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Abstract
NAMCS has been recently redesigned to allow for reliable direct estimates for larger states and

remaining smaller states grouped within Census divisions. When covariates correlated with the
outcome variable are available for every unit in the population it is possible to gain efficiency of
estimates in small areas by using model-based or model-assisted estimators. On the other hand
these methods are sensitive in varying degree to possible misspecification of model assumptions
with respect to the superpopulation model. In this simulation study we assess robustness of model-
based estimators to possible misspecifications of the estimating models and compare their efficiency
to direct and model-assisted estimators.

Key Words: direct estimator, model-assisted estimator, model-based estimator, hierarchical logistic-
normal model, small area estimation, health care utilization.

1. Introduction

The National Center for Health Statistics (NCHS) conducts the National Ambulatory Med-
ical Care Survey (NAMCS) - a national survey of visits to office-based physicians and
selected community health centers. It is a component of the National Health Care Survey
which measures health care utilization across a variety of health care providers. Prior to
2012, the NAMCS utilized a multistage design optimal for producing national estimates,
that involved probability samples of geographic primary sampling units (PSUs), physicians
within PSUs, and patient visits within physician practices. The 2012 NAMCS was re-
designed to provide data for estimates at the state level for as many states as possible and
at the Census division level for the remaining states. These estimates are expected to pro-
vide an opportunity for new understanding and analysis of the health delivery system at the
small area level. In this paper we consider geographical areas within Census region (larger
states or remaining smaller states, aggregated to Census division) to be small areas.

Although this abundance of new information could be sufficient for many small area
analyses, it is possible that some analyses will not be satisfied, including estimation of pro-
portions for health outcomes with very low prevalence for individual states and for testing
hypotheses comparing estimates between states. When design-based estimates are ineffi-
cient, model-based and model-assisted methods utilizing population covariates to ”borrow
strength” across small areas are expected to improve the reliability of small area estimates
if model assumptions are correct, see Rao (2003). However, misspecifications of models
used in practice tend to increase errors of small area estimates. Depending on the model
assumptions, some methods can be more robust to such misspecifications than others. The
simulation study presented in this paper is an attempt to compare errors of design-based
and model-based estimates under various model misspecifications from the expected 2012
NAMCS sample data.

“The findings and conclusions in this paper are those of the authors and do not necessarily represent the
views of the National Center for Health Statistics, Centers for Disease Control and Prevention.”
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In Section 2 we will provide additional details about the NAMCS sample design prior
to 2012 and redesigned sample for 2012. We will also mention modeling of a few vari-
ables necessary for realistic simulation of the NAMCS finite population, sample selection
process and calculation of survey weights. Estimation of model parameters for the propor-
tion of visits by patients with private insurance under various degrees of misspecification
of fixed effects will be described in Section 3. Superpopulation models used to simulate
NAMCS 2012 finite populations will be presented in Section 4. In addition to misspeci-
fied fixed effects, these models will incorporate distributional assumptions usually ignored
in estimation models, such as deviation from normality of random effects and variability
of β−coefficients between small areas. In Section 5 we will present model-based and
model-assisted estimators of physician-level proportions and a way of aggregating them
to the small area level. Results of simulations will be presented in Section 6. Relative
root mean squared errors (RRMSE) for considered estimators will be compared for various
kinds of misspecifications in the estimation models. The effect on estimates due to sam-
ple size and ratios of variability in the studied proportions between and within small areas
will be considered. Finally, we will summarize simulation results and draw conclusions
about efficiency of different estimators and their robustness to considered misspecifications
of model assumptions. We will also mention other possible sources of misspecifications
which may increase the RRMSE of the model-based estimators.

2. Simulation of NAMCS population and samples

The NAMCS sampling frame consists of physicians classified as office based in Master
files maintained by the American Medical Association (AMA) and the American Osteo-
pathic Association (AOA). Prior to 2012, NAMCS utilized a multistage probability design
that sampled 112 PSUs out of about 1,900 geographically defined PSUs (usually coun-
ties, groups of counties or their equivalents) that covered the 50 States and the District
of Columbia and were stratified by four geographic regions and Metropolitan Statistical
Area (MSA) status. The total 2009 sample included 3,319 physicians, but after removing
ineligible (”out-of-scope” ) physicians, non-respondents and physicians who saw no pa-
tients during their reporting week, the final sample available for analysis included 1,293
physicians who completed patient record forms (PRFs), see NAMCS (2009).

The 2009 NAMCS sample designed for national estimates was poorly suited for state-
level estimates because of sample clustering within geographic PSUs. The 2012 NAMCS
sample was redesigned to produce state-level estimates. The sample size includes approx-
imately 16,000 physicians. Geographic PSUs are no longer part of the sampling process.
Instead, a list sample of physicians was selected from strata defined by the largest 34 states
and groups of the remaining smaller states in each of the Census divisions (division remain-
ders). To insure proportional selection of physicians of all specialties within geographically
defined strata, physicians were also stratified by primary/non-primary care status and then
sorted within strata by their specialties. Systematic samples of 383 physicians were drawn
from each targeted state and of 431 physicians from each division remainder.

To estimate efficiency of the design-based estimates in small geographical areas and
compare them to model-based estimates, we simulated the NAMCS physician population
and sample selection process according to the new design. For that purpose the following
five outcomes were modeled from the 2009 data and simulated for each physician i in
small area j in the sampling frame: pij- proportions of visits by patients with private
insurance (with the national average 57.3%); Vij- total annual number of visits; vij- number
of sampled visits per physician; Iij = 0/1 and Rij = 0/1 - respectively ”in-scope” and
response indicators for a sampled physician. Using these variables the sampled number
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of visits by patients with private insurance was simulated as the binomial count yij =
Bin(pij , vij).

Comparing different methods of modeling proportions pij of visits to physicians and
using them for estimating proportions in small areas is the main focus of this paper. Re-
sponse Rij and “in-scope” Iij indicators were modeled as binary random variables with a
logistic link. A linear model was used for the squared root of the annual number of visits
Vij to physician offices. The outcome of this model was used to model sampled numbers of
visits vij . All models utilized county-level covariates from the Area Resource File (ARF),
see ARF (2009), and physician-level covariates from the combined AMA/AOA master files.
Proportions of visits by patients with private insurance pij and the number of such visits
yij to physician offices were drawn from the inferred distributions for each simulation of
the final population. Other variables were simulated just once and the same fixed values
were used for all simulated populations. This allows to eliminate the influence of possible
correlations between dependent variable yij with other simulated variables on the consid-
ered estimators of proportions in small areas and focus our analysis only on the variability
of the outcome variable yij .

For each simulated final population, systematic samples were drawn within each stra-
tum defined according to the 2012 NAMCS design described earlier in this Section. Physi-
cians with “in-scope” and “response” indicators equal to 0 were excluded from the sample.
Physician sampling weights wij are identical for all physicians i within a stratum Sc

j de-
fined by small area j and primary/non-primary care status c and were calculated using the
simulated “in-scope” and response indicators as follows:

wij = wc
j =

N c
j

ncj

∑
i∈Sc

j

Iij∑
i∈Sc

j

IijRij
=
N c

j

ncj

nc,Ij

nc,IRj

(1)

Here N c
j is the total number of primary or non-primary care physicians in the area’s

population, ncj is the total sample size, nc,Ij is the total number of sampled “in-scope” physi-

cians and nc,IRj is total number of “in-scope” and respondent physicians with completed
PRFs.

3. Models with misspecified covariates

Realistic simulation of the NAMCS population requires utilizing veritable parameters of
the superpopulation model. These parameters can be inferred from modeling outcome
variables using data collected in previous years (in this study, 2009 NAMCS data were
used). The proportion pij of visits to physician i in small area j by patients using private
insurance as a source of payment was modeled by a hierarchical logistic-normal model
with random effects at the small area and physician levels:

logit (pij) = Xcntβcnt +Xphysβphys + θij + θj ;
θij ∼ N

(
0, σ2p

)
; θj ∼ N

(
0, σ2s

) (2)

Two sources of covariates were utilized by the model: county-level covariates Xcnt

available from the ARF and physician-specific covariates Xphys available from the AMA
database. The covariates Xphys did not change much between small areas and were not par-
ticularly helpful for explaining variability of studied proportion between small areas. These
covariates were included in the model (2) because they were useful for better explaining
variability between individual physicians, reducing the estimated variance of physician-
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level random effects σ2p and, consequently, for more realistic simulations of the studied
proportion for each physician. Model covariates on county level Xcnt were more instru-
mental for explaining variability between geographical small areas. When all significant
covariates Xcnt were included in the model, the variance of state-level random effects dis-
appeared, that is, σ2s = 0. On the other hand, if the Xcnt were omitted from the model,
there remained substantial unexplained variability between small areas, that is, σ2s = 0.11.

These observations suggested the following idea for studying misspecification of fixed
effects. First, always keep all of the physician level covariates Xphys to insure that the
model accounts for sample design information. Second, simulate the effect of misspeci-
fication of model covariates by excluding some of the significant county level covariates
Xcnt from the design matrix. In the following, Xk

cnt(k = 1, 2, 3, 4, 5) will designate var-
ious sets of county-level covariates from the ARF, ranging from complete set (k = 1) to
the case with no such covariates (k = 5). Unexplained variability between small areas
manifested itself by increasing the variance of random effect σ2s > 0. At the same time,
misspecification of county-level covariates did not cause significant changes in variabil-
ity between physicians σ2p . Table 1, below, presents estimated variances σ2s,k and σ2p,k of
random effects in the model expressed in equation (2) for (k = 1, 2, 3, 4, 5) .

Table 1: Relation between misspecification of model covariates and estimated variances of ran-
dom effects. (k = 1, 2, 3, 4, 5) designates various sets of the ARF covariates.

Less fixed effects⇒ more random effects
k = 1 2 3 4 5
σ2s,k = 0 0.047 0.077 0.09 0.11

ARF covariates Xcnt σ2p,k = 1.73 1.71 1.75 1.81 1.87

HOUSEDENSITY • • • •
BEDSNUM • • • •
AGE65PCT • • • •
SPECIALITS • • • •
AGE19PCT • • • •
WHITEHOUSENUM • • • •
BLACKHOUSNUM • • •
UNEMPLOYTYP • • •
LOWEDUC • • •
OFFICEWRK • • •
POVERTY • •
SSIBEN • •
RECRTYP • •
NOINSURANCE •

Table 1 suggests that different terms of the model expressed in equation (2) explain the
variability (”useful signal”) of proportions between small areas. This signal was generated
by the ARF covariates Xcnt and random effects θj and must be extracted from the ”back-
ground noise” generated by variability of θij between individual physicians. The complete
set of covariates (k = 1) was sufficient for extracting this signal. If some of the ARF
covariates were not available (k = 2, 3, 4, 5), estimation of the random effect θj in small
areas becomes necessary. Background noise was almost independent of any covariates and
complicated efficient estimation of proportions in small areas. With this picture in mind
in the rest of the paper, we will consider models with incomplete sets of the ARF covari-
ates representing situations when fixed effects were misspecified to various degrees, which
usually happens in practice.
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4. Easy-to-misspecify details of superpopulation distributions

In general, models used for model-based estimation can be misspecified in many ways.
In this paper we consider misspecification of fixed effects and of distribution of random
effects at the small area level. These kinds of misspecifications happen most frequently in
practice because: (1) it is never possible to know absolutely a perfect set of covariates and
(2) a normal distribution of random effects is usually assumed by the majority of software
tools available for fitting mixed models, disregarding other options.

In Section 3, we defined design matrices Xk
cnt of models characterized by various de-

grees of misspecification for fixed effects and estimated parameters of these models (βkcnt,
βkphys, σ2p,k, σ2s,k). These design matrices and parameters were used to simulate NAMCS
populations with controlled misspecification of fixed effects. In addition to the normal dis-
tribution of small area level random effects, we also assumed the most common deviations
from normality, such as skewed and heavy-tailed distributions. A skewed distribution was
simulated by a chi-squared distribution with 4 degrees of freedom χ2

(4) and a heavy-tailed
distribution was simulated by two distributions: t(4)-distribution with 4 degrees of freedom
and a mixture of two normal distributions, one with variance σ2s,k,m1 = σ2s,k and another
with variance σ2s,k,m2 = 8σ2s,k and p = 0.2 as the probability of realization. These distri-
butions were normalized to have the same first two moments (0 mean and variance σ2s,k) as
the original normal distribution of random effects:

θj ∼

√
σ2s,k

(2× 4)

(
χ2
(4) − 4

)
, (3a)

θj ∼
√
σ2s,k

(4− 2)

4
t(4), (3b)

θj ∼

 σ2s,k(
(1− p)σ2s,k,m1 + σ2s,k,m2p

)
1/2 N

(
0, σ2s,k,m1

)
, Bin (1, p) = 0

N
(
0, σ2s,k,m2

)
, Bin (1, p) = 1

(3c)

The random variability of model coefficients between small areas can be another pos-
sible source of misspecification of an estimating model. Robustness of model-based es-
timators which do not explicitly account for such variability was evaluated by generating
a NAMCS superpopulation for model coefficients βkcnt,j ∼ N

(
βkcnt, 0.08

)
, which vary

between small areas with the mean value βkcnt estimated from the sample data.
The described features of the superpopulation model were likely to affect the efficiency

of model-based, but not design-based, estimators. However, both design-based and model-
based estimators were expected to be dependent on the noise-like variability between physi-
cians and sample size. Since the author’s interest was to evaluate the relative efficiency of
model-based methods in comparison with design-based methods, simulations were con-
ducted for nominal, above and below nominal levels of variability between physicians, that
is, σ2noise,k =σ2p,k, 3σ

2
p,k, 0.1σ

2
p,k, and two sample sizes: the first was equal to the projected

2012 NAMCS sample size and the second was 1
4 of the 2012 sample size. The resulting
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superpopulation models used in simulations can be formulated in general form as:

logit
(
pkij

)
= Xk

cntβ
k
cnt,j +Xphysβ

k
phys + θij + θj

βkcnt,j = const = βkcnt or βkcnt,j ∼ N
(
βkcnt, 0.08

)
E (θj) = 0; V ar (θj) = σ2s,k

θij ∼ N
(
0, σ2noise

) (4)

where θj has either normal or one of the distributions in (3).
For each simulated population a stratified systematic sample was drawn according to

the 2012 NAMCS design and sampling weights wij for the physicians with PRFs were
calculated, as described in Section 2.

5. Design- and model-based estimators of proportions in small areas

The proportion of visits to physician offices by patients with private insurance was esti-
mated by standard design-based, model-based and model-assisted methods for all finite
populations generated from the superpopulation models described above. Design-based
methods did not use any distributional assumptions and estimated the proportions directly
from simulated data for small areas. Model-based methods utilized simplified and mis-
specified versions of the superpopulation model to produce estimates that were more ef-
ficient than the design-based small area estimates. Each method had its advantages and
weaknesses, depending on the degree and kind of misspecification of the model used for
estimation. The goal of this study was to identify the most efficient and robust method for
estimation of small area proportions from the simulated 2012 NAMCS sample by compar-
ing the RRMSEs of estimates from different model-based methods with the RRMSE of the
design-based estimates and with each other.

Design-based (D) estimates of the proportions in small area j were calculated as weighted
average of physicians i in that area as following :

PD
j =

∑
i∈Sj

wijp
D
ijVij∑

i∈Sj

wijVij
(5)

where Sj designates sampled, “in-scope” responding physicians with completed PRFs in
area j; wij is physician weight defined in equation (1); pDij = yij/vij is the simulated
proportion of visits by patients with private insurance and Vij is the simulated visit volume
(see Section 2 for the definition of variables).

Model-based methods for estimating proportions in small areas used available popu-
lation covariates and could vary significantly by their efficiency and robustness to model
misspecification. First, the simple logistic regression model (M1) was used to estimate the
proportion for every physician in the finite population. The M1 model was formulated as:

logit
(
pk,M1
ij

)
= Xk

cntβ
k
cnt +Xphysβ

k
phys (6)

This model did not include state-level random effects θj found in the superpopulation
model in equation (4) and thus might be strongly misspecified if their contribution in small
areas was substantial. Without explicitly accounting for the data in small areas, predictions
from model M1 critically depended on the ability of covariates Xk

cnt to explain variability
between small areas.

The logistic regression model (M2) expanded model M1 by including different inter-
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cepts for each small area j. This model was formulated as:

logit
(
pk,M2
ij

)
= αj +Xk

cntβ
k
cnt +Xphysβ

k
phys (7)

Directly accounting for the data in small areas greatly improved robustness to mis-
specification of model assumptions but might have had a negative impact on efficiency,
particularly when there was not enough data from small areas and fixed effects happened
to be good predictors.

The logistic-normal model (M3) used random effects to account for variability not ex-
plained by fixed effects in small areas. Model M3 was formulated as:

logit
(
pk,M3
ij

)
= θj +Xk

cntβ
k
cnt +Xphysβ

k
phys, θj ∼ N

(
0, σ2k

)
(8)

Using random, instead of fixed, intercepts in this model is expected to improve effi-
ciency when limited amount of data is available in small areas.

All of the above estimating models M1-M3 were misspecified relative to the certain
distributional assumptions of the superpopulation model. They ignored possible variabil-
ity of the βkcnt- coefficients between small areas and deviation of random effects θj from
normality. Simulation results presented in Section 6 demonstrate the importance of these
misspecifications for the considered model-based estimators.

Model-based estimates of proportion PM1−M3
j in small area j can be calculated by

averaging proportions pM1−M3
ij predicted for all physicians i in the finite population of that

area Uj , as following:

PM1−M3
j =

∑
i∈Uj

Iijp
M1−M3
ij Vij∑

i∈Uj

IijVij
(9)

where Iij are 0/1 “in-scope” indicators and Vij are annual visits volumes. In practical situa-
tion these characteristics of office-based physicians are not available for the entire NAMCS
sampling frame and therefore cannot be used in the model-based estimators of proportion
in small areas, similar to expression (9). In this study they were simulated (see Section 2
for details) in order to investigate how different misspecifications of the estimating model
affect the RRMSE of model-based and model-assisted estimators. Model-assisted (MA)
estimators from survey data were described in detail in Sarndal and Lundstrom (2006). We
considered a variation of the widely used regression estimator adjusted for estimating pro-
portions instead of totals. This is a composite estimator utilizing both simulated proportions
for sampled physicians pDij and the model-predicted proportions pM1

ij for all physicians in
the finite population which may be formulated as follows:

PMA
j =

∑
i∈Sj

wij

(
pDij − pM1

ij

)
Vij∑

i∈Sj

wijVij
+

∑
i∈Uj

Iijp
M1
ij Vij∑

i∈Uj

IijVij
(10)

Note, that the MA estimator is a combination of weighted averages in small area j over
sampled, “in-scope” and respondent physicians Sj and over “in-scope” physicians in the
finite population Uj .
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6. Simulation results

In this study we conducted R = 40 simulations for J = 41 small areas, represent-
ing 36 larger states and 5 groups of smaller states within census divisions. The fielded
2012 NAMCS covered only 34 states because of insufficient funding to field samples for
all 36 states. For every simulated finite population (r = 1, 2, .., R), a sample was se-
lected and the “true” finite population proportion PFP

rj of visits with private insurance in
small areas j was calculated and consequently estimated by PX

rj using estimators X ∈
{D,M1−M3,MA}. The RRMSE of estimated proportions averaged over all small areas
can be considered a reasonable measure of the average efficiency of estimator X , that is:

RRMSEX =
1

J

J∑
j=1

√
1
R

R∑
r=1

(
PX
jr − PFP

jr

)2
1
R

R∑
r=1

PX
jr

(11)

When the β- coefficients in the superpopulation model (4) do not vary between small
areas and random effects θj have normal distribution, estimating models may still use a
misspecified design matrix of covariates Xk

cnt. Five levels of such misspecification are
presented in Table 1, starting with omitting only one covariate (k = 1) and gradually
excluding all county-level covariates from the model (k = 5). The misspecification of
fixed covariates increased the variance of random effects from σ2s,k = 0 to 0.11.

The RRMSE of estimators for the proportion of visits by patients with private insurance
in small areas for different values of between-physician variability σ2noise and sample sizes
are presented in Table 2. The absolute value of RRMSE is provided for design-based
estimators and relative percent (RRMSEM1−M3,MA

RRMSED ∗ 100%) is used to present RRMSE of
model-based estimators.

The RRMSEs of the design-based estimator were mostly independent from the vari-
ance σ2s,k of random effects in small areas but increased with between-physician variability
σ2noise and decrease in the sample size. The RRMSE of model-based estimators depended
on both of these random terms of the superpopulation model expressed in equation (4).
The logistic regression estimator M1 critically depended on random effects θj because they
were ignored in the estimating model expressed in equation (6). This dependence was
greater for low level of ”noise” σ2noise = 0.1σ2p between physicians and was less for larger
σ2noise and smaller samples. At the same time, when there was no contribution from the ran-
dom effects (σ2s,k = 0), estimator M1 was the most efficient. Other model-based estimators
M2, M3 and MA demonstrated greater robustness to misspecification of model covariates.
Even when covariates were completely misspecified (k = 5), these models performed bet-
ter than design-based estimator. The advantage of robust model-based methods over the
design-based estimator was particularly significant for smaller values of physician-level
variability, σ2noise = 0.1σ2p , and less dependent on sample size. The logistic-normal model
M3 always better utilized the explanatory power of county-level covariates than other ro-
bust models (M2,MA).

The effect on small area estimators of proportion due to ignoring the variability of
β- coefficients between small areas in the superpopulation model is illustrated in Table
3 for logistic and logistic-normal models. The case when county-level covariates were
absent from the model (k = 5) (see Table 1) is not presented. When fixed effects were
specified correctly (k = 1), the efficiency of estimator M1 was sharply diminished by
misspecified model coefficients β. This effect was less pronounced for misspecified fixed
effects (k = 2, 3, 4). The estimator based on the logistic-normal model M3 was robust to
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Table 2: RRMSE of design and model-based estimators of proportions of visits by patients with
private insurance in small areas for different levels of misspecification of model covariates, variabil-
ity between physicians and sample sizes. Absolute values of RRMSE are presented for design-based
estimator and relative percent for model-based estimators. Data were simulated from the superpop-
ulation models (4) with parameters inferred from the 2009 NAMCS sample.

Less fixed effects⇒ more random effects
k = 1 2 3 4 5

Estimator σ2s,k = 0 0.047 0.077 0.09 0.11

σ2
noise = σ2

p

Direct D 0.0396 0.0383 0.0396 0.0401 0.0395
Logistic regression M1 21% 141% 175% 183% 202%
Logistic regression M2 80% 82% 82% 85% 85%
Logistic-normal M3 69% 79% 80% 84% 84%
Regression estimator MA 94% 93% 94% 96% 98%

σ2
noise = 0.1σ2

p

Direct D 0.0235 0.0241 0.0231 0.0204 0.0199
Logistic regression M1 14% 246% 333% 405% 461%
Logistic regression M2 62% 62% 67% 75% 78%
Logistic-normal M3 31% 60% 66% 75% 77%
Regression estimator MA 73% 75% 79% 89% 92%

σ2noise = 3σ2p
Direct D 0.0538 0.0554 0.0542 0.0544 0.0545
Logistic regression M1 22% 82% 110% 113% 124%
Logistic regression M2 85% 82% 87% 86% 87%
Logistic-normal M3 78% 82% 84% 84% 86%
Regression estimator MA 96% 97% 98% 98% 99%

Sample size 1/4 of 2012 NAMCS sample
Direct D 0.0805 0.0811 0.0782 0.0793 0.0809
Logistic regression M1 15% 66% 90% 93% 99%
Logistic regression M2 81% 82% 85% 84% 87%
Logistic-normal M3 70% 75% 80% 79% 82%
Regression estimator MA 94% 93% 96% 96% 99%

possible variability of the β coefficients between small areas in all cases.
The RRMSE of the estimators based on the models M2 and MA are not presented in

Table 3. Results presented in Table 2 suggest that these models are more dependent on the
data in small areas and less dependent on the fixed effects than model M3. Therefore, they
are expected to be even less sensitive to the ignored variability of β- coefficients.

Among estimators considered in this study, only the estimator based on the logistic-
normal model M3 explicitly assumes normality of the random effects θj at the small area
level. Table 4 compares the RRMSE of this estimator when this assumption is correct
with RRMSEs in cases when distribution of θj in superpopulation models (3, 4) was either
heavy-tailed, skewed, or a mixture of two normal distributions. All considered distributions
of θj had mean 0 and the same value of variance σ2s,k, k ∈ 2, 3, 4, 5. Results are presented
for nominal and reduced variance σ2noise of random effects between physicians. In all
cases misspecification of the distribution of random effects had no noticeable effect on the
RRMSEs of the estimated proportion in small areas.
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Table 3: RRMSE of estimators of proportions of visits by patients with private insurance in small
areas by logistic M1 and logistic-normal M3 models for fixed and random β-coefficients in super-
population model and different levels of misspecification of model covariates. Absolute values of
RRMSE are presented for fixed β and relative percent for random β. Data were simulated from the
superpopulation models (4) with parameters inferred from the 2009 NAMCS sample.

Less fixed effects⇒ more random effects
β-coefficients of the k = 1 2 3 4
superpopulation model σ2s,k = 0 0.047 0.077 0.09

Logistic model M1

Fixed βkcnt 0.0085 0.0539 0.0692 0.0734
Random βkcnt,j ∼ N

(
βkcnt, 0.08

)
296% 118% 111% 101%

Logistic-normal model M3

Fixed βkcnt 0.0272 0.0303 0.0318 0.0335
Random βkcnt,j ∼ N

(
βkcnt, 0.08

)
105% 105% 100% 98%

Table 4: RRMSE of estimators of proportions of visits by patients with private insurance in small
areas by logistic-normal model M3 depending on deviation from normality of random effects θj in
the superpopulation model for different levels of σ2

noise and misspecifications of model covariates.
Absolute values of RRMSE are presented for normal and relative percent for non-normal distribu-
tions of θj . Data were simulated from the superpopulation models (4) with parameters inferred from
the 2009 NAMCS sample.

Distribution Less fixed effects⇒ more random effects
of random effects in the k = 2 3 4 5
superpopulation model σ2s,k = 0.047 0.077 0.09 0.11

σ2noise = σ2p

Normal 0.0303 0.0318 0.0335 0.0330
Heavy tails t(4) 102% 102% 101% 97%
Skewed χ2

(4) 100% 103% 102% 93%
Mixture of 2 normals 105% 99% 104% 96%

σ2noise = 0.1σ2p

Normal 0.0145 0.0153 0.0153 0.0154
Heavy tails t(4) 105% 101% 103% 98%
Skewed χ2

(4) 106% 99% 100% 99%
Mixture of 2 normals 97% 99% 98% 99%

7. Conclusions

In this paper we proposed methodology for a realistic simulation of a finite population
and replication of sample selection processes according to specifications for the redesigned
2012 NAMCS. This methodology provides an opportunity to assess and compare the ef-
ficiency of direct and model-based methods for estimating proportions of categorical out-
comes in small areas. The primary focus of this study was to investigate how various
misspecifications in the estimation models, relative to the superpopulation model, affected
efficiency of the estimates and to identify the most efficient and robust method of estima-
tion.

By analyzing the currently available 2009 NAMCS data, we estimated the variances of
random effects at the small area and physician levels for a number of models with design
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matrices of county-level covariates of various ranks. The variance of random effects at the
small area level was zero for certain large design matrices and increased when rank was
reduced. The variance of random effects between physicians did not noticeably change in
the process. Models with reduced rank design matrices and positive variances of random
effects at the small area level were considered to represent the models with misspecified
fixed effects. Other possible misspecifications in estimating models ignored variability of
β−coefficients between small areas and deviation from normality of state-level random
effects.

The RRMSE of the design-based estimator was mostly independent of the design ma-
trix of county-level covariates and random effects at the small area level in the superpopula-
tion model but strongly dependent on noise-like variability between physicians and sample
size. The estimator utilizing logistic regression with a common intercept for all small areas
substantially outperformed all other estimators when fixed effects were correctly specified
but quickly became the least efficient for reduced rank design matrices or ignored variabil-
ity of β− coefficients between small areas. Other model-based estimators utilized logis-
tic regression with separate intercepts for each small area, or logistic-normal hierarchical
model with random effects at the small area level, or the regression-type model-assisted
estimator. All of them were equally robust to misspecification of county-level covariates
and ignored variability of β− coefficients, but a logistic-normal model outperformed two
other estimators for all considered superpopulation models. Although this estimator as-
sumed normality of random effects at the small area level, its RRMSE did not increase
for heavy-tailed, skewed, or mixture distribution of random effects in the superpopulation
model as long as the first two moments of these distributions were the same as for normal
distribution.

Conducted simulations demonstrated some advantage of robust model-based and model-
assisted estimators over a design-based estimator for all considered misspecifications of the
superpopulation model. But there are still some issues with these estimators which require
further analysis. First, the robustness of the normality assumption for random effects was
demonstrated for fairly large number of sampled physicians within each small area, which
is expected to be the case for the 2012 NAMCS data. It is unclear if and when this ro-
bustness property breaks down for the reduced amount of data in small areas. Second, bias
of estimates based on model-based methods associated with possible informative sampling
may increase the RRMSE. Further work is required in order to investigate the effect of
these factors on the efficiency of model-based methods for estimating proportions in small
areas.
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