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Abstract
At the time a study is designed there is imperfect information and it may not be com-

pletely clear that a drug is worth the investment required for a large, pivotal trial required
for regulatory approval. An adaptive phase II/III study with an early futility analysis is
sometimes chosen in order to shorten the development timeline and limit unneccessary pa-
tient exposure and investment. However, in a trial with a time-to-event endpoint, there
may be many patients with relatively little follow-up if a trial is stopped early. Here we
consider transformation of a trial from Phase III to a smaller Phase II at an interim analysis
as an additional option. The intent is to allow collection of follow-up on patients already
enrolled in order to get the best data possible for future decisions surrounding development
of the drug. The objectives and required observed treatment effect and Type I error for
a positive Phase II adaptation may be different from the Phase III design. Compared to
stopping a Phase III trial for futility, transforming to a Phase II trial with an intermediate
treatment effect may be more cost-effective. The methods used here are related to group
sequential design theory. The critical criteria for and timing of phase selection at interim
analysis are discussed.

Key Words: Group sequential design, adaptive design, time-to-event endpoint, gsDesign,
interim analysis

1. Introduction

We begin with an example which we try to keep relatively simple. Consider a drug
that is hypothesized to extend the lives of patients with lung cancer. Early data
is available that suggests a high response rate to therapy compared to historical
results with standard therapy. While response to therapy is considered a ”proof-
of-concept” that the drug is active for lung cancer patients, there is doubt as to
how long patients’ lives might be extended. We might start with an assumption of
a proportional hazards model where the true hazard ratio of death among patients
on the new treatment compared to standard is 0.7; in this case, this is equivalent
to an increase in median survival from 6 to 8.6 months. For 85% power and 2.5%
(one-sided) Type I error, a two-arm trial following patients until 283 deaths have
been observed would be required [9]. We assume further that there is a constant
enrollment rate, exponential failure rate with median 6 in the control group and
exponential dropout rate of 2 percent per month. Assuming 28 months of enrollment
and follow-up of 12 months for the last patient, such a trial would require 368
patients [6].

Because of the doubts about the translation of early trial results into a mortality
benefit, a futility analysis might be planned to stop the trial early if results are not
sufficiently promising. Group sequential methods can be applied for this purpose
[11, 5] using, for example, the gsDesign R package [1]. A typical group sequential
design provides 3 options at an interim analysis: 1) stop for a successful (highly
positive) result, 2) stop for an unsuccessful result or 3) continue. Because many
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patients would have little follow-up at the time of such an analysis, we consider an
additional interim decision given ”intermediate” results. We divide the ”continue”
decision into: 3a) continue to complete a definitive Phase III trial or 3b) limit(or stop
enrollment) and continue to complete a more exploratory Phase II trial. Option 3b
is less expensive than continuing to Phase III and allows a less accelerated path for
development of a drug with moderately promising results. With this strategy, the
rule to stop the trial immediately can be less aggressive. It allows a full exploration
of the Phase II study data prior to better enable the decision to carry out a Phase III
trial. The purpose of this paper is to extend group sequential methods to accomplish
this last adaptation.

The paper is organized as follows. In the next section we provide a design de-
scription followed by sections developing testing and statistical bounds for decision
making, Type I error and power, decision strategies and criteria for trial phase
selection, and discussion.

2. Design description

2.1 Test statistics and distributional assumptions

The intent is to set up two group sequential designs that are, for some d ≥ 1,
identical prior to analysis d and to choose between the two designs if the trial
continues to analysis d. We will refer to analysis d as the adaptation point or
analysis. Let k1, k2 (both > d) denote the total number of planned analyses for
these two designs. Corresponding to this, we consider two sequences of multivariate
normal test statistics Zm1, Zm2, . . . , Zmkm , m = 1, 2. We assume the canonical form
for a group sequential design as laid out by Jennison and Turnbull [4] where for
m = 1, 2, some 0 < nm1 < nm2 < . . . nmkm and 1 ≤ i ≤ j ≤ km

E{Zmi} = θ
√
nmi

Cov{Zmi, Zmj} = nmi/nmj .

In this notation, nmi could represent, for example, a number of observations, a num-
ber of events (for a trial with a time-to-event endpoint) or statistical information.

2.2 Testing boundaries

For each of the two group sequential designs we define bounds in the usual fashion
for the test statistics Zim just defined, but with some restrictions. We assume a null
hypothesis of θ = 0 and for design m, m = 1, 2, an alternate hypothesis of θ = θm
for some fixed θm > 0. This means both designs seek an alternative in the same
direction. This is not necessary, nor is it necessary to divide into only 2 designs.
However, for simplicity and the application of interest we make these restrictions
here. For design m, m = 1, 2, we assume a set of lower and upper bounds ami,
bmi where ami < bmi for i < km and amkm = bmkm . This final restriction is not
necessary, but it is useful for the situations where we have 2 possible decisions at
the end of the trial for each design (reject θ = 0 or reject θ = θm). An intermediate
region could be allowed at the end of the trial with amkm < bmkm if an additional
decision region were desired.

Since the test statistics are identical for the two designs for i ≤ d, we define
Zi ≡ Z1i = Z2i. For i < d we would assume a common set of bounds for the two
designs; i.e., a1i = a2i = ai < bi = b1i = b2i. We reject θ = 0 in favor of θ = θm
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Figure 1: Test statistic at adaptation point.

if Zmi ≥ bmi and reject θ = θm in favor of θ = 0 if Zmi < ami. Figure 1 diagrams
decision regions at the adaptation point. We assume a1d < b1d = a2d < b2d. We
reject both θ = θ1 and θ = θ2 if Zd < a1d. We reject θ = 0 in favor of θ ≥ θ2 if
Zd ≥ b2d. We are left with two intermediate regions for Zd: [a1d, b1d = a2d) and
[b1d = a2d, b2d). For Zd in the first of these regions, the trial continues with design
1 after analysis d, while for the second, the trial continues with design 2.

For interim analyses i after the adaptation analysis d, where i > d, the decisions
are based on bounds for each design m, m = 1, 2. The stopping rules for all scenarios
are summarized in Table 1.

Table 1: Planned stopping rules for the adaptive design.

Sample Stop for Continue Stop for
Analysis size futility trial efficacy

i < d ni Zi < ai ai ≤ Zi < bi Zi ≥ bi
i = d nd Zd < a1d a1d ≤ Zi < b2d Zd ≥ b2d

Continue with design 1 if
a1d ≤ Zd < b1d = a2d

i = d+ 1 . . . k1d n1i Z1i < a1i a1i ≤ Z1i < b1i Z1i ≥ b1i
Continue with design 2 if
b1d = a2d ≤ Zd < b2d = b1d

i = d+ 1 . . . k2d n2i Z2i < a2i a2i ≤ Z2i < b2i Z2i ≥ b2i

3. Type I error and power

In this section, we calculate the type I error and power for the whole study as well
as for each phase. First, we define the events leading to decisions to follow designs
1 and 2, respectively, as

D1 = {a1d ≤ Zd < a2d} ∩d−1i=1 {ai ≤ Zi < bi},
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D2 = {a2d ≤ Zd < b1d} ∩d−1i=1 {ai ≤ Zi < bi}.

Following are mutually exclusive results which will result in a positive trial (includ-
ing design 1 and design 2) assuming decision rules are followed:

• For i ≤ d,
Bi = {Zi ≥ b2i} ∩i−1j=1 {aj ≤ Zj < bj}

• For d < i ≤ k1

B1i = D1 ∩i−1j=d+1 {a1j ≤ Z1j < b1j} ∩ {Z1i ≥ b1i}

• For d < i ≤ k2

B2i = D2 ∩i−1j=d+1 {a2j ≤ Z2j < b2j} ∩ {Z2i ≥ b2i}.

Since these events are mutually exclusive, the total probability of a positive finding
as a function of θ is obtained by summing as follows:

α(θ) =
d∑

i=1

P{Bi|θ}+
2∑

m=1

km∑
i=d+1

P{Bmi|θ} (1)

Total Type I error for the design is α(0) while for θ > 0 the total power for the trial
is α(θ). This type of adaptation has been used previously by [3], [10].

We define the probability of crossing an upper bound for design 2 as the Phase
III Type I error or power:

α2(θ) =
k2∑
i=1

P{{Z2i ≥ b2i} ∩i−1j=1 {a2j ≤ Z2j < b2j}|θ}. (2)

Thus, the Type I error for the Phase III adaptation assuming decision rules are
obeyed is α2(0). To allow flexibility in decision-making, we may assume the interim
futility bounds may be ignored when computing the Phase III Type I error. Phase
3 Type I error assuming non-binding interim rules will be denoted by α+

2 (0) where

α+
2 (θ) =

k2∑
i=1

P{Z2i ≥ b2i ∩i−1j=1 Z2j < b2j |θ}. (3)

We set up Type I error computations to allow maximum flexibility in decision
making and conclusions at the end of the trial. While using this Type I error
computation with the Phase II/III selection and futility criteria will use less than the
full Type I error for each Phase, the additional flexibility is important to maintain
the Type I even when futility and decision rules are not followed.

If the trial continues only until 160 events, we can still allow for a positive
Phase III finding with a very positive result. We achieve this flexibility by setting
the analyses for design 2 at every number of events where an analysis is planned for
design 1. Separate bounds are set for a Phase III 2.5% Type I error and Phase II
10% Type I error.
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4. Choice of timing for analyses and bounds

The timing and bounds for decisions may be chosen in consideration of a number
factors representing tradeoffs. One one hand, a larger sample size makes it possible
to lower Type I and Type II error rates or to have higher confidence that decisions
are based on a meaningful estimate of treatment effect. On the other hand, waiting
for a large sample size may be very expensive and take a lot of time. Note that
enrollment rates relative to the rate of endpoint accumulation are critical to com-
pleting an analysis to alter sample size. Getting sites open quickly and enrolling at a
relatively constant rate should help maximize potential savings; this is not a minor
issue, but will not be discussed at length here. Tradeoffs will be different depending
on the situation at hand. Flexible spending functions such as those provided by
[2] allow choosing bounds to fit a desired level of significance at each analysis. By
doing this and experimenting with timing of the analysis also allows selection of
approximate observed treatment effects corresponding to the bounds selected.

4.1 An Example

Continuing our example, we choose between a 2- and 3-analysis design at the first
interim analysis. Then k1 = 2, k2 = 3, d = 1, n11 = n21 = n1, Z11 = Z21. We also
let n12 = n22. For, say, a trial with a binomial or normal outcome, n12 and n23 would
represent different total sample sizes. Here we consider a trial with a time-to-event
outcome. In this case, n11, n12, n21, n22 and n23 denote the number of events at each
analyis. If the smaller Phase II design 1 is selected, enrollment may be discontinued
while continuing treatment and follow-up for patients already enrolled. If the larger
Phase III design 2 is selected, further patients are enrolled to power the result for
a definitive finding. Thus, although we assume the number of events n12 = n22
are the same whether we choose a Phase II or Phase III trial at the first analysis
after the adaptation, the patient population from which these endpoints are derived
would be different. Under these assumptions we have Z11 ≡ Z21, but Z12 6= Z22.
However, under the usual assumptions of proportional hazards for a clinical trial
[11], the pairs Z11, Z12 and Z21, Z22 are asymptotically identically distributed with
the canonical form of Section 2.1.

For our example, we chose to do the first interim analysis after 120 deaths and
enrollment of approximately 220-250 patients. This allowed a reasonable tradeoff
between Type I error, Type II error and the approximate treatment effect at decision
boundaries. Two-parameter spending functions that allow specifying cumulative
spending for the analyses after 122 and 176 events. Even though final analyses are
planned for Phase II after 176, we chose a spending function that planned for the
Phase III number of events. This will allow specification of p-values and confidence
intervals using the methods of [7], which will be documented elsewhere. A Cauchy
spending function was chosen for design 1 and a logistic spending function for design
2. As seen in Figure 2, this allows the spending function for design 1 (Phase II) to
be greater than that for design 2 at all points.

The properties of the decision regions at the first interim analysis are summa-
rized in Table 2.The study would continue as a phase III after the first interim
analysis if the interim Z-statistic is greater than b11 = a21 =1.23 which corresponds
to a p-value of 0.109 and approximately to an empirical hazard ratio of 0.9. If the
Z-statistic is between 0.58 and 1.23, the enrollment will stop and the study will
convert to a Phase II study. A Z-statistic of 0.58 corresponds to a p-value of 0.282
and approximately to an emprical hazard ratio of 0.9.
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Figure 2: Spending functions for Phase II and Phase III.

In this case, consider 2 prior distributions for predictive power: one informative
and one non-informative. For the informative prior, we assume the log of the hazard
ratio has a mean of the logarithm of 2/3 and a variance of 4/38; this is equivalent
to the uncertainty for a frequentist estimate of the log hazard ratio with 38 events.
This distibution suggests the hazard ratio has prior probability of 2/3 of being in
the interval (0.58, 0.77). For the non-informative prior we assume the log hazard
ratio is centered about 0 (no treatment effect) and having a standard deviation of
1. This suggests a prior probability of 2/3 the the hazard ratio is between 0.65 and
1.54. We consider conditional power both for the estimated treatment effect and
at the original alternate hypothesis, the latter as recommended by [8]. Note that
while the choice of a prior is somewhat arbitrary, using conditional power places
probability 1 on a single value of the treatment effect. In any case, for our example
the predictive probability of a positive trial at the phase III decision bound is 0.56
under the informative prior and 0.48 under the non-informative prior.

Setting this adaptation bound so high makes sense within the described context.
We set the futility bound to stop the trial as a11 =0.58 which produces Type II
error for the development program at the first analysis of 0.083 and corresponds
approximately to a hazard ratio of 0.9.

5. Decision strategy

With a moderately positive test statistic (b1d = a2d ≤ Zd < b2d) results in adapting
to Design 2. While this is not necessary, for the purposes of this work we assume
Design 2 is a ”large” Phase III design.

For a less positive test statistic (a1d ≤ Zd < b11 = a2d) results in adapting to
Design 1. In our case this adaptation will be to a smaller, Phase II design; another
alternative would be to employ this adaptation to increase sample size and have a
larger Phase III trial [3].
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Table 2: Decision probabilities for first interim analysis.

Stop for Select Select Stop for
Futility Phase II Phase III Efficacy

Z-value ≤0.58 (0.58, 1.23) (1.23, 3.8) >3.8

ĤR (approx.) ≥0.9 (0.9, 0.9) (0.9,0.5) >0.5

Decision Probabilities

True HR

.5 0 0.01 0.49 0.5

.6 0.01 0.05 0.78 0.16

.7 0.08 0.15 0.74 0.03

.8 0.26 0.24 0.49 0.01

.9 0.5 0.24 0.26 0
1 0.72 0.17 0.11 0
1.2 0.94 0.05 0.01 0
Informative prior
Non-informative prior

Table 3: Conditional and predictive probabilities for Phase II and Phase III options
at interim analysis phase selection bound.

Phase Selected
Phase II Phase III

Predictive
Informative
Non-informative

Conditional
ĤR
HR=.7
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6. Discussion

While the actual bounds for this design were selected using spending functions, this
was not essential to the presentation here. Selecting bounds in a way such that
p-values and confidence intervals can be computed is worthy of future investigation.
The methods of Liu and Anderson [7] should be applicable.

We hope the methods presented here may be of use to those designing adaptive
clinical trials. The fact that the method is a straightforward extension of group
sequential design should make it reasonably understandable to reviewers. The flex-
ibility added by creating an additional interim decision possibility will allow mean-
ingful adaptation to accelerate or moderate drug development in accord with the
strength of an interim treatment effect evaluation. Continuing the Phase II design
after a decision not to immediately pursue Phase III allows a deliberate review of
the data before making additional development decisions.
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