future work.
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Figure 5: Scatter plot of the imputed versus true underlying Y variable
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