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Abstract
The curse of dimensionality has been problematic in the application of nonparametric and semi-

parametric regression techniques to high-dimensional time series data. Spline-backfitted local linear
(SBLL) and spline-backfitted kernel (SBK) estimators have been successful in addressing this prob-
lem, and provide computationally efficient estimators. Moreover, under fairly weak conditions, the
estimators are point-wise asymptotically normal. Little work has been conducted in investigating
the properties of forecasts using models estimated via SBLL or SBK methods. We propose a method
for SBLL and SBK forecasting, and investigate the properties of those forecasts. For illustration, we
apply the forecasting methods to irradiance data collected from a solar power plant in Sacramento,
California provided by Sandia Research Laboratories.
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1. Introduction

Nonlinear models are often more appropriate than linear models for fitting some time series
data. Some non-linear dynamic systems include limit cycles, jump phenomenon, time irre-
versibility, and amplitude-frequency models (Tong 1990). The class of nonlinear time se-
ries models is extremely large and include models such as threshold autoregressive (TAR),
exponential autoregressive (EXPAR), bilinear, smooth threshold autoregressive (STAR),
and generalized autoregressive conditional heteroscedasticity (GARCH) models. A use-
ful structure that can reduce the size of the class of nonlinear models is the functional-
coefficient autoregressive (FCAR) model.

Härdle, L̈utkepohl, and Chen (1997) give a summary of nonparametric techniques that
have been found useful in nonlinear time series analysis. However, problems such as the
“curse of dimensionality” arise when fitting nonlinear models with nonparametric methods.
Cai, Fan, and Yao (2000) used a local linear regression technique to estimate FCAR models.
Their method is flexible and reduces the curse of dimensionality. Wang and Yang (2007)
and Wang and Yang (2009) have developed methods known as spline-backfitted kernel
smoothing (SBK) and spline-backfitted local linear smoothing (SBLL) that outperform the
local linear method for high dimensional data. However neither of these papers extend
these methods to forecasting. In this paper, we apply the SBK and SBLL methods to
FCAR models and propose forecasting methods using the SBK and SBLL estimators. We
apply these methods to solar irradiance data.

The paper is structured as follows: Section 2 describes the FCAR model and estima-
tion using the SBK and SBLL methods. Preliminary simulations for estimating the FCAR
model and the irradiance data application are shown in Section 3. The forecasting methods
are proposed in Section 4, and we conclude with a discussion.
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2. SBK and SBLL Estimation of FCAR Models

We first introduce the the SBK method for the i.i.d. case. For the sample{Yi , Xi 1, . . . , Xid}n
i =1

the additive model is
Yi = m (Xi ) + σ (Xi ) εi (1)

where

m (Xi ) = c +
d∑

α=1

mα (xi α) ,

E [mα (Xα)] ≡ 0, α = 1, . . . , d,

andεi ∼ N (0, 1). The goal is to estimate thed unknown component functionsmα (Xα)
d
α=1

based on the sample. Linton (1997) used one step kernel backfitting based on marginal
integration and Huang and Yang (2004) used polynomial spline estimation to estimate the
component functions. The marginal integration method is computationally expensive and
the polynomial spline method lacks the asymptotic properties of kernel smoothing. Wang
and Yang (2009) have shown the SBK method is computationally expedient while having
asymptotic properties allowing for point-wise confidence intervals and confidence bands.

2.1 Oracle smoothers

The computational and asymptotic properties of the SBK method are based on the idea of
oracle smoothing. For model (1), if the lastd − 1 of the component functions were known,
then we can define a new variable

Yi,1 = Yi − c −
d∑

α=2

mα

(
Xi,α

)
.

The variableYi,1 is said to be known by “oracle.” We can now useYi,1 to regress on the
numerical variableXi,1 to estimate the only unknown functionm1 (X1). If {mα}d

α=2 is
known by “oracle,” define the kernel “oracle smoother” as

m̃1 (x1) =

∑n
i =1 Kh

(
Xi,1 − x1

)
Yi,1

∑n
i =1 Kh

(
Xi,1 − x1

)

whereh ∼ n−1/5 is the bandwidth andK is the kernel function to determine how to assign
the weights. The same process can be used for each of thed component functions where
the remainingd − 1 component functions are used to define the oracle response variable
Yi,α.

Bosq (1998) has shown that the oracle smoother has the asymptotic properties

sup
x∈[h,1−h]

|m̃α (x) − mα (x)| = op

(
n−2/5 logn

)

and √
nh
{
m̃α (x) − mα (x) − bα (x) h2

} D
→ N

{
0, v2

α (x)
}

where

bα (x) =
∫

u2K (u) du
{
m′′

α (x) fα (x) /2 + m′
α (x) f ′

α (x)
}

f −1
α (x)

and

v2
α (x) =

∫
K 2 (u) duE

[
σ 2x (X1, . . . , Xd) |Xα = x

]
f −1
α (x) .
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Note that thebα (x) term requires the second moment of the kernelK to exist.
Use of the oracle smoother requires us to know thed − 1 functions used to construct

the oracle response variable. The SBK method estimates these functions with an under-
smoothed constant spline. Without loss of generality, let eachXα be defined on the compact
set[0, 1]. Pre-select an integerNn ∼ n2/5 log(n) and define the indicator function of the
(N + 1) equally-spaced subintervals on[0, 1]

I J,α (xα) =

{
1 J H ≤ xα < (J + 1) H

0 otherwise,
, H = (Nn + 1)−1 , J = 0, 1, . . . , N.

The spline estimator ofm (x) is

m̂ (x) = λ̂0 +
d∑

α=1

N∑

J=1

λ̂J,α I J,α (xα)

where the coefficients
(
λ̂0, λ̂1,1, . . . , λ̂N,d

)
minimize

n∑

i =1

{

Yi − λ0 −
d∑

α=1

N∑

J=1

λJ,α I J,α (xα)

}2

.

We pre-estimate{mα (xα)}
d
α=1 by its pilot estimate

{
m̂α (xα)

}d

α=1 with an under-smoothed
constant spline. Using these pilot estimates, we construct the pseudo-responses

Ŷi,α = Yi − ĉ −
∑

β 6=α

m̂β

(
xi,β

)
.

For the pseudo-data
{
Ŷi,α, Xi,α

}n

i =1
, the SBK estimate is

m̂∗
α (xα) =

∑n
i =1 Kh

(
Xi,α − xα

)
Ŷi,α

∑n
i =1 Kh

(
Xi,α − xα

) .

Wang and Yang (2009) have shown thatm̂∗
α (xα) has the asymptotic properties of the oracle

smoother.

2.2 Estimation for the FCAR model

For time series data, the functional coefficient model has the form

Xt = a1 (Xt−d) Xt−1 + ∙ ∙ ∙ + ap (Xt−d) Xt−p + σ (Xt−d) εt , (2)

where{εt} is a sequence of independent random variables with mean of zero and variance
of one. The variableXt−d is called the delay variable anda1(∙), . . . , ap(∙) are the unknown
coefficient functions. Model (2) can be denoted by FCAR(p, d). Letting

Yi = Xt , Xt1 = Xt−1, ∙ ∙ ∙ , Xtp = Xt−p,Ut = Xt−d,

we can write (2) as

Y = a1 (U ) X1 + ∙ ∙ ∙ + ap (U ) Xp + σ (U ) εt . (3)

Cai et al. (2000) estimated the functionsaj (∙)’s in (3) using local linear regression.
Assumingaj (∙) has a continuous second derivative, we can approximateaj (∙) locally at
u0 by a linear function

aj (u) ≈ aj + bj (u − u0) .

Section on Statistical Computing – JSM 2012

2532



The local linear estimator is defined asâj (u0) = âj , where
{(

âj , b̂j

)}
minimizes the sum

of weighted squares

n∑

i =1



Yi −
p∑

j =1

{
aj + bj (Ui − u0)

}
Xi j





2

Kh (Ui − u0)

whereKh (∙) = K (∙/h) /h, K (∙) is a kernel function andh is a bandwidth. The estimates
for aj (∙) are

âj (u0) =
n∑

k=1

Kn, j (Xk,Uk − u0) Yk

where

Kn, j (x, u) = eT
j,p

(
X̃T WX̃

)( x
ux

)
Kh (h) ,

ej,p is a p × 1 unit vector with 1 at thej -th position, andX̃ denotes ann × 2p matrix with(
XT

i , XT
i (Ui − u0)

)
as itsi -th row, andW = diag{Kh (U1 − u0) , . . . , Kh (Un − u0)}.

Using the spline-backfitted smoothing method, we can obtain pseudo responses

Ŷα = Y −
∑

β 6=α

m̂β

(
U, Xβ

)

wheremβ

(
U, Xβ

)
= aβ (U ) Xβ andm̂β

(
U, Xβ

)
is estimated using constant spline smooth-

ing. The SBK estimator foraj (U ) is

âj (u0) =
n∑

k=1

Kn, j (Xk,Uk − u0) Ŷj,k.

Due to preestimating the coefficient functions with under-smooth splines, we expect the
SBK method will perform better in mean square error (MSE) than the local linear regression
method of Cai et al. (2000), particularly for largep.

3. Preliminary Simulations and Irradiance Data Example

We compare the SBK method to the local linear regression (LL) method of Cai et al. (2000)
through some preliminary simulations. These simulations examine the performance of the
two methods on an exponential autoregressive (EXPAR) model. The EXPAR model was
chosen for comparison with the results in Cai et al. (2000). We then fit a FCAR model to
solar irradiance data obtained from Sandia National Laboratories.

3.1 Simulation results

We simulated data from two EXPAR models and compared the MSE of the SBK and LL
methods. For the first example, consider the EXPAR model

xt = a1 (xt−1) xt−1 + a2 (xt−1) xt−2 + εt (4)

wherea1 (u) = 0.138+ (0.316+ 0.982u) exp
(
−3.89u2

)
, a2 = −0.437(u) − (0.659+

1.26u exp
(
−3.89u2

)
, and{εt} ∼ N

(
0, 0.22

)
. We simulated this model 500 times for series

lengths of 100, 250, 500, and 1000. For each iteration, we calculated the mean square error
(MSE) for both the SBK and the LL methods. Figure 1 shows the boxplots of the MSE’s of
the fit ofa1 (xt−1) for both methods. As expected, the SBK method has much smaller MSE
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Figure 1: Boxplots of the MSE for the SBK and LL fits ofa1 (xt−1) in (4).

for smaller series lengths. As the series lengths increase, the MSE for the LL method gets
closer to the SBK method. These results show that the SBK method does not suffer from
the “curse of dimensionality” as much as the LL method.

For the second example, consider the the model

xt =
6∑

i =1

ai (xt−1) xt−i + εt (5)

wherea1 (u) = 0.1+(0.3 + 0.5u) exp
(
−3.89u2

)
, a2 (u)−(0.6 + u) exp

(
−3.89u2

)
, a3 (u) =

0.5 + (0.7 + 0.9u) exp
(
−3.89u2

)
, a4 (u) = −0.3 − (0.5 + 0.9u) exp

(
−3.89u2

)
, a5 (u) =

0.2 + (0.5 + u) exp
(
−3.89u2

)
, a6 (u) = −0.1 − (0.3 + 0.5u) exp

(
−3.89u2

)
, and{εt} ∼

N
(
0, 0.22

)
. Figure 2 shows the boxplot of the fit fora2 (xt−1). The results are similar to

the results in Figure 1. The SBK method performs much better for smaller series lengths.
For this example, the MSE’s for the LL method do not get as close to the SBK method.
Larger series lengths would likely show the MSE’s getting closer since this example has 6
functional coefficients.

Another advantage of the SBK method is the small computing time required to fit the
model. For comparison, the computing time was recorded for each method for each itera-
tion. The simulations were conducted inRon a PC with an Intel Xeon 2.49 GHz processor
and 4.0 GB RAM. Figure 3 shows the mean computing time per iteration for both examples.
Clearly, the time required for the SBK method is much smaller than for the LL method.

3.2 Solar irradiance example

3.2.1 Data set description

Power system output of a photovoltaic (PV) plant is affected by variation in solar resources.
These resources are known as solar irradiance. PV cells are set up in some type of arrange-
ment to simulate the amount of irradiance measured for a utility-scale PV plant. These cell
arrangements can be in an array layout with all of the cells close together or the cells can
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Figure 2: Boxplots of the MSE for the SBK and LL fits ofa2 (xt−1) in (5).

Figure 3: Mean computing time per iteration for example 1 (top) and example 2 (bottom).
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Figure 4: (Top) Irradiance measurements for sensor 20 on July 2, 2011. (Bottom) Residu-
als after the diurnal trend is removed for sunrise to sunset.

be spread out over a large area. Predicting the irradiance measurements from these cells is
key in the development of utility-scale PV plant models. A statistical model is needed to
aggregate the irradiance that can be calibrated with measurements.

The Sacramento irradiance data set contains 66 separate irradiance sensors spread out
over a 2300 square kilometer area. Each sensor records an irradiance measurement at every
minute of the day. Figure 4 shows the irradiance measurements (in W/m2) for sensor 20 on
July 2, 2011. We used this day since it is a clear day and we fit a FCAR model using the
SBK method.

3.2.2 Fitting the model

We first remove the diurnal trend and then fit the model

Xt = a1 (Xt−1) Xt−1 + a2 (Xt−1) Xt−2 + εt (6)

to the residuals. Figure 4 shows the residuals after the trend is removed for times between
sunrise and sunset. Models with more dimensions were also fitted but the model in (6) had
the smallest MSE. Figure 5 shows the fit of the SBK method to the measurements. The
plot only shows the time interval from noon to 4 p.m. in order to see the fit more clearly.
It appears that the SBK method was able to fit the data very well. Figure 5 also shows the
estimate ofa1 (Xt−1). Future research will attempt to modify the model in (6) to fit the data
on cloudy days.
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Figure 5: (Top) Fit of the model in (6) using the SBK method (line) to the irradiance data
(points) from noon to 4 p.m. (Bottom) The estimate ofa1 (Xt−1).
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4. Forecasting Methods

The goal in forecasting is to find an estimator of E
[
Xn+M | Xn, . . . , Xn−p

]
. For FCAR

models, we want an estimator of

E
[
Xn+M | Xn, . . . , Xn−p

]
= E




p∑

j =1

f j (Yn+M)Xn+M− j |Xn, . . . , Xn−p



 . (7)

Three methods exist for estimating (7): direct and iterative plug-in methods (Fan and Yao
2003), the bootstrap method (Harvill and Ray 2005), and multistage smoothing (Chen 1996,
Harvill and Ray 2005).

4.1 Plug-in predictor

The plug-in predictor estimates the coefficients using within-series values. This estimation
is done simply by plugging-in̂Xt+M− j into the forecast equation. Ift = Xt−d, then we
have

X̂n+M =
p∑

j =1

f̂ j

(
X̂n+M−d

)
X̂n+M− j ,

whereX̂t = Xt if t ≤ n and f̂ j are some estimate off j . The plug-in predictor ignores the
fact that the expectation in (7) is not linear inXt+M− j .

4.2 Bootstrap predictor

Similar to the plug-in predictor, the bootstrap predictor uses within-series to estimatef j .
Unlike the plug-in predictor, the predicted values are computed as

X̂n+M =
p∑

j =1

f̂ j

(
X̂n+M−d

)
X̂n+M− j + ε(b),

whereε(b) is a bootstrapped value of the within-series residuals from the fitted FCAR
model. The forecast is obtained forb = 1, . . . , B and theM-step ahead forecast is the av-
erage across all bootstrap replications. Huang and Shen (2004) proposed a similar method
using polynomial splines to estimate FCAR coefficients, however they note that ifX̂t+M−d

falls outside or near boundary of range ofXt−d, the estimated functional coefficients can
be unreliable.

4.3 Multistage predictor

The multistage predictor is a modification of the plug-in predictor. This predictor updates
the coefficient estimates at each step to incorporate information fromXt encoded in the
predicted response at timen + j, j = 1, 2, . . . , M − 1;

X̂n+M =
p∑

j =1

f̂ M
j

(
X̂n+M−d

)
X̂n+M− j ,

whereX̂t = Xt , t ≤ n, and f̂ M
j are valueŝaj minimizing

n+M−1∑

t=p+1





Xt −

p∑

j =1

[
aj + bj (y − y0)

]
Xt− j





Kh(y).
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4.4 Empirical comparison of forecast methods

Harvill and Ray (2005) conducted a small empirical study using a non-linear, univariate
STAR model and a linear vector autoregressive (VAR) model of order 2 for comparison
of the three forecast methods. Considerm-step ahead forecasts form = 1, . . . , M = 7,
using series lengthn = 250. For each model, 500 replications were run and the number
of bootstrap replications for the bootstrap method was 400. Harvill and Ray (2005) found
that the bias increased withm for all three methods. For the bootstrap method, the bias
was larger atm = 1, but smaller atm = M . The bias for the multistage method was less
than the bias for the plug-in method. They also found the root meas square prediction error
(MSPE) increase withm. Form = 4, 5, the plug-in method had smallest and the multistage
method had largest root MSPE. At other values ofm, the three methods were essentially
equivalent.

5. Discussion and Future Work

We have discussed an application of the SBK and SBLL methods to an FCAR model and
explored three methods for forecasting that can be used in tandem with the SBK and SBLL
methods. Future research will include developing asymptotic results and inferential pro-
cedures using SBK and SBLL estimates of the FCAR model. We will also look to extend
these methods to vector time series and to estimating covariance structure in spatial data.
The preliminary results in this paper show that these methods will be useful in forecasting
solar irradiance which will be beneficial to planning utility-scale PV plants. Models that
take into account cloud cover will be explored next and fitted using the SBK and SBLL
methods. Future simulations will be conducted using a wider array of FCAR models to
compare with the results of the EXPAR model in this paper.
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