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Abstract 

 
Health care costs have been increasing faster than National Income per Capita during the 
last decade, resulting in heavy burden on patients with increasing payment for services 
and on taxpayers, who often fill the gap. In addition to this upward trend in Health Care 
Expenditures,  prevalence rates of medical conditions and chronic diseases are also 
increasing posing a question of efficiency of health care. Partitioning of National Health 
Expenditures into shares attributable to various conditions is essential to understand the 
structure of the Health Care Expenditure and to develop strategies to improve the 
efficiency of health care system. One useful strategy is to estimate increases in cost for  
specific diseases utilizing the causal inference framework developed for observational 
study settings. We compare four methods--propensity score stratification, and three 
approaches based on multiple imputations of counterfactuals, for estimating disease-
specific costs. For multiple imputation inference, we use three approaches: (1) Parametric 
approach using log-normal distribution; (2) Tukey’s gh-distribution(GH) on the original 
scale; and (3) Approximate Bayesian Bootstrap (ABB). Data from the Medicare Current 
Beneficiary Survey (MCBS) is used to illustrate the methodology. We also evaluate the 
repeated sampling properties of the estimates through a simulation study.  
 
Key Words: Cost attribution, Counterfactual, Potential outcomes, Semi-parametric 
imputations, Tukey GH-distributions, Approximate Bayesian Bootstrap 
 
 

1. Introduction 

1.1. Cost attribution 
 Over the last two decades, Personal Health Care Expenditures per Capita 
increased almost three fold from $2430 in 1990  to over $7000 in 2010 [1]. Though, the 
rate of growth in recent years has slowed relative to the late 1990s, it still yielded  72% 
from 2000 to 2010 climbing  faster than national income per capita which climbed 33% 
over the same decade. What health conditions are linked to the increase in health care 
cost? Various attempts have been made to understand the reasons for the escalating cost 
of health care . Thorpe at el [2] showed how being overweight or obese contributed to 
both the increase in prevalence of many diseases and the cost of treatment. Cutler [3] and 
Newhouse [4] estimated percent increase in healthcare spending due to new medical 
technologies. Does cost attributed to chronic conditions increase proportionately to the 
cost attributed to the severe conditions that frequently require expensive treatment? It’s 
crucial to attribute the cost increase to a specific factor or group of conditions. However, 
it’s even more important to analyze the increase in cost of treatment for a specific disease 
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against the benefits of the new treatment [5]. Do innovations in treatment or screening 
technologies result in quality of life improvement and/or increases in longevity of 
patients? 

The goal of cost attribution analysis, therefore, is to estimate a portion of health 
expenditure that is due to a specific disease or medical condition. A need for this analysis 
comes from an effort to understand trends and changes in health cost structure over the 
years. Developing comprehensive methods that would allow economists to attribute 
health care dollars to the specific diseases will lead to a better understanding of causes 
behind inflation of health spending, and subsequently assess the effectiveness of the 
health care system. 
 
1.2 Motivating Example 

Metabolic syndrome (MetS) also known as Syndrome X is a name for a group of 
risk factors that occur together and increase the risk of Cardiovascular Diseases. We 
selected Metabolic Syndrome (MetS) to study methods for cost attribution because of the 
association with risk of   mortality [6], and declining health status in elderly [7]. We 
defined the metabolic syndrome variable MetS  as a  number of the conditions that a 
subject has among the four major risk factors, obesity, hypertension, diabetes, and 
hypercholesterolemia. The risk factors were determined based on self-report and a review 
of Medicare claims. We examined prevalence of metabolic syndrome for the USA 
population, age 65 and older through the analysis of data from the Medicare Current 
Beneficiary Survey (MCBS) for the years 1999-2005. Subjects who were 
institutionalized, or enrolled in HMO were excluded.  
 

  
Figure1. Prevalence rates (%) of Metabolic syndrome by the number of condition in non-
institutionalized Medicare population 
 

Figure 1 shows prevalence rates of number of MetS conditions from 1999 and 
2005. The prevalence rate of 0 and 1 conditions decreased from 20% to 12%, and 36% to 
27% respectively. The prevalence rate of 2 conditions increased from 29% to 34%, and 
prevalence rates of 3 and 4 conditions jumped from 13% to 20% and 3% to 7% 
respectively. 
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Figure 2 provides estimates of average healthcare costs for subjects stratified by 
the number of MetS conditions.  Average cost of care increased over the years for all 
groups. There was 25% increase in healthcare costs between 1999 and 2005 for subjects 
with one, two and three conditions; almost 50% increase for subjects with four 
conditions. Healthcare costs increased 15% for subjects with no sign of metabolic 
syndrome.  
 

 
Figure 2. Average health care costs in 2000 $US by number of MetS conditions. 
 

We conclude that a causal analysis to compare costs for subjects with one, two, 
three and four MetS conditions with cost for similar subjects with no conditions will help 
in dissecting the increasing costs more accurately. 
 

2. Methods. 

 

2.1 Causal inference framework for Cost Attribution.              
We frame the cost attribution estimation problem as causal inference in an 

observational study settings. Suppose, we want to estimate average cost attributed to 
health  condition D controlling for other variables X. Then average causal effect (ACE) is 
equal ∆D= E(Cost(D=1)|X)-E(cost(D=0)|X). 

Established methods for Causal Inference in observational study settings are 
rooted in matching on the estimated propensity of being a case, or in the context of this 
paper probability of having a specific number of conditions D (D=1) with subjects with 
no conditions(D=0).  Propensity scores can be easily estimated from the observed data 
utilizing logistic regression models, or decision trees. Cochran [8] showed that under a 
broad  range of conditions,  stratification into k=4, 5, 6  groups removes correspondingly 
86% , 90%, 92% of bias yielded by crude difference in expected values of outcomes  

Health Policy Statistics Section – JSM 2012

1393



between cases and controls. Rubin  [9] proved effectiveness of sub-classification on 
propensity scores to remove bias.  

1. The stratification approach provides an easy to implement four-step algorithm 
coined to attribute the health care costs to a particular conditions. Estimate 
probability of having condition D, conditional on available covariates.   

p̂=P(D=1|X). 
       2. Stratify data into k groups depending on estimated value of p̂. 
       3. Within each group estimate the difference in cost between cases (D=1) and 
controls (D=0).  
       4. Combine estimates across the strata weighting by the population size for   
            each stratum. 

Cochran [8] argued that percent reduction in bias due to propensity scores 
stratification depends upon the number of strata, choice of the cut off, similarity in 
mathematical form of regression relationship between outcome and variable used in 
stratification, and the overlap of distribution of this variable  between cases and controls. 
As standardised difference in means of propensity scores increases, bias introduced by 
crude estimation grows and amplifies value of bias remaining after stratification. 
However, in observational study setting it’s not uncommon for propensity scores to differ 
between cases and controls by more than one standard deviation.  

An alternative approach, especially when the conditions laid out in Cochran[8] 
are not satisfied, is to multiply impute potential outcomes. There is a number of papers 
that draw causal inference by imputing missing values of potential outcomes. Schafer and 
Kang[10] provided a comprehensive review of causal inference methods in an 
observational study and list Multiple Imputation as an appealing solution. Dominici et al 
[11] proposed methods for semi-parametric imputation of counterfactuals in semi-
parametric framework based on percentiles of the distributions. Other example of 
imputation of potential outcomes can be found in papers by Elliot, Raghunathan & Li 
[12], Bondarenko and Raghunathan [13].    

In this article we investigate a flexible framework for multiple imputation of 
potential outcomes conditional on the propensity scores using parametric or non-
parametric approaches  that incorporates  the following steps: 

1. Model values of cost as a linear or non-linear function of the p̂ separately  
            for subjects with disease (D =1) and without disease (D=0). 

2. Impute the residuals conditional on p̂ or logit(p̂). Other covariates with strong 
prognostic score can be added if desired. 

3. Combine values of residuals and predicted values to yield cost1 and cost0. 
4. Estimate average causal effect ACE as ∆D=E(cost1-Cost0). Alternatively, 

average causal effect for treated (ACT) can be estimated   on the subset of cases 
∆́D=E(cost1-Cost0|D=1). 

 

2.2 Choice of Imputation framework 

Generally speaking, the framework for imputation can be chosen based on the 
empirical investigation of the relationship between cost and propensity scores for cases 
and controls. We consider three multiple imputation approaches: parametric; semi-
parametric; non-parametric. The first approach uses the Sequential Regression Multiple 
imputation described by Raghunathan at el [14] assuming log-normal distribution for 
costs which seems to be reasonable for Medicare  data but the drawback is the reliance on 
this parametric assumption. The benefit on the other hand is easy implementations using 
existing software packages in R, SAS, STATA etc.  
            The second approach uses the Tukey’s gh distribution as described in He and 
Raghunathan [15,16]. This method based on a class of G-and-H distributions proposed by 
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Tukey [17]. Distributions from this family are certain transformations of the standard 
normal variable that accommodate different skewness and elongation of tails. Let Z 
denote a standard normal variable then variable y is defined by the following 
transformation of Z 

 

 

 

Where µ is location, σ is scale, g specifies skeweness and h governs elongation of tails. 
 Maximum likelihood estimates of these parameters are numerically intensive. On the 
other hand empirical quintiles can be easily estimated by method proposed by Hoaglin 
[18]. 

The third and final approach uses Approximate Bayesian Bootstrap  described by 
Rubin and Schenker [19].   
 

3. Application to motivating example. 
We estimated the attributable cost for a specific number of MetS conditions using 

all four methods described in the paper. Missing values in the covariates were multiply 
imputed using a sequential regression framework as implemented in IVEWARE package. 
Due to the small sample size, we combined subjects with  three and four conditions.   

In each imputed dataset probability of having k conditions relative to having none 
was estimated using a logistic regression model. 

 êk= logit(P(MetS=k vs 0 |X)=Xʹβ. The list of covariates included age, gender, 
demographic and SES variables, insurance (private vs. Medicare only), self-reported 
cancer, arthritis, osteoporosis, hip fracture, self-reported health status,  and estimated 
probability of death in the year  of interview. We examined standardized difference in êk 
for cases and controls, expressed as Cohen’s D: (êk(D=1)- êk(D=0))/s , where s is 
standardized deviation for the data.  Table 3 shows Cohen’s D  by the number of 
conditions for each year. For the combined 3+ counts of metabolic syndrome Cohen’s D 
exceeded 1 standard deviation for all years. Difference in functional relationship between 
cost and propensity scores was  examined and found to be was substantial. 

Next, we estimated increase in health costs between subjects with no metabolic 
syndrome and one, two, and three or more conditions. For stratified analysis we grouped 
subjects into 5 strata based on the estimated value of the êk. For imputation methods, the 
residuals were estimated by regressing cost for cases and cost of controls on êk. For all 
parametric, GH, and ABB imputations we imputed five datasets for each previously 
imputed MCBS data, resulting in 25 imputed data sets. MI estimates and corresponding 
standard errors were produced according to MI combing rules. Results are presented in 
table 4 and are in 2000 US dollars.  

 
      Table 3. Cohen’s D by year and number of conditions  

MetS 

Conditions 

1999 2000 2001 2002 2003 2004 2005 

1 0.5 0.5 0.6 0.6 0.5 0.6 0.6 

2 0.7 0.7 0.9 0.9 0.8 0.9 0.8 

3+ 1.1 1.1 1.1 1.1 1.1 1.1 1.1 
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Table 4. Estimated attribute cost (SE) by counts of Metabolic syndrome and year 

Year MetS 

Conditions 

Stratified 

Analyses 

SRMI 

Imputations 

ABB 

Imputations 

GH      

Imputations 

1999 1 1834 (563) 1828 (324) 1488 (432) 1689 (323) 

 2 3596 (771) 3564 (337) 3283 (491) 3381 (398) 

 3+ 3867 (880) 4024 (458) 3592 (604) 3825 (602) 

      

2000 1 452 (857) 1038 (315) 189 (1101) 534 (426) 

 2 2412 (979) 3024 (365) 2366 (670) 2645 (540) 

 3+ 3237 (1221) 3803 (502) 3272 (1207) 3500 (541) 

      

2001 1 1681 (650) 1779 (356) 1386 (429) 1657 (346) 

 2 3853 (863) 3905 (397) 3400 (490) 3508 (427) 

 3+ 4806 (848) 4245 (452) 4124 (888) 4408 (555) 

      

2002 1 1895 (621) 1765 (330) 1370 (513) 1576 (432) 

 2 3972 (741) 3725 (403) 3260 (429) 3490 (435) 

 3+ 5948 (1083) 5640 (518) 5189 (826) 5684 (613) 

      

2003 1 1215 (793) 1467 (400) 1270 (523) 1505 (485) 

 2 2936 (779) 3230 (442) 2828 (654) 3287 (432) 

 3+ 4304 (1115) 5484 (625) 4455 (799) 4626 (666) 

      

2004 1 2273 (731) 2432 (386) 1846 (766) 2225 (449) 

 2 4092 (781) 4355 (390) 3522 (815) 3974 (483) 

 3+ 6740 (913) 5819 (477) 5984 (1379) 6429 (557) 

      

2005 1 2480 (821) 2398 (463) 2113 (597) 2258 (557) 

 2 3780 (764) 3716 (531) 3236 (576) 3604 (519) 

 3+ 6554 (1149) 6193 (623) 6144 (755) 6297 (657) 

 
  Based on all four methods applied, cost attributed to the one and two conditions 
of metabolic syndrome do not show an upward trend over the span of seven years of data 
analyzed here. However, increase in healthcare cost attributed to three and more 
conditions climbed noticeable over the same years increasing by more than 2000 dollars 
per subject between 1999 and 2005. Trends across the years for one, two, and three or 
more conditions of the syndrome are depicted in Figure 3. 
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 Figure 3. Estimates of cost attributed to metabolic syndrome by the number of 
conditions  yielded by four proposed methods. 
 

4. Simulation Study 

To study performance of the proposed methods we conducted a simulation study. 
We drew 200 samples of size n=1000 from a joint distribution of four variables (y0, y1, 

x1, x2). Variables y1, and y0 were designed to represent two potential outcomes. The 
other two variables x1 and x2 play  roles of covariates.  
Next, we introduced a treatment assignment mechanism D={0,1}, defined by the logistic 
model e=logit(P(D=1))=b0+b1*x1+b2*x2. Next,   we combined  values of y1 and y0 
into ‘observed’ outcome y, according to variable D. We considered different scenarios for 
data generation as well as for  treatment assignment  mechanism.  
Scenarios used in data generation process included: 

1. Two distributional families for potential outcomes – normal and gamma. 
2. We explored a variety of correlation matrices. We limited results presented here 

to a case when correlation between potential outcomes  is equal 0.5. 
 The treatment assignment mechanism incorporated the following features: 

1. P(D=1)=0.5. 
2. Absolute values of Cohen’s D between ê=logit(P(D=1|X)) for D=1 and D=0 

were fixed at 0.5, 1 and 1.3 to emulate the MCBS data example. 
3. We varied correlation between ê=logit(P(D=1|X)) and observed y. The results 

are shown for correlation ρ(y,ê) being equal to 0.15, 0.3 and 0.5 correlations. 
Our goal was to estimate effect  of D  on y given x1 and x2. We report five estimates. 
1. CRUDE is unadjusted difference in expected values of y  E(y(D=1)-y(D=0));  
2. SM is estimated by stratification into 5 equal size groups based on  ê.  

Imputation based methods included: 
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3. SRMI is parametric imputations conditional on ê. 
4. GH  stands for  gh-imputations conditional on ê. 
5. ABB abbreviates Approximate Bayesian Bootstrap Multiple Imputation conditional 

on ê.   
 

We studied bias reduction properties for each of these methods. Figures  4 and 5   
show percent bias for crude, standard  and imputation-based methods  for normally and 
gamma distributed outcomes, respectively. As expected, for both distributional families 
crude estimates were severely biased. As standardized difference between distributions of 
ê for D=1 and D=0, measured by Cohen’s D widens, bias increases. Magnitude of 
correlation between ê and y affects amount of bias. Direction of bias is determined by the 
sign of Cohen’s D.   

In agreement with Cochran’s studies of bias reduction, stratification into quintiles of 
the propensity scores removes around 90%  of bias for normally distributed outcomes, 
and almost 85% for gamma distributed outcomes. As Figure 4 and 5 show, that the 
residual bias was negligible for Cohen’s D equal 0.5.  However, the residual bias in 
estimates based on stratification methods were  10% for normal and 12% for gamma 
distribution for Cohen’s D equal 1.3 and strong correlation between y and e . 

For normally distributed outcomes the imputation-based methods performed 
equally well, yielding  less than 1% of bias and were not affected by Cohen’s D or 
amount of correlation between outcome and the propensity scores.   
 

ρ(y,ê)=0.15 ρ(y,ê)=0.3 ρ(y,ê)=0.5 

  
Figure 4. Percent bias for normally-distributed outcomes as a function of correlation and 
Cohen’s D. 

 
For gamma distributed outcomes ABB and GH imputations removed 99% of 

bias. For the SRMI method gamma-distributed outcomes were transformed to satisfy 
residual assumptions implied by parametric imputation model. For this purpose, we 
explored two transformations for outcomes: log-transformation and cubic-root 
transformation.  Residuals were imputed on altered scale and then back-transformed and 
combined with predicted values of y1 and y0. SRMI of  log-transformed outcome shows 
substantial bias.  Whereas, the cubic-root transformation produced results comparable to 
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ABB and GH imputations. We conclude that in general 1) imputation methods remove 
bias more efficiently than stratification on propensity scores, 2) in absence of ideal 
transformation to achieve normality of the residuals GH and ABB imputations perform 
better than SRMI. 
 

ρ(y,ê)=0.15 ρ(y,ê)=0.3 ρ(y,ê)=0.5 

  
Figure 5. Percent bias for gamma-distributed outcomes as a function of correlation and 
Cohen’s D. 
     

5. Conclusions 
We have explored methods estimation methods for disease-specific health care 

costs to understand factors behind increase in health care spending. We developed four 
methods and illustrated them using the MCBS data. This study was motivated by an 
example of estimating the cost associated with metabolic syndrome. The analysis of data 
for the years 1999 to 2005 show considerable increase in costs associated with subjects 
who have three or more of the conditions among Obesity, Hypertension, Diabetes and 
Hypercholesterolemia. Increases in both prevalence rates of these conditions and costs 
per subject are useful summaries to analyze efficacy of the health care system.      
  We also evaluated proposed methods using a simulation study. Since in 
observational studies, the extent of differences between the covariates for cases and 
controls can be large even after propensity score stratification, imputation based methods 
may be better in terms of reducing the residual bias. The simulation study also shows that 
a carefully selected parametric model may be useful, but semi-parametric or non-
parametric approaches may be more suitable for routine applications in estimating the 
attributable costs. 
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