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Abstract 
VA launched the Million Veteran Program, a nationwide genomics resource, which has 

over 95,000 Veterans enrolled since 2011.  This provides a promising opportunity to 

investigate the connection between VA’s longitudinal EMR and genomics data.  Our 

understanding will highly depend on the analytical approaches used to analyze mega 

genomic resources.  Current rapid advancement in tools to collect and extract information 

from genomics data, such as in GWAS, microarray or proteomics and sequence data, 

highlights the importance in high dimensional data analysis, including variable selection, 

multiple testing issues, handling, storage, and computational efficiency.  Traditional 

statistical procedures present eminent challenges in using these data, where the number of 

parameters p is scalably larger than number of observations n.  In addition, mega 

genomics data present a complex relational data structure when interactions and dynamic 

underlying biological complexities are considered, resulting in ultra-high dimensionality.  

Further research in statistical accuracy and inference, model interpretability and fitting 

and computational efficiency and robustness will play a critical role. 
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1. Introduction 

 
Biorepositories of varying sizes with electronic medical or health record (EMR) systems 

have enabled the possibility and feasibility of using EMR systems to gain further 

understanding of gene-disease relationships.  Understanding the underlying genetic 

profile of the Veterans will enable clinical practices to get a step closer toward 

personalized medicine.  In this effort, the U.S. Department of Veterans Affairs (VA) 

launched the Million Veteran Program (MVP) to create a nationwide genomics resource 

which has over 95,000 Veterans enrolled in the first year since its inception in early 2011.  

This provides a promising opportunity for a much awaited investigation of the connection 

between VA’s wealth of longitudinal EMR data and the genomics data.  This is timely as 

it allows for the possibility of “PheWAS” (phenotype-wide association study) of disease-

gene associations, the flipside of Genome-Wide Association Scan studies, to determine, 

for a given genotype, the range of associated clinical phenotypes.  The PheWAS 

approach is a promising and an unbiased way to discover new genetic variants.  In 

addition, the availability and utility of MVP genomic resources opens doors for a nation-

wide contribution and collaboration with existing consortiums such as eMERGE
1
.  This 

will provide the largest nationwide sample for validation of common phenotypes as well 

as become a venue to explore new disease areas and their phenotypic algorithms. 

 

 Alongside this promising prospect, our understanding and interpretations will highly 

depend on the analytical approaches we implement to extract information from mega 

genomic resources in general.  Current rapid advancement in tools developed to collect 

and extract information from genomic data, such as in genomewide association studies, 

microarray or proteomics data and sequence data analyses, highlights the importance and 

challenges in (ultra) high dimensional data analysis, including variable selection, multiple 

testing issues, handling and storage, computational efficiency, etc.  It has been known 

that many traditional statistical procedures present challenges in their implementation and 

application using high dimensional genomics, where the number of variables or 

parameters p is scalably larger than number of observations n.   In addition, current mega 

genomics data present a complex relational data structure when interactions and dynamic 

underlying biological complexities are considered, resulting in ultra-high dimensionality.  

Continuing research in the area, including increasing efficiency in statistical inference, 

model interpretability and fitting and making statistical procedure computationally 

efficient and robust, will play a critical role in translational medicine overall. 

 

In this brief report, we focus on the overview of future capabilities of large genomic 

cohorts and foreseeable analytical challenges using high dimensional data and potential 

remedies as the statistical genetics and genomics research fields catch up with rapid 

advancement in biotechnology. 

 

 

 

2. Linking large genomic cohorts with longitudinal EMR data 

  
There are numerous genomics cohorts and biorepositories in various stages of 

development.  Much effort has been invested in building genomics resources for further 

research in this area.    Many groups have already established and are in the process of 

building such resource.  Below is a summary list of large cohorts in Europe and North 

America. 
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Table 1: List of large genomic cohorts in Europe (A) and in North America (B) 

A) Europe B) North America 

•Icelandic Biobank and deCODE  •Vanderbilt University BioVU  

•UK Biobank  •Canadian Consortium [Canada] 

•Banco Nacional de ADN [Spain] •dbGaP, NIH [US] 

•GenomEUtwin  • National Children's Study [US] 

•Finnish biobank  • Marshfield Clinic [US]  

•Swedish biobank  
•National Health and Nutrition Examinations 

Surveys [US]  

•German biobank, KORA  •Kaiser Permanente Northern CA [US] 

•UK DNA Banking Network & British biobank  •Howard University African Diaspora [US] 

•Estonian biobank:  •Mayo Clinic 

•Family-based collections [Nordic] •ACS 

•Generation Scotland  

 •HUNT (cardiovascular)& Biohealth [Norway] 

 •EPIC, European (cancer) 

 •Danubian Biobank Consortium  

 •GATiB Genome Austria Tissue Bank  

 •Biobank Hungary    

 

Many of these cohorts list in Table 1 also have accompanying electronic medical record 

data in one form or another.  Having links between these two sources of data makes these 

genomic data sets a powerful tool.   

 

 

2.1 Million Veteran Program 

 
In addition to above major efforts throughout Europe and North America (Table 1), a 

recent initiative from the VA Genomic Medicine Program (GMP) has launched the 

Million Veteran Project [MVP] in 2011.  The MVP is a major research initiative under 

the GMP that will create a longitudinal cohort of Veterans to study genes and health.  VA 

is the ideal setting for a large 21st century mega-cohort/biobank with its national pool of 

willing participants, outstanding electronic medical record, diverse expertise and research 

infrastructure.  In general, MVP is a resource to examine the potential of emerging 

genomic technologies to optimize medical care for Veterans and to enhance development 

of tests and treatments for diseases. 

 

Specifically, MVP’s initial planning includes enrollment up to one million users of the 

Veterans Health Administration (VHA) into an observational mega-cohort.  The resource 

will include collection of health and lifestyle information as well as blood samples for 

storage in biorepository for future research.  MVP is a major, new research initiative to 

create one of the largest databases of genomic, military exposure, lifestyle and health 

information. One of many advantages of the VA user cohort comes with the access to 

electronic medical record that began in 1997 and the ability to recontact participants 

under the current approved protocol. 
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MVP has the potential to better the prevention, diagnosis, and treatment of illnesses in 

Veterans thus improving their healthcare.  MVP voluntary enrollment has begun at 9 

vanguard sites and has been followed by nationwide roll-out.  Currently there are 40 

active MVP sites with a plan to add additional sites in the near future.   MVP will allow 

current Veterans to help transform health care, not only for themselves, but for future 

generations of Veterans. 

 

 

2.2 Utilization of EMR data in genomics research 

 

Understanding how genes impact disease continues to raise many challenges.  While a 

major challenge is the quality of the sequencing and genotyping data and how to handle 

it, equally important is the quality of the phenotypic information.  Since much of this data 

will emerge from electronic medical records, a careful approach to the utilization of these 

data needs to be implemented. 

 

Many of the VA administrative health databases are now being used for biomedical 

research and provide a great opportunity to conduct useful epidemiological and clinical 

research.  Although there are limitations, including sampling and ascertainment biases, 

EMR databases are extremely useful in many research settings.  With careful evaluation 

and validation of cases and diagnoses extracted from the EMR databases, many 

investigators are able to test various hypotheses with existing databases.  

 

Connecting the genomics resource with existing EMR databases play a critical role in 

creating an environment where genomics research can flourish in the abundance of 

phenotyping resources.  Using a validated and sophisticated algorithm to define a 

phenotype undoubtedly increases the specificity and sensitivity of genomics findings.  

Poorly defined or understood phenotypes may not only reduce the power of the genomics 

analyses but it may lead to erroneous results where there are no replications available to 

confirm such findings.   

 

Utilizing the EMR data with emerging genomics resources is timely for the possibility of 

PheWAS analysis of disease-gene associations, the flipside of Genome-Wide Association 

Scan, determining, for a given genotype, the range of associated clinical phenotypes.  The 

PheWAS approach is a promising and an unbiased way to discover new genetic variants. 

 

 

 

3 Analytical challenges 
 

In large scale genetic epidemiology studies of complex diseases, there exist many 

analytical challenges.  Some of these include gene-gene and gene-environment 

interactions, complex phenotypes, rare variants and next generation sequencing, 

simulations, modeling and computational resources and data management.   

 

In September of 2010, the National Cancer Institute sponsored a workshop
2
 with experts 

in fields of biostatistics, genetics, statistical genetics, genetic epidemiology, 

epidemiology, and computer science to facilitate discussion on pressing analytical 

challenges in genetic epidemiology studies of complex diseases.  The goals for this 

workshop were “(1) to facilitate discussions on statistical strategies and methods to 
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efficiently identify genetic and environmental factors contributing to the risk of complex 

disease; and (2) to facilitate discussions on how to develop, apply, and evaluate these 

strategies for the design, analysis, and interpretation of large-scale complex disease 

association studies in order to guide NIH in setting the future agenda in this area of 

research”
2
.  

  

In their summary report in 2012, their practical and helpful recommendations were 

published.  Among many topics of discussion, the computational resources and data 

management received a lot of attention and useful recommendations were proposed.  

Among these were the development of new open-source, user-friendly analytical tools, 

establishment of new opportunities to support analytical tool development and creation or 

identification of common, easily accessible, data sets for methods development. 

Additionally, developing a forum to share lessons learned regarding data management 

and analysis was widely discussed.  These challenges became prominent with the new 

emerging technologies in genomics research especially with next generation sequencing 

data.  Genomics data are high-dimensional, and some can be formulated as statistical 

problems with high dimension and low sample size. 

 

 

 

4. High-dimensional statistical problems: variable selection 

 
One of the main goals of genomic data analysis is to understand how these genomics data 

are inter-related and how they are related to disease initiation and progress.  There are 

numerous challenges in this area including high-dimensionality, sparsity of data, special 

structures of the data (local dependency, pathway dependency), integrating prior 

biological knowledge and complex diseases issues (complex interactions).   

 

As stated earlier, some of the solutions can be formulated as important statistical 

problems in terms of being able to select a set of important variables from a large number 

of covariates that are highly correlated. Meanwhile, having the number of covariates 

being of a much larger order than the sample size worsens the situation. There are many 

examples of this kind in regression problem, such as in selecting relevant genes, 

pathways and building predictive models. 

 

Genomics data have high-dimensional and correlated features, for example single 

nucleotide polymorphisms (SNPs), that can hinder the power of the identification of 

small to moderate genetic effects in complex diseases.  The issue worsens when 

incorporating other environmental risk factors as effect modifiers or confounders
3
. In 

general, there are two techniques that aim at addressing the “curse of dimensionality” 

problem in genomic research: dimensionality reduction and feature selection. 

 
 

4.1 Dimensionality reduction methods 

 
If retaining the original risk factors is not of concern, dimensionality reduction algorithms 

and techniques can be considered. These techniques involve creating new attributes 

which are combinations of the old attributes to reduce the dimensionality of data sets
4
.  

Principal component analysis (PCA)
5
 is one of the most widely used dimensionality 

reduction techniques. By producing new attributes as linear combinations of the original 
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variables, PCA identifies a relatively small number of independent principal components 

that capture the maximum amount of variation in the data. Other dimensionality 

reduction techniques include locally linear embedding  

(LLE)
6
, Laplacian Eigenmaps

7
.  However, dimensionality reduction techniques suffer 

from the major drawback that the components are not easily interpretable.   

 
 

4.2 Feature selection methods 

 
Feature selection methods keep only the most important features and discard the rest 

without altering the representation of the features. The procedure of feature selection 

consists of four key steps: subset generation, subset evaluation, checking with stopping 

criteria, and result validation. One important advantage of feature selection techniques is 

that model interpretability can be improved by preserving the original attributes and 

providing better understanding of optimal features.  In general, feature selection 

approaches can be grouped into three categories: 1) filtering methods, 2) wrapper 

methods and 3) embedded methods
8
. 

 

Filtering methods select feature subsets based on their statistical properties.  In other 

words, the implementation of filtering methods does not depend on any classification 

techniques to remove poor features.  Based on certain statistical criteria, all features are 

ranked and features with lowest rankings are removed. Common filtering approaches 

include Pearson correlation coefficients and information gain
9
.  Although filtering 

methods are praised for their rapid efficiency
10-12

, they ignore the possible interaction 

among individual features.  Thus results may end up with many highly correlated 

features/SNPs with highly redundant information. 

 

Wrapper approaches
13

 “wrap” around a particular learning algorithm that can assess the 

selected feature subsets in terms of the estimated classification errors and then build the 

final classifier
14

.  There are two groups of wrapper methods:  

 

1) deterministic methods, such as the sequential forward selection and the 

sequential backward selection
15

 

2) randomized methods, such as genetic algorithms
16

. 

 

Both groups can help deal with the situation where the whole feature space grows 

exponentially with the number of original attributes.  Compared to randomized methods, 

deterministic approaches are more likely to get stuck in a local optimum but have a lower 

risk of over-fitting. 

 

Generally speaking, results provided by wrapper methods are more accurate than those 

from filter methods. Nevertheless, they do not incorporate knowledge about the specific 

structure of the classification or regression function
17

.  In addition, they are more 

computationally expensive since they need to use a cross-validation scheme at each 

iteration. 

 

Similar to wrapper methods, embedded methods
17

 also reply on a specific learning 

algorithm. However, embedded methods embed feature selection as an integral part of the 

training process, i.e., the learning algorithm can decide whether to keep or remove certain 

features while building the classifier. Therefore, embedded approaches may be more 

efficient since they don’t have to retrain the classifier from scratch every time they 
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investigate a subset of features. Some of the advantages include improved computational 

efficiency and similar performance to wrapper methods.   They are asymptotically 

optimal for high dimensional data.  Examples include decision tree learners
18

 and, for 

sparse learning, LASSO and its extensions
19, 20

.   

 

 

 

5. Collaborative utilization of bioinformatics tools and expertise in genomics 

research 

 
As technology advances in biomedical research, especially with the piles of data 

generated and available in genomics, one cannot avoid the involvement of researchers in 

bioinformatics or bioinformaticians in deciphering the meaning of such data.  Starting 

from the initial data transfer from a laboratory that generates such data to a biomedical 

investigator’s computing environment to quality control, analysis and reporting of results, 

the sheer amount of such data has created an interdisciplinary environment with heavy 

dependence on the expertise and tools of bioinformatics.    

 

The field of bioinformatics relies heavily on work by experts in statistical methods and 

pattern recognition.  Bioinformaticians come to the discipline from many fields, 

including mathematics, computer science, and linguistics. By providing algorithms, 

databases, user interfaces, and statistical tools, bioinformatics makes it possible to do 

exciting things such as comparing DNA sequences and generating results that are 

potentially significant. These new tools however, also give one the opportunity to over 

interpret data and assign meaning where none actually exists. 

 

Bioinformatics is thus the study of the information content and information flow in 

biological systems and processes and the application of computational and analytical 

methods to biological problems. But the main goal of bioinformatics isn't developing the 

most elegant algorithms or the most arcane analyses; the goal is finding out how living 

things work. 

 

 

 

6. Discussion 

  
With the increasing technical advancements in genomics research, biomedical researchers 

are faced with a tsunami of data that provide exciting opportunities for discovery.  

However, many challenges remain, particularly with data management and interpretation. 

 

It can be also seen that improved analytical methods may lead to new biological insights.  

Over the last decade, the costs of obtaining genetics data have declined; however, 

substantial costs for data management and analysis remain.  Our understanding of the 

underlying biology is incomplete and future work should address methods to supplement 

current knowledge.   

 

Analytical methods are moving from identifying a list of SNPs at a p-value threshold to 

multivariate methods that model related phenotypes and to model selection (e.g. by 

grouping SNPs into genes, genes into pathways, or environmental exposures)
21

.  Many 
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had already adapted approaches of high dimensional data from other fields such as 

computer science, physics and operations research.   

 

To continue to improve and benefit from shared knowledge in tackling these analytical 

challenges, the scientific community is encouraging the use of common datasets to 

develop QC standards and methods and to enhance collaboration.  In addition, 

further emphasis and improvement of the way researchers share lessons learned 

will play an important role in this era of team science and collaboration.   

 

As an emerging mega cohort, the MVP aims to be one of the largest research 

programs on genes and health in the United States with the goal of improving 

health care for Veterans.  This type of mega genomics cohort will provide great 

opportunities for researchers and investigators in methodological and translational 

medicine.  However, many analytical and computational challenges remain in 

dealing with large scale genomics data. 
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