
Smoothing Goodness-of-Fit tests based on Kullback-Leibler Information

Han Yu∗ Kai-Sheng Song †

Abstract
We present asymptotically distribution-free goodness-of-fit tests based on smoothing techniques.

The proposed tests is a nonparametric extension of the classical Neyman-Pearson log-likelihood
ratio test. The tests are indicated to have much greater power for detecting high-frequency nonpara-
metric alternatives than the existing classical tests such as Kolmogorov-Smirnov tests. This good
performance of the proposed tests is demonstrated by Monte Carlo simulations.
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1. Introduction

In the hypothesis testing setting, Song (2002) presents a general methodology for devel-
oping asymptotically distribution-free goodness-of-fit tests based on the Kullback-Leibler
discrimination information. The tests are shown to be omnibus within an extremely large
class of nonparametric global alternatives and to have good local power; The test procedure
is a nonparametric extension of the classical Neyman-Pearson likelihood ratio test based on
the mth-order spacings between order statistics cross-validated by the observed log likeli-
hood. It can also be viewed as a procedure based on sum-log functionals of nonparametric
density-quantile estimators crossed-validated by the log-likelihood. With its good power
properties, the method provides an extremely simple and potentially much better alternative
to the traditional empirical CDF-based test procedures.

Consider the following goodness-of-fit test problem:

H0 : f(x) = f0(x, θ), for some θ ∈ Θ

where the parameter vector θ is specified or unspecified. To test H0, we consider the
Kullback-Leibler discrimination information between two distribution functions given by

I(F, F0; θ) =

∫ ∞

−∞
f(x) log(f(x)/f0(x, θ))dx

= −H(F )−
∫ ∞

−∞
log f0(x, θ)dF (x)

where

H(F ) := −
∫ ∞

−∞
log f(x)dF (x)

is the entropy of F. The entropy estimator is given based on the mth-order spacings between
order statistics:

Hmn := n−1
n∑

i=1

log
n

2m
(X(i+m) −X(i−m)).
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Here, the window width m is a positive integer smaller than n/2. A test statistic of
goodness-of-fit is proposed

Imn = −Hmn − 1

n

n∑
i=1

log f0(Xi, θ̂n).

Since large values of I(F, F0; θ) favor the alternative hypothesis to H0 and Imn is the
sample estimate of I(F, F0; θ), we reject H0 if Imn is large.

Note that the calculation of the test statistic Imn involves the density function f0 which
is readily available in an explicit form in almost all commonly encountered cases. This is
in contrast with procedures like empirical CDF-based tests requiring the evaluation of the
cumulative distribution which may not have a closed form such as multiparameter beta and
gamma distributions.

Let’s consider the standardized test statistic:

Smn := (6mn)1/2(Imn − log(2m)− γ +R2m−1)

where

Rm :=
m∑
j=1

1/j

and γ := limn→∞(Rn−log n) is the Euler constant. Under H0 and certain mild conditions,
we have

Smn
D→ N(0, 1), as n → ∞

The asymptotic theory suggests that m should be chosen adaptively according to the
sample size. For example, any m ranging from c(log n)1+δ to cn1/3/(log n)2/3+2δ for
some constants c > 0 and δ > 0 would ensure the distribution property and consistency of
the test. In practice, of course, a general guide for the choice of m for a fixed and finite n
would be valuable to the users since for each finite n the distribution of the test statistic is
dependent on the choice of m. Data-driven method of choosing m:

m̂ : min

{
m∗ : m∗ = argmax

m
{Hmn : Hmn ≤ − 1

n

n∑
i=1

log f0(Xi, θ̂n)}
}

i.e., m̂ is defined to be the smallest m̂ that maximizes the sample entropy Hmn constrained
by the observed log likelihood.

However, there are some limitations to this test: finding the optimal choice (say, in
terms of power) of m is clearly a difficult problem; The test Smn using the mth-order
spacing between the order statistics can be viewed as the mth nearest neighbor method of
smoothing

f̂(x) =
1

ndm(x)

n∑
i=1

K

(
x−Xi

dm(x)

)
.

where for each x,

d1(x) ≤ d2(x) ≤ · · · ≤ dn(x)
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are the distances, arranged in ascending order, from x to the points of the sample. In
the tails of the distribution, the distance dk(x) will be larger than in the main part of the
distribution, resulting in causing large bias due to oversmoothing in the tails.

Based on the test statistic proposed by Song(2002), we propose a new scheme to im-
prove it. Due to the fact that the mth nearest neighbor method in effect can be viewed as a
variable triangle kernel, its derivative of the triangular kernel will be symmetric boxes. Ge-
ometrically, we naturally extend the symmetric boxes to symmetric smoothing curve, which
is the derivative of the smoothing kernel. Then we propose the general kernel smoothing
method to be our smoothing strategy.

Hmn := n−1
n∑

i=1

log

 ∑
mi<j≤m̄i

ωijnX(j)

 .

where ωijn:=
1
h2

∫ j
n
j−1
n

k(
1
n
−y

h )dy, mi:=⌊i−nh⌋, m̄i:=⌈i+nh⌉. The kernel smooth-

ing strategy will provide more flexibility and overcome the drawbacks of the mth nearest
neighbor method. With the kernel smoothing methodology, the selection of the smoothing
parameter h can be made much easier than that of the smoothing parameter m in the nearest
neighbor method.

2. Simulation

In this section we explore practical performance of our testing procedures via Monte Carlo
simulation studies. We focus mainly on investigating the error level and power of the pro-
posed tests, obtained via calculating the number of times the null hypothesis was rejected
among the number of simulations carried out. If the null hypothesis were true, this propor-
tion should be small, and if the null hypothesis were false this proportion should be close
to one.

We study the results of Monte Carlo simulations based on samples from a standard
uniform distribution for sample sizes from n = 800 to 1700 by 50 with repetitions of
50000. We choose hn ≍ n−2/3 log−4/3 n log log−2 n suggested by our asymptotic results.
Tests of nominal level 0.05 are considered. The results of the level study are given in Table
1. The table show the proposed nonparametric test held its level reasonably well.

Table 1: Table 1: Level Values for The Test under H0

sample size n=800 n=850 n=900 n=950 n=1000
level 0.08 0.0642 0.0792 0.0508 0.0562

sample size n=1050 n=1100 n=1150 n=1200 n=1250
level 0.049 0.0546 0.0692 0.0574 0.0588

sample size n=1300 n=1350 n=1400 n=1450 n=1500
level 0.0582 0.0482 0.0474 0.0414 0.0392

sample size n=1550 n=1600 n=1650 n=1700
level 0.042 0.0322 0.0422 0.0476

To investigate the power of the proposed tests, power comparison of the Kolmogorov-
Smirnov tests and the proposed nonparametric tests are made for the alternative (1) in the
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Table 2. The procedure was conducted as follows: generate random samples of different
sizes from n = 800 to 2000 by 50 from the collection of probability densities of the form

fk(t) = f0(t) + ρnsin2kπt (1)

where ρn ≍ n− 1
4 and k ≍ n

1
4 by rejection method. We choose hn ≍ n−2/3 log−4/3 n log log−2 n

for the proposed tests suggested by our asymptotic results. The significant level α equals
0.05. All Monte Carlo experiments were replicated 50000 times.

The simulations show that the powers of the Kolmogorov-Smirnov tests do not exceed
10% even when the sample size is large enough while our proposed nonparametric tests
have power around 90%. As would be expected, the proposed nonparametric tests perform
more powerful in comparison to the Kolmogorov-Smirnov tests especially for alternatives
containing the high frequency data components.

Table 2: Table 2: Power Values for The Test under H1

sample size n=800 n=850 n=900 n=950 n=1000
power 0.916 0.884 0.952 0.884 0.888

KS power 0.096 0.116 0.072 0.1 0.088
sample size n=1050 n=1100 n=1150 n=1200 n=1250

power 0.912 0.9 0.912 0.928 0.892
KS power 0.072 0.068 0.08 0.096 0.1

sample size n=1300 n=1350 n=1400 n=1450 n=1500
power 0.908 0.884 0.912 0.856 0.856

KS power 0.08 0.084 0.104 0.096 0.084
sample size n=1550 n=1600 n=1650 n=1700 n=1750

power 0.876 0.856 0.864 0.884 0.892
KS power 0.084 0.088 0.112 0.108 0.1

sample size n=1800 n=1850 n=1900 n=1950 n=2000
power 0.912 0.896 0.916 0.876 0.896

KS power 0.068 0.072 0.092 0.088 0.08

In summary, the proposed nonparametric tests did a reasonable job of holding their
levels. In terms of power, based on the sample size, the selected bandwidth suggested by
our asymptotic results is the best choice to distinguish the nonparametric alternatives from
the null.
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