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Abstract

We consider the structural break autoregressive process where a time series has an

unknown number of break-points, and the time series follows a stationary AR model in

between any two break-points. It is well-known that the estimation of the locations of

the break-points involves huge computational challenges. By reformulating the problem

in a regression variable selection context, we propose in this paper a group least abso-

lute shrinkage and selection operator (LASSO) procedure to estimate the number and

the locations of the break-points, where the computation can be efficiently performed.

Simululation studies are conducted to assess the finite sample performance.

1 Introduction

Nonstationarity is a commonly found phenomenon in many practical situations. Although

sophisticated nonstationary models have been developed in different fields, they are usu-

ally difficult to interpret. By partitioning the nonstationary data into several contiguous

stationary segments, the notion of locally stationary models has become a popular device.

As parsimonious models can be entertained in each stationary segment, locally stationary

models offer a convenient and easy to interpret means to analyze nonstationary behavior.

Among different types of locally stationary models, the so-called structural-break or change-

point model has received particular attention. A well-known example is the change-in-mean

model, which is a useful alternative to the long-memory models in financial time series, see

e.g. Mikosch and Stǎricǎ (2000).
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Because an autoregressive (AR) model is often used to describe simple stationary time

series data, a particularly useful locally stationary model for describing the structural-break

or change-point behavior is the so-called (m + 1)-regime structural break autoregressive

(SBAR) model given by

Yt =

m+1∑
j=1

[βT
j Y t−1 + σjεt]I(tj−1 ≤ t < tj), (1.1)

where Y t−1 = (1, Yt−1, . . . , Yt−p)
T, βj = (βj0, βj1, . . . , βjp)

T ∈ Rp+1, j = 1, . . . ,m + 1, 1 =

t0 < t1 < . . . < tm+1 = n + 1. Herein, the time instincts {t1, . . . , tm} denote the change-

points when the parameter βj changes to βj+1 at time tj . The number of change points m

and the autoregressive order p are positive integers. The errors {εt} are independent and

identically distributed (i.i.d.) random variables with zero mean and unit variance, and εt is

independent of the past information {yt−j : j ≥ 1}.

As the regime-changing autoregressive structure offers a simple and intuitive means

for interpretation, the SBAR model has attracted considerable attention in diverse areas

such as signal processing, biological sciences, econometrics, environmental sciences, finance,

hydrology, physics and population dynamics. Information about these applications can be

found in Basseville and Benveniste (1983), Scolve (1983), Adak and Sarkar (1996), Andreou

and Ghysels (2008), Shao and Zhang (2010) and references therein.

At the same time, probabilistic properties and statistical inference for change-point

models have also been extensively studied. For example, Andrews (1993) considered test

of the break structure. Adak (1998) studied the spectral properties of the SBAR mod-

els. Omabao, Raz, Von Sachs and Malow (2001) considered locally stationary processes

for change-points, Bai and Perron (1998, 2003) studied the estimation and test of multi-

ple change point modeling for multiple linear regression. An excellent surveys on various

applications of structure break models can be founded in Kim and Nelson (1999).

Although the interpretation is simple, the estimation of SBAR model constitutes a diffi-

cult task. The reason is that one needs to consider all possible combinations of the locations

of m change-points, which requires extremely high computational burden for large m. In

the literature, m is usually assumed to be known and small. To tackle the computational

problem in estimation, Davis, Lee and Rodriguez-Yam (2006) apply the genetic algorithm
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(GA) to estimate the location of the breaks based on minimum description length (MDL).

In that paper, a consistency result for the breaks estimation is established only for a known

m. The computational burden of the GA estimation procedure is formidable when m ≥ 10,

however. With the rapid growth of high frequency data analysis, long time series with

possibly large number of change-points are often encountered. It is therefore imperative to

develop efficient methods for multiple change-point estimations.

The main goal of this paper is to propose a computationally efficient procedure to esti-

mate the change points and the auto-regressive parameters when m is large and unknown.

Motivated by the well-known least absolute shrinkage and selection operator (LASSO) of

Tibshirani (1996) and group LASSO of Yuan and Lin (2006) (for grouped variables cases),

we reformulate the problem of estimating multiple-regime SBAR models in a model selec-

tion context and apply the efficient group LASSO algorithm to alleviate the computationally

burden. The fast algorithm allows the estimation to be conducted in order O(n) and the

location of the breaks can be consistently estimated. One special case of this result is the

multiple change-point model considered by Harchaoui and Lévy-Leduc (2010),

Yt =
m+1∑
j=1

µjI(tj−1 ≤ t < tj) + εt,

where µj , j = 1, . . . ,m+ 1 are constants.

This paper is organized as follows. Section 2 presents the estimation procedure. Simu-

lation studies and real data applications are given Section 3 and 4 respectively.

2 Estimation

2.1 Group LASSO Estimate

In this subsection, we introduce the group LASSO estimation procedure and the asymptotic

theory for the estimate. Let Y 0
n = (Y1, Y2, · · · , Yn)T, η(n) = (σ1ε1, σ2ε2, · · · , σnεn)T, θ(n) =
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(θ1,θ2, . . . ,θn)T and Xn be an n× np matrix defined by

Xn =



Y T
0 0 0 . . . 0

Y T
1 Y T

1 0 . . . 0

Y T
2 Y T

2 Y T
2 . . . 0

...

Y T
n−1 Y T

n−1 Y T
n−1 . . . Y T

n−1



,

where YT
k = (Yk, Yk−1, . . . , Yk−p+1). Let θi = β1 and θtj = βj+1 for j = 1, . . . ,m. It can

be seen that model (1.1) can be expressed as a high dimensional regression model

Y 0
n = Xnθ(n) + η(n) . (2.1)

If {Yn} is generated from model (1.1) with m + 1 regimes, then only m + 1 of the θjs in

(2.1) are non-zeros, which implies that

n∑
j=1

||θj || ≤ Cm

for some constant C > 0, where || · || denotes the l2-norm. This inequality is similar to the

high-dimensional variable selection in group linear regression. Thus, we propose to estimate

θ(n) by the following group LASSO equation:

θ̂(n) = argminθ(n)
1

n
||Y 0

n −Xnθ(n)||2 + λn

n∑
i=1

||θi|| , (2.2)

where λn is the regularization parameter. Rewrite (2.1) as

Yt = βT
t Y t−1 + σtεt =: βT

t Y t−1 + ηt

and estimate β(n) = (β1,β2, . . . ,βn)T by

β̂1 = θ̂1 and β̂i =

i∑
j=1

θ̂j . (2.3)

Note that when θ̂j 6= 0, j ≥ 2, there is a change in the autoregressive parameter

β̂j . Thus the structural breaks tj , j = 1, 2, . . . ,m can be estimated by identifying those
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θ̂j , (j ≥ 2) which are not zero. Denote the estimates of the location of change points by

An = {j ≥ 2 : θ̂j 6= 0}. (2.4)

Let |An| be the cardinality of the set An and denote the elements of An by t̂1, t̂2, . . . , t̂|An|.

Note that m̂ := |An| is the estimated number of change point and t̂i is the i-th estimated

change point. We impose the following assumptions for the time series:

H1: {εt} is a white noise sequence with unit variance and E|ε1|4+δ <∞ for some δ > 0.

H2: min1≤i≤m0+1 ||β0
i − β0

i−1|| > 0, where m0 is the true number of break points.

H3: min1≤i≤m0+1 |t0i − t0i−1| > nεc for some εc > 0.

For the implementation of the group LASSO, an exact solution can be computed by

the block coordinated descent algorithm. On the other hand, a computationally efficient

approximation to the group LASSO solution can be achieved by the least angle regression

(LARS) algorithm. Empirical results show that the LARS algorithm usually gives good

approximation to the LASSO solution. The details of the two algorithms can be found in

Yuan and Lin (2006). In our simulation studies and data applications in Section 3 and 4,

the computationally efficient LARS algorithm is used. Simulation studies not given here

show that the LARS algorithm gives very similar solution as the exact block coordinated

descent algorithm.

Let Y = (Yp+1, Yp, . . . , Yn)T, Bj(r) be a p-dimensional vector with the i-th entry

being
∑n

t=j Yt−irt, i = 1, 2, . . . , p, where r is any n-dimensional vector. Define Ỹt =

(0 · · · 0 Yt Yt+1 · · · Yn−1)
T, where Yk = (Yk, Yk−1, . . . , Yk−p+1)

T. For any set A con-

taining m integers {a1, a2, . . . , am} , let XA = (Ỹa1 Ỹa2 · · · Ỹam). Note that Ỹt and XA are

matrices of dimension (n − p) × p and (n − p) ×mp respectively. The Euclidean norm is

defined by ‖z‖ =
√∑n

i=1 a
2
i for z = (z1, . . . , zn). The implementation the group LARS

algorithm on multiple change-points estimation is given below.

Algorithm

1. Initialization. Specify K, the maximum number of change-points, and ∆, the min-

imum distance between change-points. Set µ[0], k = 1, r[0] = Y , A0 = {∅} and

T1 = (p+ ∆, p+ ∆ + 1, . . . , n−∆).
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2. Compute the “most correlated set”

Ak = arg max
j∈Tk
‖Bj(r

[k−1])‖ .

3. Descent direction computation

γAk
= (X ′Ak

XAk
)−1X ′Ak

r[k−1] .

4. Descent step search: For j ∈ Tk \ Ak, define

aj = ‖Bj(r
[k−1])‖2 , bj = B′j(XAk

γAk
)Bj(r

[k−1]) , cj = ‖Bj(XAk
γAk

)‖2, dj = max
j∈Tk\Ak

aj .

Set α = minj∈Tk\Ak
αj ≡ αj∗ , where

α+
j =

(bj − dj) +
√

(bj − dj)2 − (aj − dj)(cj − dj)
cj − dj

,

α−j =
(bj − dj)−

√
(bj − dj)2 − (aj − dj)(cj − dj)

cj − dj
,

and

αj =


α+
j if α+

j ∈ [0, 1] ,

α−j if α−j ∈ [0, 1] .

5. If α 6= 1 or k < K, updateAk+1 = Ak∪{j∗}, Tk+1 = Tk\{j∗−∆, j∗−∆+1, . . . , j∗+∆},

µ[k] = µ[k−1] +αXAk
γAk

and r[k] = Y −µ[k]. Set k = k+1 and repeat 3-6. Otherwise,

return Ak as the estimated change-points.

By regarding each possible change-point as one explanatory variable to the time series

(the response variable), the LARS algorithm begins by looking for the variable most corre-

lated with the response and proceeds on this direction. The LARS takes the largest step in

this direction until some other explanatory variable has as much correlation with the current

residual. Then the algorithm keeps on searching for the most correlated set and go into

the direction such that all the currently selected variables have the same correlation with

the current residual. The procedure is repeated until the maximum number of variables

are selected. For more details about the LARS and group LARS algorithm, see Yuan and

Lin (2006) and Efron et al. (2004).
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2.2 Two-step estimation procedure

As we do not know the number of change-points in advanced, in the estimation procedure

we assumed that the number is upper bounded by K and searched for K most probable

change-points. Thus, the number of estimated change-points is always overestimated. Also,

simulation studies reveals that there tends to be more than one estimates clustering around a

true change-point. This can be explained by the fact that when expressing the change-point

estimation problem as a high-dimensional regression problem, the matrix of explanatory

variables Xn has columns that are nearly identical. For example, the different between the

first two columns is only the YT
0 term in the first entry. Thus, assigning a coefficient β to

the first variable is similar to assigning β/2 to each of the first and the second variables.

Note that this inconsistency is not contradict to the standard theory of high-dimensional

regression since the standard assumption that ensures little dependency among explanatory

variables is violated.

Two immediate issues arise: (i) how to estimate the true number of breaks m0, and (ii)

how to estimate the change points with a nearly optimal rate? These two issues are dealt

with in this subsection.

Although the number of change-points is over-estimated, the estimated set An should

identify all the true change-points within a small neighborhood. One way to achieve this

mission is to choose the “best possible subset” of change-points in An according to some

prescribed information criterion (IC). Given m and the change-points t = (t1, . . . , tm),

an information criterion IC(m, t) typically consists of a sum of a goodness-of-fit mea-

sure and a penalty term that accounts for the model complexity. Specifically, let
̂̂
βj =

(
∑tj−1

t=tj−1
Y t−1Y

T
t−1)

−1∑tj−1
t=tj−1

Y t−1Yt be the least squares estimator and Sn(tj−1, tj) =∑tj−1
t=tj−1

(Yt −
̂̂
βjY t−1)

2 be the residual sum of squares. Consider a general information

criterion of the form

IC(m, t) = Sn(t1, t2, . . . , tm) +mωn , (2.5)

where the least squares criterion Sn(t1, t2, . . . , tm) =
∑m+1

j=1 Sn(tj−1, tj) is the goodness-of-fit

measure and ωn is the penalty term. We estimate the number and locations of the change
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points by solving

( ˆ̂m, ˆ̂t) = arg min
m∈(0,1,...,|An|),
t=(t1,...,tm)⊂An

IC(m, t) , (2.6)

Some commonly used information criteria that take similar forms as (2.5) are the BIC of

Yao (1988) and the MDL of Davis, Lee and Rodgridiz-Yam (2006). In these papers, the best

subset of change-points is chosen over all possible locations, which could be computationally

challenging when m0 is large. In contrast, the minimizing domain in (2.6) is a much smaller

set, namely over the set An. In practice, all possible subsets of A have to be evaluated to

yield the change-points estimates.

When |An| is large, it is possible to achieve further computational efficiency by using the

following backward elimination algorithm (BEA). Intuitively, the BEA starts with the set

of change-points An, then removes the “most redundant” change-points that corresponds

to the largest reduction of the IC. The preceding step is repeated successively until no

further removal is possible. Specifically, the BEA goes as follows.

1. Set K = |An|, tK := (tK,1, . . . , tK,K) = An and V ∗K = IC(K,An).

2. For i = 1, . . . ,K, compute VK,i = IC(K − 1, tK\{tK,i}). Set V ∗K−1 = mini VK,i.

3. • If V ∗K−1 > V ∗K , then the estimated locations of change-points are A∗n = tK .

• If V ∗K−1 ≤ V ∗K and K = 1, then A∗n = ∅. That is, there is no change-point in the

time series.

• If V ∗K−1 ≤ V ∗K and K > 1, then set j = arg mini VK,i, tK−1 := tK\{tK−1,j} and

K = K − 1. Go to step 2.

For example, suppose that from the first step, m̂ = 3 and An = (t̂1, t̂2, t̂3). The BEA

works as follows. First, start with all the change points and compute V ∗3 = IC(3,An) = 10,

say. Then consider removing one change point at a time, i.e., consider the three sets

(t̂1, t̂2), (t̂1, t̂3) and (t̂2, t̂3), and compute V3,1 = IC(2, (t̂1, t̂2)), V3,2 = IC(2, (t̂1, t̂3)) and

V3,3 = IC(2, (t̂2, t̂3)), respectively. Suppose that (V3,1, V3,2, V3,3) = (11, 10.5, 12), then V ∗2 =

mini V3,i = 10.5 > 10 = V ∗3 , which means removing any one change point cannot reduce

the IC. Thus all three change points are important and it can be concluded that ˆ̂m = 3,
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ˆ̂t = (t̂1, t̂2, t̂3). On the other hand, if (V ∗3 , V3,1, V3,2, V3,3) = (10, 9, 10.5, 8), then V ∗2 = 8 <

10 = V ∗3 , which indicates that removing t̂1 corresponds to the largest reduction of the IC.

Thus we conclude that (t̂2, t̂3) is a better subset, and proceed to check if further reduction

is possible.

Using the BEA algorithm, we obtain the final estimate A∗n =: (t̂∗i , . . . , t̂
∗
|A∗

n|
), which is

an accurate and computationally efficient estimates for the change-points.

In summary, when the true number of the change points m0 is unknown, applying the

one-step LASSO procedure, we cannot estimate m and the true set of change points A

exactly. In fact we only obtain an estimate of A, An, say, which contains more points than

the true number of change points. What we can say is that in the set An, there exists a

subset A∗n, which estimates A consistently. But we do not know exactly what A∗n is. By

going through a second-step selecting procedure, we are able to estimate the true number

m0.

Remark 2.1. To simplify notations and to facilitate the presentation, we assumed that the

autoregressive order p is known and is the same for all segments. This assumption can be

relaxed so that the order of each segment is an unknown integer less than p∗. In this case

each segment can be regarded as a p∗-th order autoregressive model with the last coefficients

equaling zero. In practice, we first estimate the change-points by the two-step procedure

using a sufficiently large order p∗ for each segment, then identify the order of each segment

by applying standard procedures such as BIC or Cp on each estimated segment.

3 Simulation Results

In this section, we report the simulation results to assess the finite sample behavior of the

procedure. Three sets of simulation studies are conducted. The first two sets are adapted

from Davis, Lee and Rodriguez-Yam (2005) for comparisons. The third set of simulation

investigates the performance of the procedure for long time series. In all simulation experi-

ments, we used the penalty term of the Minimum Description Length principle (Davis, Lee

and Rodgriduz-Yam (2006)) for the information criterion. Also, the autoregressive order p

is fixed at 5 for each segment.
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3.1 Piecewise Stationary Process with Dyadic Structure

The time series in this example is generated from the model

Yt =



0.9Yt−1 + εt , if 1 ≤ t ≤ 512 ,

1.69Yt−1 − 0.81Yt−2 + εt , if 513 ≤ t ≤ 768 ,

1.32Yt−1 − 0.81Yt−2 + εt , if 769 ≤ t ≤ 1024 ,

(3.7)

where εt ∼ iid N(0,1). In the example, 200 realizations are simulated from model (3.7)

and estimated by the two-step procedure. The estimation results for two-step procedure

are summarized in Table 1, in which the performance of Auto-PARM reported in Davis,

Lee and Rodriguez-Yam are compared. The percentage (%) of the estimated number of

segments, the mean and standard error of the location estimates are reported. Note that

the two-step procedure gives the correct number of segments in all the 200 realizations,

whereas Auto-PARM gives the correct segmentation for 96% of the realizations.

Table 1: Estimated breakpoints from Auto-PARM and two-step estimation procedure (3.7).

Number of Auto-PARM Two-Step

segments (%) Mean SE (%) Mean SE

3 96.0 0.500 0.007 100 0.500 0.012

0.750 0.005 0.750 0.011

4 4.0 0.496 0.004 0

0.566 0.108

0.752 0.003

3.2 Short Segments

This example compares the performance between the two-step procedure and the Auto-

PARM of the following process.

Yt =


0.75Yt−1 + εt , if 1 ≤ t ≤ 50 ,

−0.5Yt−1 + εt , if 51 ≤ t ≤ 1024 ,

(3.8)
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where εt ∼ iid N(0,1). Similar to the preceding example, 200 realizations are simulated

from model (3.8). It is reported in Davis, Lee and Rodriguez-Yam (2005) that the mean of

the relative position estimates of the change-point is 0.042, with a standard error of 0.004.

Using the two-step procedure, the mean of the relative position estimates of the change-

point is 0.049, with a standard error of 0.004. The two-step procedure has a much smaller

bias than the Auto-PARM in this example.

3.3 Long Time Series

In this section we demonstrate the performance of the two-step procedures in change-points

estimation for several long time series with a large number of change-points. With the

rapid growth of high frequency data analysis, time series with length over 10,000 are often

encountered. As the time series becomes longer, there may be more change points. The

two-step procedure developed in this paper, which inherits the computational efficiency

from the LASSO, is well-suited for this situation. Consider three scenarios of long time

series with 8 change points, with series lengths ranging from 10,000 to 50,000. Different

patterns of the true change points locations are studied. In particular, the change points are

evenly located (Scenario 1), located in the first half of the series (Scenario 2) and clustered

near the beginning and the end of the sample. (Scenario 3). Since the main focus is about
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estimating locations, for illustration, consider the following piecewise stationary segments.

Yt =



0.9Yt−1 + εt, if 1 ≤ t ≤ t1,

1.69Yt−1 − 0.81Yt−2 + εt, if t1 ≤ t ≤ t2,

1.32Yt−1 − 0.81Yt−2 + εt, if t2 ≤ t ≤ t3,

0.7Yt−1 − 0.2Yt−2 + εt, if t3 ≤ t ≤ t4,

0.1Yt−1 − 0.3Yt−2 + εt, if t4 ≤ t ≤ t5,

0.9Yt−1 + εt, if t5 ≤ t ≤ t6,

1.32Yt−1 − 0.81Yt−2 + εt, if t6 ≤ t ≤ t7,

0.25Yt−1 + εt, if t7 ≤ t ≤ t8,

−0.5Yt−1 + 0.1Yt−2 + εt, if t8 ≤ t ≤ T,

(3.9)

where εt ∼ iid N(0,1). In this example, 200 realizations are simulated from model (3.9) with

different values of t = (t1, t2, . . . , t8) estimated by the two-step procedure. The estimation

results are reported in Table 2. The percentage (%) of the estimated number of segments,

the mean and standard error of the location estimates are reported. Despite the length

of the time series, the computation of a two-step estimation procedure can be completed

within 20 seconds. The estimation accuracy is also extremely high. On the other hand,

the implementation of the AutoPARM of Davis, Lee and Rodriguez-Yam (2005) requires a

large number of replications in computing the criterion function. In particular, their typical

specification of 50 islands, 200 genes and 20 generations requires 50 × 200 × 20 = 200, 000

evaluations of the criterion function, which takes around 20 minutes for a time series of

length n = 10, 000. All computations are performed using the program R on a laptop with

an Intel Core i5 480M processor.
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Table 2: Estimated breakpoints from two-step estimation procedure (3.9).

Scenario 1 Scenario 2 Scenario 3

T 10000 20000 50000

Computing Time 4s 7s 18s

% of m̂ = 8 90 84 98

True Mean SE True Mean SE True Mean SE

t1/T 0.1 0.1022 0.0091 0.1 0.1001 0.0010 0.01 0.0102 0.00264

t2/T 0.2 0.2008 0.0012 0.2 0.1998 0.00042 0.1 0.1000 0.00025

t3/T 0.3 0.3001 0.0010 0.25 0.2499 0.00048 0.15 0.1500 0.00058

t4/T 0.4 0.3942 0.0088 0.3 0.2984 0.0032 0.2 0.1998 0.00035

t5/T 0.5 0.4999 0.0012 0.35 0.3501 0.00090 0.8 0.8000 0.00014

t6/T 0.6 0.5999 0.0010 0.4 0.4001 0.00081 0.85 0.8499 0.00024

t7/T 0.75 0.7501 0.0011 0.45 0.4501 0.00057 0.9 0.9000 0.00014

t8/T 0.8 0.7998 0.0016 0.5 0.4998 0.00070 0.99 0.9891 0.00493

4 Applications

4.1 Electroencephalogram Analysis

Electroencephalogram (EEG) displays the brain wave pattern measured by brain electrical

potentials from two electrodes across the scalps of a subject. Figure 1 shows an electroen-

cephalogram (EEGs) recorded from a female patient diagnosed with left temporal lobe

epilepsy. The EEG was recorded with a sampling rate of 100Hz for a total of 5 min-

utes and 28 seconds, with the sample size n=32,768. This dataset has been modeled as a

piecewise stationary time series in Ombao et al. (2001, 2005) and Davis, Lee and Rodriguez-

Yam (2005). The estimated locations of the Lasso procedure to the EEG series is given in

Table 3. The Lasso procedure results in 9 segments, corresponding to the vertical dash-lines

in Figure 1. Note that the location estimates of the change points are in close agreement

with those obtained by the Auto-PARM of Davis, Lee and Rodriguez-Yam (2005). In par-

ticular, the estimated starting time for the seizure is t = 184.23 seconds, which is very

close to the neurologist’s estimate of 185 seconds and the estimate of 185.8 seconds by

Auto-PARM.
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Figure 1: EEG time series recorded from a female patient diagnosed with left temporal lobe epilepsy.
The vertical dash lines correspond to the estimates of the change-point locations.

4.2 Reventador Vocano Explosion

Lees et al. (2008) studied the association between seismic recordings and the explosive

activities of the Reventador Volcano located in the Ecuadorian Andes, South America.

Figure 2 displays the vertical component of the explosion tremor in 1,000 seconds recorded

from a seismo-acoustic station on August 2, 2005. The sample size is n = 100, 000. Lees et

al. (2008) qualitatively categorize the seismic signals into seven phases of volcanic activities.

The Lasso procedure results in 12 segments, corresponding to the vertical dash-lines in

Table 3: Estimated breakpoints from the Lasso two-step estimation procedure and Auto-PARM.

Locations of change points (seconds)

1 2 3 4 5 6 7 8 9 10 11

Two-step 184.23 206.11 219.97 234.17 255.39 276.71 305.69 324.95 - - -

Auto-PARM 185.8 189.6 206.2 220.9 233.0 249.0 261.6 274.6 306.0 308.4 325.8
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Figure 2: Vertical component of the Reventador Volcano explosion tremor in 1000 seconds. The
vertical dash lines correspond to the estimates of the change-point locations.

Figure 1. The locations of phase-changes suggested by Lees et al. (2008) are fairly well

identified by the Lasso procedure. Note that the Lasso procedure breaks this seismic signal

into finer pieces, which suggests the possibility that more subtle volcanic activities exist.

4.3 Standard & Poor’s 500 Index

We applied the Lasso procedure to analyze the returns of Standard & Poor’s 500 index

from Jan 2, 2004 to April 29, 2011. The log returns are shown in Figure 3a. It can be

seen that the returns started becoming more volatile in 2007 and in the period from mid

2008 to mid 2009, the return fluctuates vigorously, which suggest structural changes in the

volatility. Since the ARCH model is commonly used to model volatilities in log-returns

and it is well-known that the square of a ARCH process can be regarded as an AR process

(e.g., Chan (2010)), the structural changes in volatilities in the returns can be regarded as

the structural changes in the autoregressive structure of the squared returns series. Thus
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we can apply the Lasso change-point estimation procedure on the squared returns series.

Figure 3b shows the squared log-returns of the S&P 500 index and the estimated change-

points. The estimated change-points are located on July 10, 2007, September 15, 2008

and April 7, 2009. Referring to the history of the financial crisis, these estimated locations

can be well interpreted. In particular, on July 11, 2007, Standard and Poors placed 612

securities backed by subprime residential mortgages on a credit watch, which preludes the

panic of the market; on September 15, 2008, Lehman Brothers Holdings incorporated filed

for bankruptcy protection and triggered the financial crisis. The last estimated change-

point corresponds to the Quantitative Easing (QE) policy where the US Federal Reserve

gradually purchased around $1 trillion debt, Mortgage-backed securities and Treasury notes

in the early 2009, which stimulated the economy and reduced the volatility in the market.
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Figure 3: a) Daily log-returns of the Standard and Poor’s (S&P) 500 Index from January 2, 2004
to April 29, 2011. b) Squared valued of the S&P 500 Series. The vertical dash lines correspond to
the estimates of the change-point locations.
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