Section on Bayesian Statistical Science—JSM 2012

Parallel Particle Learning for Bayesian Financial Data Analysis

Hiroaki Katsurd Kenichiro McAlinnf Teruo Nakatsuma

Abstract

Posterior simulation for Bayesian inference using particle filters and particle learning algorithms
have proven to be successful in various fields, including finance. However, these particle based
methods for posterior simulation are, by nature, computationally strenuous and time consuming.
With the recent development of fast and inexpensive devices for parallel computing, such as general
purpose graphic processing units (GPGPU), in mind, we have developed a new algorithm for particle
filter that is fully parallelized.

Key Words: Bayesian Inference, Particle Learning, Parallel Computing

1. Introduction

This article shows a new parallel version of the particle filter by proposing an exact resam-
pling method that is completely parallel. In the last four decades, state-space modeling,
and especially non-Gaussian state-space modeling, have become very popular between re-
searchers and practitioners. Particle filters have been proven to be a very effective method
to estimate Bayesian non-Gaussian state-space models. One problem that most researchers
and practitioners (but especially practitioners) have found with particle filtering is its time
consuming nature. In light of new parallel processing units that are cheap and extremely
fast for parallel computing, the already parallel particle filtering methods should benefit
greatly from these devises. However, as they are bottlenecks that stymie the algorithm to
be completely parallel, we solve these bottlenecks in order to gain the most from parallel
devices such as the GPU.

A state-space model is defined as below:

Y~ P(yt|9€t) 1)
Ty ~ P(ﬂft|$t—1) (2)

The particle filter algorithm by Gordon et al. (1993) approximates the posterior distribution
p(xt|y1.¢) by the following steps:

Step 0: Set them particles{oc((f)}’{;1
Step 1: Resample[aégi)}?ll from {mf) ™ with weightwt(i) x p(yt+1|x£i))
Step 2: Propagate:r;g1 from p($t+1’§3£i)), (i=1,...,m)

The main bottleneck of the particle filter algorithm, which is also true for other par-
ticle methods, is the resampling process (Step 1). The process requires an algorithm that
searches for each particle through the cumulative distribution until it is found. Then re-
peats the process for each and all particles, which is extremely time consuming. In fact,
upon running the particle filter algorithm above on a very simple model, we find that the
resampling procedure accounts for 90% of the computation time.

*Graduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, Japan
tGraduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, Japan
tFaculty of Economics, Keio University, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, Japan

1787

Section on Bayesian Statistical Science—JSM 2012

Other resampling procedures have been developed in order to circumvent this problem.
The most simple method is to sort the particles in ascending order and then resampling the
particles sequentially, so rather than counting up from zero each time, each particle can
start its search from where the last particle left off. However, the possible time-consuming
nature of the sorting algorithm has been pointed out by many. Other resampling methods
such as the stratified and systematic resampling arbitrarily sets equally distanced variates
that mimic the uniform distribution. The merit of this method is that all variates are already
sorted and the number of random numbers that must be generated are limited. On the other
hand, as they are not all random variates, in the sense of random sampling from the uniform
distribution, these methods are not exact and cannot be parallelized.

2. Parallel Computing with GPGPUs

The key aspect of this research and the motivation for parallelization is the recent develop-
ment in GPGPU computing. GPGPUs are devices that are designed with massive number
of cores to solve single instruction multiple data (SIMD) processing. Originally developed
for PC gamers, these GPUs are what produce the graphics for games and videos at an
affordable price (even for teenagers) of around a few hundred US dollars.

Since these GPUs are designed mainly for generating graphics for games, their core
aim is to calculate the millions of pixels throughout the continuous game play. Calcula-
tion per pixel is simple and easy to compute, however, as the number of pixels mount (a
basic computer monitor comes with 1920x1080 pixels with 120 frames per second), the
computation time can be impossible to handle for a single core architecture such as the
CPU.

Scientist quickly caught on to this device especially as NVIDIA, the largest GPU maker
and designer in the world, started to shift their development architecture to the more broad
general scientific community. The key to this innovation has been the computation uni-
fied device architecture (CUDA), which is an extension of the C programming language
(NVIDIA, 2011).

The key strength of the GPU is its power over SIMD processing. Table. 1 below shows
the comparison between the CPU (the host) and the GPU (the device). GPUs, in this case
the GTX580, which is at this point a generation behind, has 128x the core of the CPU but
has roughly one third of the computational power.

An additional point that must be mentioned is the price at which these GPU cards are
sold on the market. As GPUs are designed and manufactured for gamers all around the
world, the price of one is extremely cheap and easy to install. Another appealing point is
that there can be more that one GPU on each motherboard (for example, four GPU cards
on one motherboard), easily quadrupling the computation power.

CPU (Intel i7 Extreme) GPU (GTX580)

Memory 32GB 1.5GB
Cores 4 512
Core clock 2.93GHz 772MHz
Cost(USD) 1,000 100-200

Table 1. Comparing the CPU and GPU hardware

As mentioned earlier, GPUs are designed for SIMD processes, however, not all pro-
cesses are SIMD. Thus, the key to creating successful algorithms on GPUs is to develop

1788

Section on Bayesian Statistical Science—JSM 2012

algorithms that are SIMD (such as Durham and Geweke, [2011]) or parallelizing non-
SIMD algorithms. This paper takes the later approach by modifying (partly) non-SIMD
algorithms to completely fit into the SIMD framework.

There are a few points that one should avoid when developing algorithms on the GPU.
Processing sequential algorithms on the GPU can be costly because of the GPU’s memory
architecture. In general, there are two major types of memories on a GPU; memory that is
assigned to each core and memory that is shared between all cores. As parallel devices, ac-
cess and calculation on each core-linked memory is fast while sharing memory is extremely
costly for the computational time, so one should try as much to keep all calculation on each
core without communication between cores. Another aspect of the GPU that is costly is the
memory transfer between the host and the device. The developed code should keep all cal-
culations on the GPU rather than transferring processes back and forth. An ideal algorithm
for GPGPU devices would be to calculate everything in parallel (without communication
between cores) and completing all calculations on the GPU, which we succeed in doing for
the parallel particle filter algorithm.

The actual programming on CUDA is exactly like programming in C. The only excep-
tion is that there are few additional lines that send the code and data from the host to the
device and then to retrieve the results from the device to the host. Libraries for CUDA
have been developed, which are sufficient for statistical computing (e.g. number of random
number generators), and MATLAB also has a parallel computing tool box, not to mention
third party jackets that can be used with conjecture to other statistical software.

3. Parallel Particle Filtering

As everything about the patrticle filtering algorithm is SIMD except for the resampling
procedure, modifying the resampling procedure (the bottleneck) to fit the SIMD framework
makes the whole algorithm parallel. With this in mind, we have succeeded in developing
an algorithm that enables the resampling procedure to be processed in parallel using the
cut-point method by Chen and Asau (1974).

The goal of resampling is to generate random integers with replacement from a
discrete distribution of1, . .., m} with the cumulative distribution function

q(i) =Pr{X <i}, (i=1,...,m) 3)

which is proportional to the posterior density. Direct application of the inverse transform
method to resampling is rather time-consuming when the number of particiedarge.
Instead, we propose to use the cut-point methoctuBpoint/; for givenj = 1,...,m

is the smallest index such that the corresponding probability (3) should be greater than
(7 — 1)/m. Alternatively,; is defined as

q(L;) = lr<ni<n q(i) subjectto mg(i)>j—1, (j=1,...,m) 4

Then the resampling algorithm with the cut-point method is given as follows.

StepO: Letj =1

Step 1: Generate: from the uniform distribution on the intervéd, 1).

Step 2: Letk = I},,,) Where| x| stands for the smallest integer greater than or equal to
Step 3: If u > q(k), letk + k + 1 and repea$Btep 3; otherwise, go t®tep 4.

Step 4: Storek asi.

1789

Section on Bayesian Statistical Science—JSM 2012

Step 5: If j < m, letj < j + 1 and go back t&tep 1; otherwise, exit the loop.

The resultanfi(y), . .., i)} are random indices independently drawn from the discrete
distribution{q(1),...,q(m)}.
Once the cut-point§!y, . . ., I,,,} are given, parallel execution of the above algorithm is

straightforward because the executiorttép 1 — Step 3 does not depend on the indgx

On the other hand, the standard algorithm for computation of the cut-points is not friendly to
parallel execution. In this paper, we propose an alternative approach for parallel execution
of the cut-point method. First, let us define

Ly =mg()], (G =1,...,m)

and Ly = 0 for convention. Due to the monotonicity of the cumulative distribution func-
tion, we observe

1.0=Lo< 1 <--- <Ly, =m.
2. If Lj_1 < Lj, a cut-point such that

q(Ix) = lg}i<n q(i) subjectto mq(i) >k—1, (k=Lj1+1,...,L;)

is given asly, = j.
3. If Lj_1 = L;, j does not correspond with any cut-points.

The above properties give us a convenient criterion to check whether a parfiguga
cut-point or not, and it leads to the following multi-thread algorithm to find all cut-points.

Step 0: Initiate thej-th thread.

Step 1: ComputeL; = [mq(j)].

Step 2: If L;_y < Lj, letk = L; andI};, = j; otherwise, end the thread.

Step 3: Letk «— k£ — 1.

Step4: If k> L;_1, letl; = j and go toStep 3; otherwise, end the thread.

The number of iterations in the lo&tep 3 — Step 4 will be modest unlesg(j) —q(j7—1)

is extremely high.

4. Results

In our computational example, we use 100 simulated data sets and compute a very simple
state space model shown below:

Yr = Tyt VtNN(OvUQ) (5)
Tt = X1+ €, GtNN(OvTQ) (6)

In order to estimate the above model, we use the particle learning method suggested by
Carvalho et al.(2010). The results of three types of simulation, GPU (parallel resampling),
CPU (ordinary resampling), and CPUs(sorting the i.i.d. uniform variates) are shown below
in Table 2. and Figure 1.

The results are straightforward. It is clear that by developing an algorithm that com-
pletely runs in parallel and keeps all calculations on the device can be extremely effective

1790

Section on Bayesian Statistical Science—JSM 2012

Table 22 Computational Time of the Particle Filter with Parallel Resampling on the GPU,

Ordinary Resampling on the CPU, and Ordinary Resampling with Sort on the CPU
Particles €100) 1,024 4,096 16,384 131,072 1,048,576 8,388,608
GPU(msec) 10.879 16.107 63.333 257.063 2,110.560 19,876.252
CPU(msec) 30.000 80.000 390.000 7,050.000 307,600.000 19,855,870.000
CPUs(msec) 60.000 210.000 850.000 6,960.000 58,170.000 528,800.000

CPUxGPU 2.758 4.967 6.158 27.425 145.743 998.975
CPUs<GPU 5.515 13.038 13.421 27.076 27.561 26.605
CPUxCPUs 0.500 0.381 0.459 1.013 5.288 37.549

compared to sequential algorithms. As the particles increase (and the precision of the esti-
mate increase), the sheer parallel power of the GPU overpowers that of the CPU by ten to
the hundreds. Even when compared to the ordinary resampling with ordered variates, the
GPU is faster than the CPU by ten to twenty times. What should be noted is that the GPU
results can be easily doubled or tripled with an investment of a few hundred USD while
there is little room for the CPU to run any faster.

4.1 Conclusion

By fully parallelizing the resampling procedure, using the parallel cut-point method, we
have succeeded in achieving computational differences in the hundreds. This in mind, re-
searchers are now able to compute real-time posterior distributions using exact resampling
in complete parallel for many different applications; ranging from high-frequency trading
to motion sensing technology.

Additionally, as CPU computation speed is heading towards its limit, new, cheap, and
faster hardware, like the GPGPU, is now looked upon as a resolution for solving complex
problems in a reasonable time. By solving (successfully parallelizing) bottlenecks in al-
gorithms, this paper has shown that the results can be staggering compared to traditionally
effective sequential algorithms.

Future research includes extending the state-space model to more complex models,
such as the multi-factor stochastic volatility model, and apply it to actual high-frequency
financial data to examine its effectiveness.

REFERENCES

C.Carvalho, M.Johannes, H.Lopes, N.Polson. "Particle learning and smoothing.” Statistical Science, 25 (2010),
pp. 88-106.

H.C.Chen, Y.Asau. "On generating random variates from an empirical distribution.” American Institute of
Industrial Engineers (AIIE) Transactions, 6(1974), pp.163-166.

J.Geweke, G.B.Durham. "Massively Parallel Sequential Monte Carlo for Bayesian Inference.” Working paper
series, 2011.

N.Gordon, D.Salmond, A.Smith. "Novel approach to nonlinear/non-Gaussian Bayesian state estimation.”
IEEE Proceedings-F, 140(1993), pp.107-113.

1791

Section on Bayesian Statistical Science—JSM 2012

10 T H | T L | T H |

—©— GPU (NVIDIA GeForce GTX 580) A
— 8~ -CPUs (Intel Core i7-2700K 3. 50GHz) '
A~ GPU (Intel Core i7-2700K 3.50GHz)

Computing Time (millisecond)

100 L L L PR | L L L PRI | L L L PR | Lo
3 4 5 6 7
10 10 10 10 10
Number of Particles

Figure 1. Computational Time of the Particle Filter with Parallel Resampling on the GPU,
Ordinary Resampling on the CPU, and Ordinary Resampling with Sort on the CPU

1792

