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Abstract 
 

Identifying the subset of the  important variables is of  special importance in 

multivariate regression. In this study we are interested in selecting significant 

covariates  in semiparametric mixed modelling. Variable selection procedure 

considers both nonparametric and parametric component. We approximate 

nonparametric component by smoothing splines and minimize the sum of squared 

errors subject to an additive penalty of spline functions. We propose stepwise 

selection procedures for generalized additive models using penalized quasi- 

likelihood. 

 

 

Keywords: Generalized linear mixed model, semi-parametric models, 

penalized quasi-likelihood. 

 

 

 

 

 

Introduction 
 

Generalized linear mixed models (GLMMs) (Breslow and Clayton, 1993) are 

widely used to analyse clustered data such as longitudinal and financial data. Lin and 

Zhang (1999) proposed generalized additive mixed models (GAMMs) that allow for 

flexible modeling of the covariate effects by replacing the linear predictor in GLMMs 

with an additive combination of  nonparametric functions of covariates and random 

effects. Semiparametric models are good compromises and retain nice features of  

both the parametric and nonparametric models. 

   
Clustered data arise frequently in epidemiology and clinical trials. Each 

subject in a longitudinal epidemiological study or each hospital in a multi-center 

clinical trial may be viewed as a  cluster. The challenge in analyzing clustered data is 

that the data within a cluster tend to be correlated. A common way to account for this 

feature is to use cluster-specific random effects to model the correlation explicitly in a 

generalized linear mixed model (GLM). If the random effects are assumed to be 

normally  distributed, likelihood inference procedure can be carried out using  a 

Monte Carlo approach or numerical integration (Zeger and Karim (1991), Booth and 

Hobert (1999)). Likelihood inference may not be feasible when the random effects 
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structure is complex. However penalized quasi-likelihood can be used  to overcome 

this diffuculty. 

 

Cox and Kohn (1989) derived a test statistic for testing the adequacy of 

polynomial regression based on the smoothing spline formulation of the 

nonparametric function. Härdle et al. (1998) proposed a likelihood-ratio-based test 

using bootstrap to compare parametric generalized linear models with semiparametric 

generalized partial linear models. A common interest in many applications of 

nonparametric regression is to compare nonparametric covariate effects between two 

groups. Several tests were developed to test the equivalence of curves for longitudinal 

Gaussian data (Fan and Lin (1998) and Zhang et al. (2000)). Härdle, Liang and Gao 

(2000), Ruppert, Wand and Carroll (2003) and Yatchew (2003) presented diverse 

semiparametric regression models, and their inference procedures and applications. In 

order to select significant variables and estimate unknown regression coefficients 

together, Fan and Li (2001) proposed a family of variable selection procedures for 

parametric models via nonconcave penalized likelihood. 

 
In this study, we are interested in how to select significant variables in the 

semiparametric mixed modeling. Variable selection for semiparametric regression 

models consists of nonparametric components and parametric portion. In practice, a 

number of variables are available to include in the model, but many of them may not 

be significant and should be excluded from the ideal model. It is common in practice 

to include only important variables in the model to enhance predictability and to give 

a parsimonious description between the response and the covariates. We extended 

stepwise regression to the semiparametric models by using the penalized quasi-  

likelihood. Nonparametric functions are estimated by using smoothing splines and 

jointly estimate  the smoothing parameters and the variance components by using  

penalized quasi-likelihood. 

 

 

 

Generalized Additive Mixed Models 
 

Let ),...,( 1 iiTi

T

i yyy be response vector, where ity  denote observation t  in 

cluster iTtnii ,...,1,,...,1, . Let ),...,,1( 1 itpit

T

it xxx be the covariate vector 

associated with fixed effects and ),...,( 1 itqit

T

it zzz be the covariate vector associated 

with random effects. It is assumed that the observations ity  are conditionally 

independent with means ),,( ititiitit yE zxb
 

and variances 

),()var( itiit vy b  where (.)v  is a known variance function,  is a scale 

parameter, and ib  is cluster-specific random effects. 

 

 The generalized semiparametric mixed model, including an additive term that 

depends on covariates ),...,( 1 itmit

T

it uuu  is given by 
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where g  is monotonic link function, βx
T

ititpar  is a linear parametric term, with 

parameter vector ),,...,,( 10 p

T
β  including the intercept, 

m

j

itjjit uadd
1

)( )(  is an additive term with unspecified influence functions 

)()1( ,..., m  and i

T

ititran bz  contains the cluster-specific random effects 

),,0(~ Qb Ni  where Q  is a qxq  dimensional known or unknown covariance 

matrix. 

In regression spline methodology the unknown functions (.))( j are 

approximated by basis functions. A simple basis is known as the B-spline basis of 

degree ,d  yielding  

k

i

j

i

j

ij duBu
1

)()(

)( ),;()(  

where );()( duB j

i  denotes the i th basis function for variable .j  If the functions 

(.))( j  are strictly linear, the model reduces to the common generalized linear mixed 

model (GLMM). Versions of the additive model (1) have been considered by Zeger 

and Diggle (1994), Lin and Zhang (1999) and Zhang et al. (1998). While Lin and 

Zhang (1999) used natural cubic smoothing splines for the estimation of the unknown 

functions (.))( j , in this study cubic splines are used. In recent years regression 

splines have been widely used for the estimation of additive structures, see, for 

example, Marx and Eilers (1998), Wood (2004, 2006) and Wand (2000). 

 

 Let ),...,( )()(

1

j

k

jT

jα  denote the unknown parameter vector of the j  th 

smooth function and let ));(),...,;(()( )()(

1 duBduBu j

k

jT

jB  represent the vector-

valued evaluations of the k  basis functions. Then the parameterized model for (1) 

has the form  

.)()()( 111 bzαBαBβx
T

itmitm

T

mit
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itit uug   

By collecting observations within one cluster, the design matrix would be 

),...,( 1 iiTi

T

i xxX  for the i th covariate, and analogously it is set 

),...,( 1 iiTi

T

i zzZ , so that the model has the simpler form 

,)( 11 iimimiiig bZαBαBβXμ   

where )](),...,([ 1 jiTjjij

T

ij i
uu BBB  denotes the transposed B-spline design matrix 

of the i  th cluster and variable .j  

 Let ],,...,[ 1

T

n

TT
XXX   ),...,( 1 ndiag ZZZ  be a block-design matrix and 

),...,( 1

T

n

TT
bbb  be the vector collecting all random effects. Then the model in the 

matrix form would be 

                                     1 1( ) (2)m mg μ Xβ B α B α Zb
 

with ],...,[ 1

T

nj

T

j

T

j BBB  representing the transposed B-spline design matrix of the 

j  th smooth function. The model can be written in matrix form as 

,)( ZbBαXβμg  

where ),...,( 1

T

m

TT
ααα  and 1[ ,..., ]mB B B

 
(Groll and Tutz, 2012).
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The Penalized Likelihood Approach 

 It is assumed that the conditional density of ity , given explanatory variables 

and the random effect ,ib  is of exponential family type   

                          

( ( ))
( , , ) exp ( , ) , (3)it it it

it it it i it

y
f y c yx u b  

where )( itit denotes the natural parameter, )( it  is a specific function 

corresponding to the type of exponential family, (.)c  the log normalization constant 

and  the dispersion parameter. 

 

 A popular method to maximize generalized mixed models penalized quasi-

likelihood (PQL), which has been suggested by Breslow and Clayton (1993), Lin and 

Breslow (1996) and Breslow and Lin (1995). In mixed models, it is assumed that the 

covariance matrix ( )Q  of the random effects 
ib may depend on an unknown 

parameter vector  which specifies the correlation. It is specified that the joint 

likelihood function by the parameters of the covariance structure  together with the 

dispersion parameter ,  which are collected in ( , )T T
 and is defined the 

parameter vector ( , , )T T T T
b . The corresponding log-likelihood is  

1

( , ) log ( , ) ( , )
n

i i i

i

l f p dy b bv v v  

Then the penalized log-likelihood is 

                  1 1

1
( , ) log( ( , ) ( , ) ) (4)

2

n m
pen T

i i i j j j j

i j

l f p dy b b K  

where jK  penalizes the parameters j  and j  are smoothing parameters which 

control the effect of the j th penalty term.  The log-likelihood (4) has also been 

considered by Lin and Zhang (1999) but with jK  referring to smooth splines. (Groll 

and Tutz, 2012). 

 PQL works within the profile likelihood concept. It is distinguished between 

the estimation of , given the plug-in estimate ˆ , resulting in the profile-likelihood 

ˆ( , )penl , and the estimation of . The PQL method for generalized additive mixed 

models is implemented in the gamm function of the R-package mgcv (Wood, 2006). 
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Algorithm For Stepwise Regression 

 
 

To select significant variables,  following  algorithm  is constructed  for the 

stepwise  regression.  Begin by performing a multiple regression.  If all covariates are 

shown as significant (P-values < ),  then stop.  All the variables should be in the 

model. If one or more of the p-values for the t-tests are low, forward stepwise 

regression can be used to develop the best model that contains some of the variables 

as follows. 

STEP 1. Do simple regressions of response vs. each covariate  variable 

individually. Select  the covariate with the lowest p-value.  (Suppose it is X4.) 

STEP 2. Do all possible 2-variable regressions in which one of the two 

variables is X4.  If none of the 2-variable regressions gives low p-values for both X4 

and the other variable -STOP - Use the model utilizing only X4. 

If one or more of the 2-variable models gives low p-values for both X4 and 

the second variable, select the model with the lowest p-values. (Suppose it is the one 

with X4 and X6.) . Go to STEP 3. 

STEP 3. Do all possible 3-variable regressions in which two of the three 

variables are X4 and  X6. If none of the 3-variable regressions gives low p-values for 

each of  X4, X6,  and the other variable -STOP - Use the model utilizing only X3 and 

X5.  

If one or more of the 3-variable models  gives low p-values for X4,   X6 and 

the third variable, select the model with the lowest p-values.  

GO TO STEP 4 and continue this process. 

  

 

 

                                          Application 
 

To show  the stepwise regression procedure in generalized additive models 

we used the data from Wood (2006) produced by the gamSim function (see 

appendix). This function produced covariates that are candidate to be defined as 

smooth and linear function in generalized addive models. Figure 1 gives relationships 

betweeen response and  each covariates. From this figure we can predict that x0,x1,x2  

are the covariates to be in the model as nonparametric form where as x3 is the 

candidate to be in the lineer form. Table 1 reveals the result  from stepwise regression 

algorithm of generalized adittive models obtained by the penalized quasi-likelihood. 
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                                                        Figure 1. 

 

 
                  Table 1.  Stepwise Variable selection for Generalized Additive Models 

 
 

One Variable 

in the model 

 

Two Variables 

in the model 

 

Three Variables 

in the model 

 

X0   p= 0.01 

X1   p= 0.0059 

X2   p= 0.0009*** 

X3  p= 0.27 

 

Note:  X2   is chosen 

 

 

 

(X0 / X2) p= 0.54 

(X1 / X2) p= 0.00 

(X3 / X2) p= 0.74 

 

 

Note:  X1 is chosen  when  

X2  is already in the 

model. 

 

(X0 / X1, X2) p= 0.56 

(X3/ X1, X2) p= 0.15 

 

 

 

Note: X0 and X3  are not 

significant when X1  and  

X2  are already in the 

model. 
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When we enter each covariate individually, X2 provides the lowest p value so 

that X2 should be chosen at the first step. When X2  is already in the model we add X0, 

X1, X3 as second variabile. Since X1 has the smallest p-value, it should join the model 

at the second step. At the third step, none of the covariate  provides significant p-

value when X1 and X2 are already in the model. So our best model should consist of  

smooth function of  X1 and X2. Clearly, one big advantage of using Penalized Quasi 

likelihood is that we do not have to know the distribution of the response variable. 

We believe that this flexibility provides us to have many real data application in 

many fields. 
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APPENDIX   

 
The gamSim function; 

 

function (eg = 1, n = 400, dist = "normal", scale = 2)  

{ 

    if (eg == 1 || eg == 7) { 

        if (eg == 1)  

            cat("Gu & Wahba 4 term additive model\n") 

        else cat("Gu & Wahba 4 term additive model, correlated predictors\n") 

        x0 <- runif(n, 0, 1) 

        if (eg == 7)  

            x1 <- x0 * 0.7 + runif(n, 0, 0.3) 

        else x1 <- runif(n, 0, 1) 

        x2 <- runif(n, 0, 1) 

        if (eg == 7)  

            x3 <- x2 * 0.9 + runif(n, 0, 0.1) 

        else x3 <- runif(n, 0, 1) 

        f0 <- function(x) 2 * sin(pi * x) 

        f1 <- function(x) exp(2 * x) 

        f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 *  

            (10 * x)^3 * (1 - x)^10 

        f3 <- function(x) 0 * x 
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        f <- f0(x0) + f1(x1) + f2(x2) 

        if (dist == "normal") { 

            e <- rnorm(n, 0, scale) 

            y <- f + e 

        } 

        else if (dist == "poisson") { 

            g <- exp(f * scale) 

            f <- log(g) 

            y <- rpois(rep(1, n), g) 

        } 

        else if (dist == "binary") { 

            f <- (f - 5) * scale 

            g <- binomial()$linkinv(f) 

            y <- rbinom(g, 1, g) 

        } 

        else stop("dist not recognised") 

        data <- data.frame(y = y, x0 = x0, x1 = x1, x2 = x2,  

            x3 = x3, f = f, f0 = f0(x0), f1 = f1(x1), f2 = f2(x2),  

            f3 = x3 * 0) 

        return(data) 

    } 

    else if (eg == 2) { 

        cat("Bivariate smoothing example\n") 

        test1 <- function(x, z, sx = 0.3, sz = 0.4) { 

            (pi^sx * sz) * (1.2 * exp(-(x - 0.2)^2/sx^2 - (z -  

                0.3)^2/sz^2) + 0.8 * exp(-(x - 0.7)^2/sx^2 -  

                (z - 0.8)^2/sz^2)) 

        } 

        x <- runif(n) 

        z <- runif(n) 

        xs <- seq(0, 1, length = 40) 

        zs <- seq(0, 1, length = 40) 

        pr <- data.frame(x = rep(xs, 40), z = rep(zs, rep(40,  

            40))) 

        truth <- matrix(test1(pr$x, pr$z), 40, 40) 

        f <- test1(x, z) 

        y <- f + rnorm(n) * scale 

        data <- data.frame(y = y, x = x, z = z, f = f) 

        truth <- list(x = xs, z = zs, f = truth) 

        return(list(data = data, truth = truth, pr = pr)) 

    } 

    else if (eg == 3) { 

        cat("Continuous `by' variable example\n") 

        x1 <- runif(n, 0, 1) 

        x2 <- sort(runif(n, 0, 1)) 

        f <- 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 * x2)^3 *  

            (1 - x2)^10 

        e <- rnorm(n, 0, scale) 

        y <- f * x1 + e 

        return(data.frame(y = y, x1 = x1, x2 = x2, f = f)) 

    } 

    else if (eg == 4) { 

        cat("Factor `by' variable example\n") 

        n <- 400 

        x0 <- runif(n, 0, 1) 
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        x1 <- runif(n, 0, 1) 

        x2 <- runif(n, 0, 1) 

        f1 <- 2 * sin(pi * x2) 

        f2 <- exp(2 * x2) - 3.75887 

        f3 <- 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 * x2)^3 *  

            (1 - x2)^10 

        e <- rnorm(n, 0, scale) 

        fac <- as.factor(c(rep(1, 100), rep(2, 100), rep(3, 200))) 

        fac.1 <- as.numeric(fac == 1) 

        fac.2 <- as.numeric(fac == 2) 

        fac.3 <- as.numeric(fac == 3) 

        y <- f1 * fac.1 + f2 * fac.2 + f3 * fac.3 + e 

        return(data.frame(y = y, x0 = x0, x1 = x1, x2 = x2, fac = fac,  

           f1 = f1, f2 = f2, f3 = f3)) 

    } 

    else if (eg == 5) { 

        cat("Additive model + factor\n") 

        x0 <- rep(1:4, 50) 

        x1 <- runif(n, 0, 1) 

        x2 <- runif(n, 0, 1) 

        x3 <- runif(n, 0, 1) 

        y <- 2 * x0 

        y <- y + exp(2 * x1) 

        y <- y + 0.2 * x2^11 * (10 * (1 - x2))^6 + 10 * (10 *  

            x2)^3 * (1 - x2)^10 

        e <- rnorm(n, 0, scale) 

        y <- y + e 

        x0 <- as.factor(x0) 

        return(data.frame(y = y, x0 = x0, x1 = x1, x2 = x2, x3 = x3)) 

    } 

    else if (eg == 6) { 

        cat("4 term additive + random effect") 

        dat <- gamSim(1, n = n, scale = 0) 

        fac <- rep(1:4, n/4) 

        dat$f <- dat$f + fac * 3 

        dat$fac <- as.factor(fac) 

        if (dist == "normal") { 

            dat$y <- dat$f + rnorm(n) * scale 

        } 

        else if (dist == "poisson") { 

            g <- exp(dat$f * scale) 

            dat$y <- rpois(rep(1, n), g) 

        } 

        else if (dist == "binary") { 

            g <- (dat$f - 5) * scale 

            g <- binomial()$linkinv(g) 

            dat$y <- rbinom(g, 1, g) 

        } 

        return(dat) 

    } 
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