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Abstract

Comparing outcomes assessing performance of several types of treatments or inter-

ventions is an important task in clinical trials as well as in observational studies. Among

various measurements in assessing life extension, the gain in life expectancy is one of

performance measurements of interest. In this paper, we propose a framework for es-

timating this quantity by calculating the area between estimated survival curves from

two comparative treatments respectively, for example, active treatment and control.

We estimate the survival curves first via the non-parametric Kaplan-Meier estimator to

reflect the observed survival probabilities in the study. We then use semi-parametric

Cox proportional hazard model and obtain the direct adjusted survival curves. By do-

ing this, we can adjust for any imbalance of covariates between the two treatments.

In order to assess the variability of our estimate, we propose a new Bootstrap method

for obtaining a bootstrap confidence interval for this quantity. We also propose the

corresponding bootstrap testing procedure to test the null hypothesis that two treat-

ments have the same expected survival. We conduct simulation studies to evaluate the

effectiveness of this method and use it in a real data application.

1 Introduction

Comparing outcomes of several types of treatments or interventions is an important task

in clinical trials as well as retrospective cohort studies in epidemiology. For simplicity and
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without loss of generality, we compare two treatments and refer them as the active and the

control respectively in this paper. Among various measurements in assessing the relative

efficacy of the two treatments, the gain in life expectancy is often of interest. Such a gain is

measured by estimating the average number of days that participants in the active group live

longer than those in the control group, or equivalently by the area between the two survival

curves from the two treatment arms [1, 2]. There are several steps in the estimating and

testing of the survival gain: 1) estimating the survival probabilities for the subjects from

the two treatment groups; 2) calculating the area under the two curves and its standard

error; 3) computing the p-value of the null hypothesis that there is no survival gain between

the two treatments.

In the first step, the Kaplan-Meier estimator is a straightforward method. It represents

an observed survival probability and can be utilized to estimate the gain in survival quite

accurately when the distributions of covariates in the two treatment arms are balanced.

When there is an imbalance of the distributions, we need to adjust for the covariates using a

regression approach such as a semi-parametric model (Cox regression) or parametric models

(Weibull, exponential, etc.). Individual survival curves are predicted from the regression

results and expected survival curves can be obtained in several ways such as the mean

covariate method [4] or the direct adjustment method[6]. The mean covariate method

applies the parameter estimates from a regression model to produce one survival curve

in each treatment arm for a “typical” participant who assumes average values for all the

covariates. Though it is easy to calculate, it lacks good interpretation and can be misleading

in some circumstances [4, 5]. On the other hand, the direct adjustment method computes a

weighted average of the individual survival curves, with weights proportional to the number

of individuals at each level of the covariates. It offers a clear improvement over the average

covariate method. As a result, we adopt the direct adjustment approach in this paper. As

for the choices of regression models, parametric models are only occasionally used in the

analysis of survival data. Although they may offer advantages over Cox model. However,

they often involve stronger assumptions [7]. Therefore, we will consider the Cox regression

model in this paper.

With the estimated survival curves from both treatment arms, the gain of survival is esti-

mated by the difference of the area under them. Furthermore, we would like to estimate

the precision of this estimation and conduct statistical hypothesis testing of no treatment

effect. Because estimated survival probabilities are correlated, the variance estimation of
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the survival curves is quite complicated [8] and it is even more so when we take consider-

ation of entire time region and the difference of the area under two curves. To overcome

this problem, we propose to adopt a Bootstrap sampling method [9] to obtain a bootstrap

confidence interval of the survival gain and a bootstrap p-value to test a hypothesis that

the two treatment arms have the same expected survival.

The rest of the paper is arranged as follows. After reviewing basic background in survival

analysis, section 2 presents the framework to estimate survival curves, the area differences

between curves, a bootstrap confidence intervals, and a p-value for hypothesis testing. Sec-

tion 3 conducts simulation studies to evaluate the effectiveness of this framework. Section 4

analyzes a real data set from a clinical trial. Section 5 concludes the paper with a discussion

and future research directions.

2 Methods

2.1 Notations

Assume that there are n subjects receiving a same treatment in a study, which studies an

event of interest, for example, death due to some cause. Let Ti denote the survival time for

the ith subject. Assume T1, ..., Tn are continuous random variables, which are identically

distributed with a cumulative distribution function F (.) and a density function f(.). Define

the survival function

S(t) = P (T > t) = 1 − F (t) =
∫ ∞

t
f(u)du. (1)

Since time to event data is sometimes censored due to end of the follow-up period of the

study or dropout of subjects from the study, we generally observe a sample of pairs (Ti, δi),

i = 1, ..., n where δi = 1 if the subject has an event and δi = 0 if the subject is censored.

Note that there are several types of censorship [11]. In this paper we focus on the right

censoring type of time to event data. In addition we observe a list of covariates denoted by

Xi that identify a collection of demographic and medical characteristics of the ith patient.

In connection with f(.) and S(.), we define the hazard function h(.) as

h(t) =
f(t)
S(t)

= − d

dt
log S(t), (2)

3

Biometrics Section – JSM 2012

285



which is the ratio of the density function to the survival function. Hence, the hazard function

is related to the survival function: S(t) = exp[− ∫ t
0 h(u)du].

2.2 Estimating survival functions

Assume that observed times for the n subjects are t1 ≤ t2 ≤ ... ≤ tn. For each ti, we denote

ni as the number at risk just prior to time ti, and di as the number of deaths at time ti.

The Kaplan-Meier estimator [10] is a nonparametric maximum likelihood estimate of S(t)

with a product of the form

Ŝ(t) =
∏
t<ti

ni − di

ni
(3)

Note that when there is no censoring, ni is just the number of survivors just prior to time

ti. With censoring, ni is the number of survivors less the number of losses (censored cases).

Therefore, ni is only for those surviving cases that are still being observed (have not yet

been censored), or “at risk” of an observed death.

Clinical studies often put participants in more than one (often two) treatment group so that

the difference of the treatments can be observed and studied. We can use (3) to estimate

and compare survival probability in each treatment group. This method works quite well

when covariates in the two treatment arms are balanced. When we have imbalance in the

distributions of the covariates, we need to adjust for the covariates with regression models.

The semi-parametric Cox proportional hazard model [12] incorporates covariates X in the

form:

h(t|X) = h0(t) exp(βT X), (4)

where β is a vector of regression coefficients and h0(t) is a baseline survival function. The

survival function can be written in terms of a base survival function S0(t) = exp[− ∫ t
0 h0(u)du]:

S(t|X) = exp
(
−

∫ t

0
h0(u) exp(βT X)du

)
= S0(t)exp(βT X) (5)

This can be estimated by Ŝ(t|X) = Ŝ0(t)exp(β̂T X) where Ŝ0(t) is the estimated baseline

survival function by the Aalen-Nelson estimator [13] and β̂ is the estimated parameters

from Cox regression based on a partial likelihood approach.

From (5), we estimate the survival function for each subject in a treatment arm. Based

on the direct adjustment method [6], we can obtain the average survival curves for all the
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subjects in a treatment arm by averaging the individual curves as

Ŝ(t|X) =
1
n

n∑
i=1

Ŝ0(t)exp(β̂T Xi) (6)

When some of the predictors do not satisfy proportional hazards assumption, we may

stratify them to get around the problem. In the case of a stratified Cox regression model

[14], the above becomes

Ŝ(t|X) =
1
n

J∑
j=1

nj∑
i=1

Ŝj
0(t)

exp(β̂T Xij), (7)

where J is the number of strata, nj is the number of subjects in the jth stratum, n is

the total number of subjects, Ŝj
0(t) is the estimated baseline survival function for the jth

stratum.

2.3 Estimation of the area between two survival curves

One important issue in analyzing survival data is to compare the survival function Strt(t)

of a treatment group with that of a control group Sctr(t). One quantity to compare is the

expectation of time to event variable T . Since

E(T ) =
∫ ∞

0
uf(u)du =

∫ ∞

0
(1 − F (u))du =

∫ ∞

0
S(u)du, (8)

which is the area under the survival curve, therefore treatment survival gain (TSG) is

defined as

E(Ttrt − Tctr) =
∫ ∞

0
(Strt(u) − Sctr(u))du (9)

which is the area between two survival curves from the two treatment groups. When

covariates are involved, (6) or (7) shows that the estimated survival function depends on

the values of X. When the distribution of X is not balanced for the two treatment arms,

the KM estimator approach produces misleading results which compares the survival gains

between two difference groups of subjects.

We estimate TSG in the following steps:

1. Obtain the two estimated curves Ŝtrt(t) and Ŝctr(t) either by their corresponding

Kaplan-Meier estimators or by direct adjusted survival curves from Cox regression in

Section 2.2. In general, the two estimated curves are expressed as step functions. We
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assume that Ŝtrt(t) takes value yi in the interval [ti−1, ti) for i = 1, ..., n and t0 = 0;

Ŝctr(t) takes value zj in the interval [sj−1, sj) for j = 1, ...,m and s0 = 0.

2. Suppose that sm > tn then we set the interval for the integral to be [0, sm], tn∗ = sm,

and yn∗ = yn. Essentially we take the longest time for both arms and extend the last

estimated survival function in the treatment group to that time. Note that n∗ = n+1.

3. Estimate TSG by the trapezoidal method over the interval [0, tn∗ ]:

T̂ SG =
n∗∑
t=1

yi(ti − ti−1) −
m∑

t=1

zi(si − si−1) (10)

Note the above is easy to be modified when the follow-up of the control arm ends earlier or

sm < tn. This algorithm uses the fact that the survival curves are step functions and hence

the area under the curve can be calculated without error as a sum of rectangular areas.

2.4 Bootstrap confidence interval and p-value

Efron [9] proposed to bootstrap the survival function by sampling the pairs of censoring

indicators and observed times to event with replacement. He also showed that this is

equivalent to sample from the distribution of survival times (denote x∗
i as the samples),

and sample from the observed survival time (denote u∗
i as the samples), and then assign

t∗i = min(u∗
i , x

∗
i ), δ∗i = 1 if t∗i = x∗

i and 0 otherwise. This algorithm has been applied by

Utzek and Sanchez [15] to estimate a bootstrap confidence envelop of the survival curve.

Denote the upper bound in follow-up times for both arms as w. Here we apply Efron’s

algorithm to estimate a confidence interval of the area between two survival curves as

follows:

1. Use Efron’s method to select two bootstrap samples {(δ∗i , t∗i : i = 1, · · · , n)} and

{(ν∗
j , s∗j : j = 1, · · · ,m)} the treatment group and the control group respectively.

Order the pairs by the t∗i ’s and the s∗j ’s. If t∗n < w, we add the pair (y∗n, w) to the

estimated survival curve for the treatment sample and do the same operation to the

bootstrap control sample.

2. Calculate the survival gain from the bootstrap sample - TSGb over the interval [0, w]

using algorithm in Section 2.3.
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3. Repeat steps 2 and 3 B (at least 1000) times and order the sample increasingly as

TSGb
(1) ≤ TSGb

(2) ≤ · · · ≤ TSGb
(B). Then (TSGb

(0.025B), TSGb
(0.975B)) is a 95%

bootstrap confidence interval (CI) for TSG.

We also propose a similar algorithm for testing the null hypothesis that TSG = 0 or there

is no survival gain in the two arms, vs the one-sided alternative hypothesis that TSG > 0.

This algorithm is an adaptation of the general bootstrap testing algorithm that can be

found in [16]. We modify the above algorithm as follows

• 2*. Using Efron’s method select two bootstrap samples {(δ∗i , t∗i )} and {(ν∗
i , s∗i )} of

sizes n and m respectively from the control sample {(μi, si)}. If t∗n < w then add

the pair (yn∗, w) to the estimated survival curve for the treatment sample and do the

same operation to the bootstrap control sample.

• 4*. Repeat steps 2* and 3 B times, where B is a large number at least 1000. Observe

the sample {TSGb
1, ..., TGSb

B} from which we estimate the bootstrap one-sided p-value

as the #{TSGb
j > T̂SG}/B, where T̂ SG is from (10).

3 Simulations

In this section, we present simulation studies to demonstrate that proposed bootstrap

method can effectively estimate TSG, its confidence interval, and p-value for hypothesis

testing. Intuitively, factors such as size of a study number, censoring rates of lifetime, etc.

can directly impact the estimation accuracy and power. Here, we will study how those

factors affect the estimation performances.

3.1 Bias of estimation from Kaplan-meier estimator and Cox regression

with balanced design

Assume life time ytrt ∼ exp(γtrt) for a treatment group, where γtrt = γ0 exp(α + βxtrt);

life time yctr ∼ exp(γctr) for a control group, where γctr = γ0 exp(βxctr); covariate xtrt ∼
normal(μtrt, σ

2
trt) for the treatment group; covariate xctr ∼ normal(μctr, σ

2
ctr) for the control

7

Biometrics Section – JSM 2012

289



0 1000 2000 3000 4000

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Sample Size

TS
G

censoring rate=10%

censoring rate=40%

Cox Regression
Kaplan−Meier Estimator
True TSG

Figure 1: TSG’s from the Kaplan-meier and Cox regression approaches

group; and censoring time ycen ∼ exp(γcen). Then the theoretical survival gain is E(ytrt)−
E(yctr) = 1/γ0 exp(−α − μtrtβ − 0.5β2σ2

trt) − 1/γ0 exp(−μctrβ − 0.5β2σ2
ctr).

We vary n from 50 to 4000. For each n, we generate the ytrt or yctr (denoted by y) with

the equal probability using α = log(0.5), β = 1, μtrt = μctr = 2, σtrt = σctr = 1, γ0 =

2.23 × 10−4, γcen = 10−4. Then the observed time to event t = min(y, ycen), censoring

indicator δ = I{y ≥ ycen} where I(.) is an indicating function which takes the value of 1

when the argument is no less than zero, and 0 otherwise. For each value of n, calculatêTSGkm and ̂TSGcox. Repeat this for 2000 times to get the mean of estimates and their

standard errors. The true TSG is calculated as 1000 with censoring rate of 0.11. Thus

we plot in Figure1 the true TSG, ̂TSGkm, ̂TSGcox, and their 95% confidence bands. We

observe that 1) when sample size increases, the estimates from both methods get close to

the true value; 2) Cox regression tends to achieve less bias and produce narrower confidence

bands though the two methods do not differ significantly.

To examine the effects of censoring, we repeat the simulations using the same settings as

above except for γcen = 7.14 × 10−4. The censoring rate increases to 40%. We plot the

results in the same figure and observe that the bias is bigger when the censoring is more

severe.
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Figure 2: TSG in imbalanced trials

3.2 Bias of estimation from Cox regression with imbalanced design

When the design is not balanced in the two treatment arms, the result from KME is not

easy to interpret. Cox regression method, on the other hand, can be applied to estimate

the TSG on a particular subgroup of subjects from both arms.

Assume that a covariate X takes values of 0 and -2 with equal probability in the active

treatment arm, 0 and 2 in the control arm. We might be interested to know the TSG when

X takes on -2 or 2. To do so, we can fit a Cox regression model to available data, then

using the concept of “counter-factual” by assigning a different treatment type to the same

subgroup of subjects.

With a similar setup as the previous setting except for the construction of covariate X and

γ0 = 7.8× 10−3, we will have the true overall TSG = 1000, the true TSG for the subgroup

is 945.0 for X = −2, 17.3 for X = 2. With γcen = 4000, the censoring is set to 10%. We

repeat the simulations with γcen = 350 to achieve 40% censoring. The estimated TSGs

for both subgroups are shown in Figure 2. We observe that the censoring rate makes a

difference in estimating TSG for subset X = −2 while no difference for the other subset.
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Figure 3: Bootstrap confidence interval coverage rates

3.3 Bootstrap confidence interval coverage and testing power

Here, we are interested in studying the accuracy of the Bootstrap method. We concentrate

on the case when the covariates are balanced in both treatment arms and use the KME

approach. Under the similar setup, we use Bootstrap steps to obtain a 95% confidence

interval (CI) and check if the CI covers the true TSG. Repeat these steps 100 times, we

can calculate the percentage of a correct coverage of the CI. We plot the results in Figure 3.

We observe that censoring rate of the life time data plays an important role in the correct

coverage of the Bootstrap CI. For example, with a low censoring rate of 10%, the coverage

percentage achieves 90% to 95% with a moderate sample size. However, the higher censoring

rate of 40% makes the coverage percentage stay below 50%.

Next, we evaluate the Bootstrap p-value calculation for hypothesis testing. We use the same

simulation setting as before and obtain the percentage of Bootstrap p-value less than 0.05

as the power of hypothesis test in Figure 4. We observe that the testing power increases

rapidly to 0.9 and above with small sample sizes and low censoring rate data achieves high

powers than the high censoring rate data. We also try other settings with different true

TSG with similar power curves.
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Figure 4: Bootstrap testing power

4 Application to a real data set

4.1 Data

The Systolic Hypertension in the Elderly Program (SHEP) was a randomized, double-blind

placebo controlled trial in older patients with isolated systolic hypertension with the pri-

mary endpoint of fatal or non-fatal stroke. The investigators randomized 4736 participants

(56.8% women) with systolic blood pressure (SBP) 160 mm Hg or higher and diastolic blood

pressure 90 mm Hg or lower to stepped care antihypertensive therapy based on chlorthali-

done or matching placebo.

Recruitment of the study begun on March 1, 1984 and vital status, date of death and cause

of death were ascertained using the NDI through the end of 2006. The total duration of

follow-up was 21 years and 10 months. Death was classified as cardiovascular if it was due

to International Classification of Diseases, Ninth Revision codes 290 to 459 or International

Statistical Classification of Disease, 10th Revision codes I00 to I99.
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4.2 Analyses and Results

In order to access the efficacy of the treatment, we estimates the net gain in life expectancy

free from cardiovascular death in the active therapy group.

First, we fit Kaplan-Meier survival curves free of cardiovascular (CV) death separately on

the treatment group and control group. We calculate the areas under the two curves and

take the difference and follow the Bootstrap steps to obtain the confidence interval and

p-value for testing whether there is no difference in the two groups in term of survival gains.

We repeat the same set of analyses for the end point of all-cause mortality. The results are

shown in Table 1:

Table 1: TSG from Kaplan-Meier approach.
Bootstrap

End Point TSG Mean 95% CI pvalue

All-Cause death 104.7 105.6 (-39.2, 241.8) 0.073

CV death 158.9 157.6 (36.4, 286,6) 0.009

Next we use Cox partial regression approach to correct any imbalance of the covariates

between the two treatment groups. After using all the significant variables and checking

the proportional hazard assumption, we stratify age using two categories of older than 71

and the rest, and race with 3 categories of white, black and others. The two covariates are

sex and indicator of whether the patient previously has myocardial infarction (histmi). For

the end point of cardiovascular death, we stratify age and use sex and race as covariates.

The results are in Table 2.

From the results in Table 1 and 2, chlorthalidone reduces CV death significantly and does

not reduce all-cause mortality. The Cox partial regression approach achieves a slightly

tighter confidence interval of the TSG for CV death. The estimated TSG for all-cause

death differs quite a lot from the two methods.
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Table 2: TSG from Cox partial regression.
Covariates Bootstrap

End Point (besides treatment) TSG Mean 95% CI pvalue

All-cause death sex, histmi (race and age-stratified) 64.9 67.1 (-62.6, 190.7) 0.158

CV death sex, race (age-stratified) 146.0 145.5 (14.9, 276.1) 0.016

5 Discussions

This paper proposes a bootstrap-based method to estimate the survival gain of a treatment

vs its control and assess the precision of this estimator. The Kalplan-meier approach is

straightforward and less computational intensive. Under the assumption of balanced study

covariates, we can use this approach to estimate the survival gains for a similar group of

participants. However, when this assumption does not hold, the Kaplan-meier method

produces misleading results. To solve this problem, we propose an alternative Cox partial

regression approach. With that, we can deal with the possible imbalance between the

two groups. Furthermore, we can make inference of the survival gain of a hypothetical

participant or group of participants with similarity to the counterfactural causal inference

framework. Due to the size limit of this paper, we do not include in this paper the proof of

the consistency property of this proposed bootstrap method.

The length of follow-up time for a study limits our goal of assessing its life extension. The

survival function beyond follow-up needs to be estimated and extrapolated. By doing so,

we can more accurately access the survival gain of a treatment.
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