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Abstract

D-optimal minimal designs have been obtained for di�erent mixture models with minimal

support design points, i.e., the number of design points is equal to the number of parameters

in the model. To test Lack of Fit, we need to add at least one additional distinct design point.

Those distinct design points are within the design space with all factor levels greater than

zero for practical reasons. We will discuss second-degree mixture model and second-degree

mixture model with main e�ects and two factor interactions including one common factor.

The new design will be compared with other possible designs for testing Lack of Fit.
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1 Introduction

Mixture experiments, where the predictor variables are proportions of ingredients adding to 1, are
increasingly used in industry, such as food processing, chemical formulations, textile �bers, phar-
maceutical drugs, etc. Consider a product formed by q non-negative factor levels (x1, x2, . . . , xq)
such that

∑q
i=1 xi = 1, xi ≥ 0 for all i. The q-proportions can be expressed as a column vector

x = (x1, . . . , xq)
′
in the (q-1)-dimensional simplex space. In this context, (x1, x2, . . . , xq) are called

design points.
Sche�é (1958,1961,1963) presented the canonical polynomial mixture models such as linear,

second-degree, special cubic mixture model, etc. D-optimal designs have been obtained for dif-
ferent types of mixture models. For example, Kiefer (1961) has found the D-optimal design for
second-degree model. Lim (1990) has determined the D-optimal design for special cubic model.
Chan (2000) summarized analytic and numeric solutions of optimal designs for various regression
models for experiments with mixtures, which include polynomial models, log contrast models,
models containing inverse terms, models with quantitative variables, etc. Those designs usually
contain minimal support design points, i.e., the number of design points is equal to the number
of parameters in the model. For a detailed discussion on mixture designs, the reader is referred
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to Cornell (2002). We need to add at least one additional design point to test Lack of Fit. Those
additional design points are not any of the minimal support design points.

In this paper, we start with D-optimal minimal design and aim to �nd one additional design
point to test Lack of Fit. The location of the additional design point is inside the design space
and away from the boundary points (such as vertices, edges, faces etc) for practical reasons. The
new design will be compared with other possible designs for testing Lack of Fit.

2 Second-degree Mixture Model

Sche�é's second-degree mixture model �ts data well in many cases and has been used extensively.
It is de�ned as

y =

q∑
i=1

βixi +

q∑
j=1

q∑
i<j

βijxixj + ε. (1)

There are a total of q(q+1)
2

parameters in the model and hence at least q(q+1)
2

design points are
needed to estimate all parameters. Without loss of generality, we consider second-degree mixture
model with 3 or more factors.
D-optimal Minimal Design

Kiefer (1961) proved that the (q, 2) simplex-centroid design is D-optimal. Galil and Kiefer
(1977) showed that this design performs well in terms of variance and bias, for �tting the second-
degree mixture model. The design assigns equal weight to each of the extreme vertices ↔
(1, 0, . . . , 0) and the edge midpoints ↔ (1

2
, 1
2
, 0, . . . , 0). Consider the design matrix

X =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
... . . . . . . . . . . . . . . .

...
0 0 . . . 1 0 . . . 0
1/2 1/2 . . . 0 1/4 . . . 0
... . . . . . . . . . . . . . . .

...
0 . . . 1/2 1/2 0 . . . 1/4


=

[
X11 X12

X21 X22

]
,

where X11 = Iq, where Iq is an identity matrix of order q, X12 is a zero matrix of q × q(q−1)
2

,
X22 = 1

4
Iq(q−1)

2

, and

X21 = (xij,k) =

{
1
2

when i = k or j = k,
0 otherwise

with ij representing all interaction terms of factors i and j, i, j, k = 1, 2, . . . , q and i < j.
To test Lack of Fit, we need to add at least one additional distinct design point. The additional

point extends the design matrix X with the additional row

z
′
=
[
x1 x2 . . . xq x1x2 . . . xq−1xq

]
,

repeated t times to provide error sum of squares to test Lack of Fit. We take t responses and take
its average as the required response in the analysis. Assume the responses to be independent and
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the variance-covariance matrix for the response vector is

V =

[
Iq(q+1)

2

0

0 1/t

]
,

where t is the number of replicates of additional design point consisting of the �rst q components
of z′.
The determinant of the new information matrix is

|X∗′V−1X∗| = |X′X|[1 + tz
′
(X

′
X)−1z],

where X* is the new design matrix augmenting z′ as the last row to the design matrix X. It is
a linear increasing function of t. We choose t as the value constrained by the �xed total budget.
Let Ci be the cost of collecting data at the ith point and C0 be the total cost. We have

t = (C0 −

q(q+1)
2∑

j=1

Cj)/C(
q(q+1)

2
+1)
.

Under such constraint, maximizing the determinant |X∗′V−1X∗| is equivalent to maximizing
z
′
(X

′
X)−1z.

Inverse of the X′X Matrix

Let

X′X =

[
A11 A12

A21 A22

]
,

where A11 = q+2
4
Iq +

1
4
Jq, A22 = 1

16
Iq(q−1)

2

, and Jq is the matrix of ones of order q. A12 = (ak,ij)

is a q × q(q−1)
2

matrix,

A12 = (ak,ij) =

{
1
8

when k = i or k = j,
0 otherwise.

where i, j, k = 1, 2, . . . , q and i < j and A21 = A12
′
.

Since X′X is non-singular, let

(X′X)
−1

=

[
D11 D12

D21 D22

]
=

[
A11

−1(I+A12F
−1A21A11

−1) −A11
−1A12F

−1

−F−1A21A11
−1 F−1

]
,

where F = A22 −A21A11
−1A12 and is non-singular. It can be veri�ed that

A11
−1 =

4

q + 2
{Iq −

1

2(q + 1)
Jq},

A12A21 =
q − 2

64
Iq +

1

64
Jq,

3
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and

A21A12 = (ajl,j′l′) =


1
32

when j = j′ and l = l′
1
64

when j = j′ or j = l′ or l = j′ or l = l′

and j 6= j′ and l 6= l′

0 otherwise

where j, j′, l, l′ = 1, 2, . . . , q, j < l and j′ < l′.
Note that

A21A12 =
1

32
Iq(q−1)

2

+
1

64
B1,

where B1 is the association matrix of the �rst associates in a triangular association scheme of order
q(q−1)

2
(See Raghavarao, 1971). Let B0, B1 and B2 be the association matrices of a triangular

association scheme. We know the following results from Raghavarao (1971):

B0 = Iq(q−1)
2

,
2∑

i=0

Bi = Jq(q−1)
2

, (2)

B1B2 = (q − 3)B1 + (2q − 8)B2, (3)

B2
1 = 2(q − 2)B0 + (q − 2)B1 + 4B2, (4)

and

B2
2 =

(q − 2)(q − 3)

2
B0 +

(q − 3)(q − 4)

2
B1 +

(q − 4)(q − 5)

2
B2. (5)

Now we have

F = A22 −A21A11
−1A12

=
1

16
Iq(q−1)

2

− 4

q + 2
(
1

32
Iq(q−1)

2

+
1

64
B1) +

1

8(q + 1)(q + 2)
Jq(q−1)

2

.

(6)

F can be rewritten as F = a0B0 + a1B1 + a2B2, where a0 = q2+q+2
16(q+1)(q+2)

, a1 = − q−1
16(q+1)(q+2)

, and

a2 =
1

8(q+1)(q+2)
.

Let
(a0B0 + a1B1 + a2B2)

−1 = b0B0 + b1B1 + b2B2.

We solve for b0, b1, b2 in terms of a0, a1 and a2, using (2) - (5), and get

b0 = 24 , b1 = 4 , b2 = 0.

Hence
D22 = F−1 = 24B0 + 4B1 = 24Iq(q−1)

2

+ 4B1.

Since

A12B1 = (q − 4)A12 +
1

4
J
q×q(q−1)

2

,

4
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we have

D12 = −A11
−1A12F

−1

=
−4
q + 2

(Iq −
1

2(q + 1)
Jq)A12(24Iq(q−1)

2

+ 4B1)

= −16A12 + {
2

(q + 1)
− 4

(q + 2)
+

2q

(q + 1)(q + 2)
}J

q×q(q−1)
2

= −16A12,

D21 = D
′

12 = −16A21,

and

D11 = A11
−1(Iq +A12F

−1A21A11
−1)

= A11
−1(

q + 2

4
Iq +

1

4
Jq)

= Iq.

Thus, we have

(X′X)−1 =

[
Iq −16A12

−16A21 24Iq(q−1)
2

+ 4B1

]
. (7)

Selecting One Additional Design Point

We want to take one additional design point (x1, x2, . . . , xq) to test Lack of Fit. The added
design point is displayed in the design matrix X∗ as

z
′
=
[
x1 x2 . . . , xq, x1x2 . . . , xq−1xq

]
=
[
v
′

u
′ ]
,

where v
′
=(x1, x2, . . . , xq) and u

′
=(x1x2, x1x3, . . . , xq−1xq).

To maximize z
′
(X

′
X)−1z, such that v

′
1 = 1, where 1 is a column vector of ones, consider

f(x) =
[
v
′
u
′ ]

(X
′
X)−1

[
v
u

]
− 2λ(v

′
1− 1), (8)

where λ is a Lagrange multiplier.
Di�erentiating (8) w.r.t v and equating to zero, we get

∂

∂v
{
[
v
′
u
′ ]}[ Iq −16A12

−16A21 24Iq(q−1)
2

+ 4B1

] [
v
u

]
= λ1, (9)

Let
∂

∂v
{
[
v
′
u
′ ]} = [ Iq K

]
where

K =


x2 x3 . . . xq 0 0 . . . 0
x1 0 . . . 0 x3 x4 . . . 0

. . . . . . . . . . . . . . . . . . . . .
...

0 0 . . . x1 0 0 . . . xq−1


5
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Let L be a (q − 1) × q matrix, such that

L =


1 −1 0 . . . 0
1 0 −1 . . . 0
... . . . . . . . . .

...
1 0 0 . . . −1


Multiplying (9) by L on both sides, we get

L
[
Iq K

] [ Iq −16A12

−16A21 24Iq(q−1)
2

+ 4B1

] [
v
u

]
= 0, (10)

or equivalently,
L(v − 16KA21v − 16A12u+ 24Ku+ 4KB1u) = 0.

By solving the above equations, we get (2q+1) stationary points grouped as three solution groups
below:

Solution I: x = (1
q
, . . . , 1

q
),

Solution II: q points of x↔ (1− (q − 1)δ, δ, . . . , δ), where δ =
(5q+2+

√
q2−4q+76)

8(q2+q−3) ,

Solution III: q points of x↔ (1− (q − 1)δ, δ, . . . , δ), where δ =
(5q+2−

√
q2−4q+76)

8(q2+q−3) .

The three corresponding values of z
′
(X

′
X)−1z are listed below:

Ia. q2+4q−4
q3

,

IIa. 1
128(−3+q+q2)3

[q6 +115q5 +712q4− 772q3− 4648q2 +6088q− 1664+
√

76− 4q + q2(q5− 3q4 +

62q3 + 124q2 − 792q + 608)],

IIIa. 1
128(−3+q+q2)3

[q6 +115q5 +712q4− 772q3− 4648q2 +6088q− 1664−
√

76− 4q + q2(q5− 3q4 +

62q3 + 124q2 − 792q + 608)].

Among them, Ia is the maximum when q = 3, IIa is the maximum when q ≥ 4, and IIIa is
always the minimum one.
In addition, the Jacobian matrix for the stationary points is

∂2f(x)

∂v∂v′
= 2

[
Iq K

]
(X

′
X)−1

∂

∂v′
{
[
v
u

]
}+ 2

∂

∂v′
{
[
Iq K

]
}


a
′
1w

a
′
2w
· · ·

a
′
q(q+1)

2

w


= 2

[
Iq K

]
(X

′
X)−1

[
Iq
K
′

]
+

6
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0 a
′
q+1w a

′
q+2w . . . a

′
2q−1w

a
′
q+1w 0 a

′
2qw . . . a

′
3q−3w

a
′
q+2w a

′
2qw 0 . . . a

′
4q−6w

... . . . . . . . . .
...

a
′
2q−2w a

′
3q−4w a

′
4q−7w . . . a

′
q(q+1)

2

w

a
′
2q−1w a

′
3q−3w a

′
4q−6w . . . 0


. (11)

The determinant of the Jacobian matrix is nonnegative for all three solutions and hence none of
the stationary points maximizes the function f(x).
Hence, we take the optimal design point for q = 3 as x = (1

3
, 1
3
, 1
3
), and for q ≥ 4, as x ↔

(1− (q − 1)δ, δ, . . . , δ), where δ =
(5q+2+

√
q2−4q+76)

8(q2+q−3) , to maximize z
′
(X

′
X)−1z.

Comparison of Designs for Testing Lack of Fit

For each q-factor second-degree mixture model, we compare the following �ve di�erent designs
which are composed of q(q+1)

2
D-optimal minimal design points plus one extra design point:

Design I: One of the minimal design points, x↔ (1, 0, 0, . . . , 0) or x↔ (1
2
, 1
2
, 0, . . . , 0).

Design II: One of the face centroids, x↔ (1
3
, 1
3
, 1
3
, . . . , 0).

Design III: Overall centroid x = ( 1
n
, 1
n
, . . . , 1

n
).

Design IV: One interior design point x = (1
2
, 1
2(n−1) , . . . ,

1
2(n−1)).

Design V: One design point, x = (1
3
, 1
3
, 1
3
) for q = 3, and one of the following points: x ↔

(1− (q − 1)δ, δ, . . . , δ), where δ =
(5q+2+

√
q2−4q+76)

8(q2+q−3) for q ≥ 4.

To compare the designs listed above, we calculate the D-e�ciency by using the ratio of the
determinant of any design to that of Design I, the D-optimal minimal design plus one of the
replicate of the minimal design points. Table 1 presents the design points, the determinant of
the information matrix X∗

′
X∗ taking t = 1 and D-e�ciency for three, four and �ve-factor second-

degree mixture models. As expected, the designs having the boundary points such as vertices,
edges, faces, etc (Design I and II) as the extra design point, has larger determinant than those
with only interior point (Design III-V). For practical reasons, the interior design point having the
highest e�ciency given at Design V is optimal and recommended.

3 Second-degree Mixture Model With Main E�ects and Two

Factor Interactions Including One Common Factor

We want to discuss one special mixture model, second-degree mixture model with main e�ects and
two factor interactions including one common factor (WLOG, x1). The model could be expressed
as:

y =

q∑
i=1

βixi +

q∑
j=2

β1jx1xj + ε. (12)

There are (2q-1) parameters in the model and at least (2q-1) minimal design points are needed to
estimate all factors.
D-optimal Minimal Design

7
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Table 1: Comparisons of designs for Three-, Four- and Five-factor Second-degree Mixture Model

Factors Designs Additional Design Point |X∗′X∗| D-e�ciency
3 I One of the minimal design points 4.8828 ∗ 10−4 100%

II,III,V (1
3
13) 3.9786 ∗ 10−4 81.48%

IV One interior point (1
2
, 1
4
12) 3.8910 ∗ 10−4 79.69%

4 I One of the minimal design points 1.1921 ∗ 10−7 100%
II One face centroid 0.9713 ∗ 10−7 81.48%
III Overall centroid (1

4
14) 0.8568 ∗ 10−7 71.88%

IV One interior point (1
2
, 1
6
13) 0.8389 ∗ 10−7 70.37%

V One of the following design point 0.8575 ∗ 10−7 71.93%

x↔ (35−3
√
19

68
, 11+

√
19

68
, 11+

√
19

68
, 11+

√
19

68
)

5 I One of the minimal design points 1.8190 ∗ 10−12 100%
II One face centroid 1.4821 ∗ 10−12 81.48%
III Overall centroid (1

5
15) 1.2078 ∗ 10−12 66.40%

IV One interior point (1
2
, 1
8
14) 1.1902 ∗ 10−12 65.43%

V One of the following design point 1.2127 ∗ 10−12 66.67%
x↔ (1

3
, 1
6
, 1
6
, 1
6
, 1
6
), (1

6
, 1
3
, 1
6
, 1
6
, 1
6
)

The minimal design matrix is:

X =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
... . . . . . . . . . . . . . . .

...
0 0 . . . 1 0 . . . 0
1/2 1/2 . . . 0 1/4 . . . 0
... . . . . . . . . . . . . . . .

...
1/2 0 . . . 1/2 0 . . . 1/4


Inverse of the X′X Matrix

The inverse matrix (X′X)−1 is

(X′X)−1 =

[
Iq M
M
′

20Iq−1 + 4Jq−1

]
, (13)

where M is a q by (q − 1) matrix with M =

[
−21′q−1
−2Iq−1

]
.

Selecting One Additional Design Point

We need at least one design point to determine Lack of Fit. The design point provides the
added row to the design matrix X

z
′
=
[
x1 x2 . . . xq x1x2 . . . x1xq

]
=
[
v
′
x1u

′
1

]
,

where v
′
=(x1, x2, . . . , xq), u

′
1=(x2, x3, . . . , xq).

8
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To maximize z
′
(X

′
X)−1z such that v

′
1 = 1, we consider the following function

f(x) =
[
v
′
x1u

′
1

]
(X

′
X)−1

[
v

x1u1

]
− 2λ(v

′
1− 1), (14)

where λ is a Lagrange multiplier.
Di�erentiating f(x) w.r.t v and equating to zero, we get

∂

∂v
{
[
v
′
x1u1

′ ]}(X′X)−1
[

v
x1u1

]
= λ1, (15)

Let
∂

∂v
{
[
v
′
x1u1

′ ]} = [ Iq K1

]
where K1 is a q × (q − 1) matrix with

K1 =


x2 x3 . . . xq
x1 0 . . . 0
... . . . . . .

...
0 0 . . . x1

 .
Let L1 be a q × (q − 1) matrix, s.t.

L1 =


-(q-1) 1 1 . . . 1 1
0 1 −1 . . . 0 0
... . . . . . . . . . . . .

...
0 1 0 . . . 0 −1

 ,
Note that

L1

[
Iq K1

]
=


-(q-1) 1 . . . x1 − (q − 1)x2 . . . x1 − (q − 1)xq
0 1 . . . x1 . . . 0
... . . . . . . . . . . . .

...
0 1 . . . x1 . . . −x1

 , (16)

and

(X
′
X)−1

[
v

x1u1

]
=

 v − 2x1

(
1− x1
u1

)
2x1(1− 2x1)1q−1 − 2(1− 10x1)u1

 . (17)

Multiplying (15) by L1 on both sides and taking into account (16) and (17), we get
-(q-1) 1 1 . . . x1 − (q − 1)x2 . . . x1 − (q − 1)xq
0 1 −1 . . . x1 . . . 0
... . . . . . . . . . . . . . . .

...
0 1 0 . . . x1 . . . −x1

 (X
′
X)−1

[
v

x1u1

]
= 0,

9
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It can be further simpli�ed as
g

(1− 4x1 + 20x21)


x2 − x3
x2 − x4
. . .

x2 − xq


 = 0, (18)

where g is a suitable scalar. Since 1 − 4x1 + 20x21 > 0 for all x1, equation (18) gives that x2 =
x3 = . . . = xq. Using the fact that v

′
1 = 1, we have x2 = x3 = . . . = xq = (1 − x1)/(q − 1) and

subsequently
g = (q − 1)(1− 2x1)[4(q + 4)x21 − (q + 22)x1 + 3] = 0 (19)

Therefore the stationary points are:

1. (1
2
, 1
2(q−1)1

′
q−1)

2. (
q+22+

√
q2−4q+292

8(q+4)
,
7q+10−

√
q2−4q+292

8(q+4)(q−1) 1
′
q−1)

3. (
q+22−

√
q2−4q+292

8(q+4)
,
7q+10+

√
q2−4q+292

8(q+4)(q−1) 1
′
q−1)

With corresponding z
′
(X

′
X)−1z :

1a. 1
q−1

2a. 1
128(q−1)(q+4)3

(q4 + 120q3 + 840q2 + 8992q − 5040 + (q3 − 6q2 + 300q − 584)
√
q2 − 4q + 292)

3a. 1
128(q−1)(q+4)3

(q4 + 120q3 + 840q2 + 8992q − 5040− (q3 − 6q2 + 300q − 584)
√
q2 − 4q + 292)

When q ≤ 8, 1a is maximum and when q ≥ 9, 2a is the maximum. The di�erence between 1a and
2a is small when q ≥ 9. In addition, 3a is the minimal value among the stationary points and is
not recommended.
The Jacobian matrix for stationary points is:

∂2f(x)

∂v∂v′
= 2

[
Iq K1

]
(X

′
X)−1

∂

∂v′
{
[

v
x1u1

]
}+ 2

∂

∂v′
{
[
Iq K1

]
}


a
′
1w

a
′
2w
· · ·

a
′
2q−1w


= 2

[
Iq K1

]
(X

′
X)−1

[
Iq
K
′
1

]
+

2


0 a

′
q+1w a

′
q+2w . . . a

′
2q−1w

a
′
q+1w 0 0 . . . 0

a
′
q+2w 0 0 . . . 0
...

...
... . . .

...
a
′
2q−1w 0 0 . . . 0

 , (20)

10

Biopharmaceutical Section – JSM 2012

794



where we rewrite

(X′X)−1 =

[
Iq M
M
′

20Iq−1 + 4Jq−1

]
=


a
′
1

a
′
2

· · ·
a
′
2q−1

 ,
and

w =

[
v

x1u1

]
.

Since x2 = x3 = . . . = xq, we substitute x3, . . . , xq to x2, the Jacobian matrix becomes

2

[
1 + 4(1− x1)(5x2 − x1) 2(2x1 − 2x2 + 20x1x2 − 4x21)1q−1

′

2(2x1 − 2x2 + 20x1x2 − 4x21)1q−1 (20x21 − 4x1 + 1)Iq−1 + 4x21Jq−1

]
.

As earlier, the determinant of the Jacobian matrix is not negative de�nite for all stationary points,
therefore none of the stationary points maximize function f(x). Thus, the stationary point which
attains the maximum determinant is chosen as optimal design point. Considering the di�erence
of determinant between stationary point 1 and 2 is very small when q ≥ 9. For practical reason,
stationary point 1 is recommended as the optimal design point, i.e. (1

2
, 1
2(q−1)1

′
q−1).

Comparison of Designs for Testing Lack of Fit

We compare new design with other existing designs to test Lack of Fit. The following six
designs, which are composed of (2q − 1) D-optimal minimal design points and one additional
design point are discussed and compared.

Design I: One of the minimal design points.
Design II: One of the midpoints with main factor 0, such as (0, 1

2
, 1
2
, . . . , 0).

Design III: Face centroid with main factor of 1
3
, such as (1

3
, 1
3
, 1
3
, 0, . . . , 0).

Design IV: One of the face centroids with main factor 0, such as (0, 1
3
, 1
3
, 1
3
, . . . , 0) etc.

Design V: Overall centroid (1
q
, 1
q
, . . . , 1

q
).

Design VI: One design point (1
2
, 1
2(q−1) , . . . ,

1
2(q−1)).

Table 2 presents the determinant of information matrix X′X and D-e�ciency (de�ned as the
ratio of the determinant to that of Design I) for the above designs. Similarly, the designs having
the boundary points lead to larger determinant and higher e�ciency than those with only interior
points (Design V and VI). For practical reasons, the interior design point with higher e�ciency
given at Design VI is optimal and recommended.
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Table 2: Comparisons for designs for Three-, Four- , Five- and Six-factor Second-degree mixture
model with main e�ects and two factor interactions including one common factor

Factors Designs Additional Design Point |X∗′X∗| D-e�ciency
3 I One of the minimal design points 7.8125 ∗ 10−3 100%

II One midpoint with main factor 0 5.8594 ∗ 10−3 75.00%
III,IV,V (1

3
, 1
3
, 1
3
) 5.594 ∗ 10−3 71.62%

VI One design point (1
2
, 1
4
, 1
4
) 5.8594 ∗ 10−3 75.00%

4 I One of the minimal design points 4.8828 ∗ 10−4 100%
II One midpoint with main factor 0 3.6621 ∗ 10−4 75.00%
III One face centroid with main factor 1

3
3.4963 ∗ 10−4 71.60%

IV One face centroid with main factor 0 3.2552 ∗ 10−4 66.67%
V Overall centroid (1

4
14) 3.0518 ∗ 10−4 62.50%

VI One design point (1
2
, 1
6
13) 3.2552 ∗ 10−4 66.67%

5 I One of the minimal design points 3.0518 ∗ 10−5 100%
II One midpoint with main factor 0 2.2888 ∗ 10−5 75.00%
III One face centroid with main factor 1

3
2.1852 ∗ 10−5 71.60%

IV One face centroid with main factor 0 2.0345 ∗ 10−5 66.67%
V Overall centroid (1

5
15) 1.7920 ∗ 10−5 58.72%

VI One design point (1
2
, 1
8
14) 1.9074 ∗ 10−5 62.50%

6 I One of the minimal design points 1.9074 ∗ 10−6 100%
II One midpoint with main factor 0 1.4305 ∗ 10−6 75.00%
III One face centroid with main factor 1

3
1.3658 ∗ 10−6 71.60%

IV One face centroid with main factor 0 1.2716 ∗ 10−6 66.67%
V Overall centroid (1

6
16) 1.0832 ∗ 10−6 56.79%

VI One design point (1
2
, 1
10
15) 1.1444 ∗ 10−6 60.00%
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4 Conclusion

In this paper we developed a method of including one additional design point for second-degree
mixture model to test Lack of Fit. This design point is inside the design space with all factor
levels greater than zero for practical reasons. In summary, when number of factors equal to 3 , the
optimal design point is (1

3
, 1
3
, 1
3
), and when the number of factors ≥ 4, the optimal design point is

x↔ (1− (q − 1)δ, δ, . . . , δ), where δ =
(5q+2+

√
q2−4q+76)

8(q2+q−3) .
In addition, we also discussed one special mixture model, second-degree mixture model with

main e�ects and two factor interactions including one common factor. The optimal design point
in this case is (1

2
, 1
2(q−1)1

′
q−1).

One may consider optimal design with minimal design plus one additional point by using
computer-aid program. However this will give repeated point for design (Design I), which are not
useful to test Lack of Fit. Also one may think of adding more than one point to the minimal
design, this will also give design of repeated points. Hence it is preferable that one adds the points
sequentially by extending the methods of this paper.
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