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Abstract
Many researchers have addressed the problem of finding the optimal linear combination of biomark-
ers to maximize the area under ROC curves (AUC) for scenarios with binary disease status. In
practice, many disease processes such as Alzheimer can be naturally classified into three diagnostic
categories such as normal, mild cognitive impairment and Alzheimer’s disease, and for such dis-
eases the volume under the ROC surface (VUS) is the most commonly used index of diagnostic
accuracy. In this article, we propose a few parametric and nonparametric approaches to address
the problem of finding the optimal linear combination to maximize the VUS. Simulation studies
were carried out to investigate the performance of the proposed methods. All of the investigated
approaches are applied to a real data set from a cohort study in early stage Alzheimer’s disease
(AD).

Key Words: diagnostic accuracy; linear combinations; ordinal categories; volume under the ROC
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1. Introduction

Multiple diagnostic tests are often performed on the same individual to provide clinicians
as much information as possible in order to make more accurate disease diagnosis as it is
becoming increasingly clear that one single diagnostic test or biomarker is not sufficient to
serve as an optimal screening device for early detection or prognosis Sidransky (2002). It
is therefore of critical importance to combine the information available in an optimal way
to improve overall diagnostic accuracy Etzioni et al. (2003).

When the diagnostic outcome is binary, i.e., non-diseased and diseased, the receiver
operating characteristic (ROC) curves and the area under the ROC curves (AUC) are com-
monly used diagnostic accuracy measures. Many conditions are conceptualized as having
a normal stage, an early/mild/prodromal stage, and a late/diagnosable/fully symptomatic
stage. For example, mild cognitive impairment (MCI) and/or early stage Alzheimer’s dis-
ease (AD) is a transitional stage between the cognitive changes of normal aging and the
more serious AD. More details can be seen here Xiong et al. (2006).

With three ordinal diagnostic categories, ROC surface, analogous to ROC curve, as well
as the volume under the ROC surface (VUS), analogous to AUC, have been proposed to
assess diagnostic accuracy Xiong et al. (2006, 2007). Let S1, S2 and S3 denote the scores
resulting from a diagnostic test or biomarker and let F1, F2 and F3 be the corresponding
cumulative distribution functions for non-diseased, intermediate and diseased subjects, re-
spectively. Assume the results of a diagnostic test are measured on a continuous scale and
higher values indicate greater severity of the disease. Let p1 = F1(c1), p3 = 1 − F3(c3),
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where c1 and c3 are threshold values (c1 < c3), be the true classification rates for non-
diseased and diseased category, respectively. Then the probability that a randomly selected
subject from intermediate group has a score between c1 and c3 is

p2 = F2(c3)− F2(c1) = F2

[
F−1
3 (1− p3)

]
− F2

[
F−1
1 (p1)

]
. (1)

The probability p2 is guaranteed positive due to the imposed order restriction of c1 < c3
such that p3 < 1− F3[F

−1
1 (p1)].

For a pair of thresholds (c1, c3), we could compute the true classification rate p2 for
the intermediate category. The triplet (p1, p2, p3), where p2 = p2(p1, p3) being a function
of (p1, p3), would produce an ROC surface in the three-dimensional space for all possible
(c1, c3) ∈ R2. The volume under the ROC surface (VUS) is then defined as

V US =

∫ 1

0

∫ 1−F3[F−1
1 (p1)]

0
F2

[
F−1
3 (1− p3)

]
− F2

[
F−1
1 (p1)

]
dp3dp1. (2)

This is a generalization of the AUC for a binary classification. As in Xiong et al. Xiong
et al. (2006), under the normality assumption Sd ∼ N(µd, σ

2
d), d = 1, 2, 3, the VUS can

be further expressed as

V US =

∫ ∞

−∞
Φ(as− b)Φ (−cs+ d)ϕ (s) ds, (3)

where a = σ2/σ1, b = (µ1 − µ2)/σ1, c = σ2/σ3, d = (µ3 − µ2)/σ3, Φ(·) is the
standard normal distribution function, and ϕ (·) is the standard normal density function.
One could show that VUS is mathematically equivalent to the probability P (S1 < S2 <
S3), where S1, S2 and S3 are scores for randomly selected individuals from corresponding
diagnostic category. For a useless test (when S1, S2 and S3 have identical distributions),
VUS is 1/6. Notice that the unbiased nonparametric Mann-Whitney U statistic of the VUS
is given by

U =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I (S1i < S2j < S3k) , (4)

where n1, n2 and n3 are the sample sizes for non-diseased, intermediate and diseased
subjects, respectively, and I (·) stands for the indicator function.

The problem of finding optimal combinations of diagnostic tests and biomarkers with
binary diagnostic categories has been well addressed in literatures. Su and Liu Su and Liu
(1993) derived an optimal linear combination that maximizes the AUC when the biomark-
ers in the non-diseased and diseased category follow normal distributions. Without as-
sumptions on the distributions of the biomarkers, Pepe and Thompson Pepe and Thompson
(2000) considered an empirical solution of the optimal linear combination that maximizes
the Mann-Whitney statistic. However, when the number of biomarkers is large, this ap-
proach is computationally formidable. Recently, Liu et al. Liu et al. (2011) developed a
min-max combination approach which only involves searching for a single coefficient that
maximizes the Mann-Whitney U statistic of AUC.

While several studies address optional selection of weights for binary outcomes, the
problem of finding the optimal linear combinations has rarely been addressed for outcomes
with three ordinal diagnostic categories. Nevertheless, it is of paramount importance to
develop such combinations for biomarkers with three disease categories for the purpose of
maximizing diagnostic accuracy. The importance can be seen through the data example
on Alzheimer’s disease. Since Alzheimer’s disease is irreversible and no pharmaceutical
treatments are effective for late stages, it is critical to accurately diagnose Alzheimer’s
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disease at its early stage. However, as presented in Xiong et al. Xiong et al. (2006), none
of the current psychometric tests can be considered as excellent with the estimated VUS
ranging from 0.522 to 0.752. Therefore, it is important to develop a composite score derived
from a linear combination of biomarkers for better diagnostic accuracy.

The goal of this manuscript is two-fold: 1) to present parametric and nonparamet-
ric combination approaches for the purpose of maximizing the most important diagnostic
accuracy index for three-category outcomes, namely, the volume under the ROC surface
(VUS); 2) to empirical compare the performance of the proposed methods. The rest of our
article is organized as follows. In Section 2, two existing combination methods for binary
outcomes (i.e., the logistic regression approach and the min-max approach) are extended to
maximize VUS for three-category outcomes. In Section 3, a new parametric approach and
a new nonparametric approach are proposed. Simulation studies are presented in Section 4
for investigating the performance of different combination methods in maximizing VUS. In
Section 5, the proposed approaches as well as the extensions are applied to a real data set of
118 subjects from a cohort study in early stage Alzheimer’s disease (AD) from the Wash-
ington University Knight Alzheimer’s Disease Research Center to combine diagnostic tests
to increase the accuracy of discriminating different stages of AD. A broader discussion on
deriving linear combinations of diagnostic tests and biomarkers to improve the diagnostic
accuracy is presented in Section 6.

2. Extensions of existing methods

Two existing methods for binary outcomes, namely, the logistic regression method and the
min-max method, can be easily extended to outcomes with three ordinal disease categories.
In the following, Section 2.1 presents notation, and Sections 2.2 & 2.3 will discuss these
two extensions.

2.1 Notation

Suppose we have p diagnostic tests or biomarkers available on each individual. The diag-
nostic category is denoted as D = d, where d = 1, 2, 3 stands for non-diseased, interme-
diate and diseased subjects, respectively. Let

Xi = (Xi1, Xi2, . . . , Xip) , i = 1, 2, . . . , n1,

be the p-dimensional observed scores from a random sample of size n1 in the non-diseased
category,

Y j = (Yj1, Yj2, . . . , Yjp) , j = 1, 2, . . . , n2,

be the p-dimensional observed scores from a random sample of size n2 in the intermediate
category, and

Zk = (Zk1, Zk2, . . . , Zkp) , k = 1, 2, . . . , n3,

be the p-dimensional observed scores from a random sample of size n3 in the diseased
category. The data are often stacked together in a matrix form 1n1 [Xi]n1×p

2n2 [Y j ]n2×p

3n3 [Zk]n3×p

 ,

where the first column indicates the diagnostic category and the other p columns form the
matrix of observed scores concatenated from Xi, Y j and Zk by row. For simplicity, we
use Mp to denote p-variate observed scores for an individual from any diagnostic category.
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2.2 The cumulative logistic regression approach

When a logistic regression model is used to model a binary outcome, linear coefficients for
multiple predictors can be obtained. With three ordinal diagnostic categories, the cumula-
tive logistic model has the form

log
P (D = 1)

P (D = 2) + P (D = 3)
= α0 +Mpc,

log
P (D = 1) + P (D = 2)

P (D = 3)
= β0 +Mpc,

where c is a vector coefficient of length p and α0, β0 are two intercepts. For modeling a out-
come with three or more categories, the multinomial logistic regression is also frequently
used, although it is known if the outcome variable is truly ordered, which is the case in this
article, cumulative logistic regression will make the model more parsimonious. Also, the
multinomial logistic regression would produce more than one set of vector coefficients for
predictor variables, which is meaningless for the purpose of combinations. Therefore, the
performance of the combined marker using c obtained from cumulative logistic regression
is investigated.

For modeling a binary outcome, the logistic regression is used to maximize the logis-
tic likelihood function. For such model, Jin and Lu Jin and Lu (2009) proved that c from
a fitted logistic regression is the optimal linear combination in the sense that it provides
the highest sensitivity uniformly over the entire range of specificity and therefore yields
the largest AUC among all possible linear combinations. This impressive result, however,
depends on the strong assumption that the binary response variable (i.e., disease status) is
generated through a link function of predictors. As a matter of fact, in practice, disease s-
tatus is not generated this way. Usually a binary gold standard is used to determine disease
status and multiple biomarkers are measured without knowing any information on disease
status. Furthermore, this result does not assume any joint distributions for multiple predic-
tors. Therefore, it can not include Su and Liu’s Su and Liu (1993) method as a special case,
in which multivariate normality is a fundamental assumption.

For three-category outcomes, the result from Jin and Lu Jin and Lu (2009) has not been
extended to three-category case. Despite the lack of analytical results, cumulative logistic
regression still offers a possible combination method for the scenarios with three-category
outcomes. Therefore, it is of interest to investigate the performance of the combination of
biomarkers using c from a fitted cumulative logistic regression for the purpose of maximiz-
ing the VUS.

2.3 The min-max combination approach

With binary diagnostic categories, Pepe and Thompson Pepe and Thompson (2000) pro-
posed to estimate the optimal linear combination coefficient c by maximizing the Mann-
Whitney U statistic (i.e., the empirical estimate of AUC) as follows,

U (c) =
1

n1n2

n1∑
i=1

n2∑
j=1

I (c1Xi1 + · · ·+ cpXip < c1Yj1 + · · ·+ cpYjp) , (5)

where I (·) stands for the indicator function. Pepe and Thompson Pepe and Thompson
(2000) also pointed out that since the Mann-Whitney statistic estimate of AUC is not a
continuous function of c, a search rather than a derivative-based method is required for
this maximization. It means general-purpose optimization algorithms such as conjugate-
gradient or Newton-type methods are not appropriate for this maximization. They illustrat-
ed the idea with an application involving only two markers. In that case, the computation
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is relatively easy. However, when the number of markers is large, i.e., ≥ 3, this approach
is computationally inaccessible.

To address such computational difficulty, Liu et al. Liu et al. (2011) proposed a non-
parametric min-max approach that linearly combines only the minimum and maximum
values of the p markers to maximize the AUC, i.e.,

U (c) =
1

n1n2

n1∑
i=1

n2∑
j=1

I (Xi,max + cXi,min < Yj,max + cYj,min) , (6)

where
Xi,max = max

1≤l≤p
Xil, Xi,min = min

1≤l≤p
Xil;

and
Yj,max = max

1≤l≤p
Yjl, Yj,min = min

1≤l≤p
Yjl.

Such a combination only involves searching for a single combination coefficient and thus
is computationally efficient. They showed under certain circumstances, the proposed min-
max combination may yield larger AUC than empirical search of c by Pepe and Thompson
Pepe and Thompson (2000). This min-max combination approach can be easily extended
to the cases with three ordinal diagnostic categories by maximizing

U (c) =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I (Xi,max + cXi,min < Yj,max + cYj,min < Zk,max + cZk,min) ,

where Xi,max, Xi,min, Yj,max and Yj,min are defined as above and

Zk,max = max
1≤l≤p

Zkl, Zk,min = min
1≤l≤p

Zkl.

3. The Proposed Methods

In this section, two new approaches for linearly combining markers to improve the VUS
will be proposed. The first approach requires the assumption of multivariate normality
and is designed to maximize the penalized/scaled stochastic distance between three ordi-
nal diagnostic categories. The second distribution-free stepwise approach aims to find the
optimal combination empirically by maximizing the Mann-Whitney statistic of the VUS at
each step.

3.1 The penalized/scaled stochastic distance method based on normality

Assume that Xi,Y j ,Zk follow a multivariate normal distribution Np (µ1,Σ1) , Np (µ2,Σ2)
and Np (µ3,Σ3), respectively. The problem of interest is to obtain a vector combination
coefficient c such that the univariate scores S1 = Xic, S2 = Y jc and S3 = Zkc have the
largest overall discriminating ability to classify subjects into their corresponding disease
category, in this case, yielding the largest VUS. Notice that under normality assumption,
Sd (d = 1, 2, 3) follows a univariate normal distribution N (c′µd, c

′Σdc).
Because the VUS is equal to P (S1 < S2 < S3), where S1, S2 and S3 are univariate

scores after combination for a randomly selected individual from each diagnostic category,
it is reasonable to conclude that the larger stochastic distance between Sd (d = 1, 2, 3),
the larger VUS would be. Due to the fact that mean and variance completely characterize
the normal distribution, we will define stochastic distance between normally distributed
random variables based on functions of mean and variance.
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For Sd ∼ N (c′µd, c
′Σdc) (d = 1, 2, 3),

∑3
d=1 (c

′µd − c′µ)2 measures the between
group variation, where µ is the mean of µd’s, and

∑3
d=1 c

′Σdc measures the total within
group variation. In an ideal situation, we want the quantity

∑3
d=1 (c

′µd − c′µ)2 as large
as possible while at the same time keep

∑3
d=1 c

′Σdc the minimal, because these are two
necessary conditions for large separation of distributions underlying Sd, d = 1, 2, 3. An
intuitive penalized stochastic distance (PSD) could be defined as

PSD =
3∑

d=1

(
c′µd − c′µ

)2 − 3∑
d=1

c′Σdc, (7)

such that c maximizing
∑3

d=1 (c
′µd − c′µ)2 and simultaneously minimizing

∑3
d=1 c

′Σdc
may be obtained once by maximizing PSD. With some rearrangement,

PSD = c′

[
3∑

d=1

(µd − µ) (µd − µ)′ −
3∑

d=1

Σd

]
c.

Lemma 3.1 Let A be a p × p real symmetric matrix with (real) eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λp and a corresponding set of orthonormal eigenvectors u1,u2, · · · ,up, i.e., u′

iuj =
I(i=j), where I (·) stands for the indicator function, such that Aui = λiui. Then for any
x ∈ ℜp and x ̸= 0, max∥x∥=1 x

′Ax = λ1, and the maximum occurs when x = u1.

Lemma 3.1 directly follows from Raleigh-Ritz Theorem Golub and van der Vorst (2000).
Therefore, the c which maximizes PSD is the eigenvector corresponding to the largest
eigenvalue of

[∑3
d=1 (µd − µ) (µd − µ)′ −

∑3
d=1Σd

]
. Notice that it is not necessary to

normalize the eigenvector to obtain c as indicated in Lemma 3.1, because the eigenvectors
are unique apart from a scalar, and the VUS associated with the linear combination c is
invariant to a scaling constant.

However, this newly defined penalized stochastic distance (PSD) might have some po-
tential problems. For example, in an extreme case,

∑3
d=1 (µd − µ) (µd − µ)′−

∑3
d=1Σd

could be singular. For this reason, we also consider a scaled stochastic distance (SSD)
defined as follows,

SSD =

3∑
d=1

(
c′µd − c′µ

)2
3∑

d=1

c′Σdc

=

c′

[
3∑

d=1

(µd − µ) (µd − µ)′
]
c

c′

[
3∑

d=1

Σd

]
c

, (8)

such that, again, c maximizing
∑3

d=1 (c
′µd − c′µ)2 and simultaneously minimizing

∑3
d=1 c

′Σdc
may be obtained by maximizing SSD. This definition of SSD is similar to a natural exten-
sion of Fisher discriminant for multi-category linear discriminant analysis Johnson and
Wichern (2002), except that here we do not assume the common variance matrix Σd =
Σ, d = 1, 2, 3, since it is a too strong assumption across three ordinal diagnostic categories.

Lemma 3.2 Let A be a real p×p symmetric matrix, and let B be any p×p positive definite
matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λp be the eigenvalues of B−1A with a corresponding set
of right eigenvectors u1,u2, · · · ,up (all of which are real), i.e., B−1Aui = λiui. Then

for any x ∈ ℜp and x ̸= 0, maxx̸=0
x′Ax

x′Bx
= λ1, with the bounds being attained when

x = u1. In particular, for any a we have maxx̸=0
x′aa′x

x′Bx
= a′B−1a, and the maximum

occurs when x = B−1a, apart from some scaling constant.
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Lemma 3.2 follows from Theorem 6.59 (Seber, pp. 109–110) Seber (2008). To obtain
the maximum of SSD in Equation (8), c can be obtained as the eigenvector corresponding

to the largest eigenvalue of
(∑3

d=1Σd

)−1 [∑3
d=1 (µd − µ) (µd − µ)′

]
based on Lemma

3.2. In practice, the mean and variance for each disease category can be estimated from the
data and then the estimates can be substituted into the above formulas for calculating the
combination coefficient c.

Remark: For the scenarios with binary disease status,

SSD =

c′

[
2∑

d=1

(
µd −

µ1 + µ2

2

)(
µd −

µ1 + µ2

2

)′
]
c

c′ [Σ1 +Σ2] c
=

c′
[
1

2
(µ2 − µ1) (µ2 − µ1)

′
]
c

c′ [Σ1 +Σ2] c
,

the maximum occurs when c = (Σ1 + Σ2)
−1(µ2 − µ1)

/√
2 from Lemma 3.2. Apart

from the constant 1
/√

2 , this result is exactly the same as that in Su and Liu Su and Liu
(1993). In this sense, our proposed SSD method coincides with Su and Liu’s method for
binary disease outcomes.

Generally speaking, the term
∑3

d=1 (µd − µ) (µd − µ)′ cannot be written as aa′ for
some a, thus a closed-form solution does not exist. However, eigenvalues and eigenvectors
of a square matrix can be easily computed using statistical packages, such as eigen() in R
and call eigen() in SAS/IML, and therefore obtaining the vector combination coefficient c
using these proposed PSD or SSD methods is numerically straightforward.

3.2 The distribution-free stepwise approach

The above approach makes use of the assumption of multivariate normality. We now con-
sider maximizing VUS without normality assumption. The empirical estimate of VUS of
the combination c is

U (c) =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I (c1Xi1 + · · ·+ cpXip < c1Yj1 + · · ·+ cpYjp < c1Zk1 + · · ·+ cpZkp) .

This is a three-category generalization of Pepe and Thompson Pepe and Thompson (2000).
When the number of markers p is large, i.e., ≥ 3, the empirical search for c is computa-
tionally inaccessible. The nonparametric min-max procedure by Liu et al. Liu et al. (2011)
is easy to implement; however, it comes with a few drawbacks: 1) feasibility might be an
issue when not all biomarkers are measured on the same scale; 2) the approach may be
an inefficient use of the data as it only considers the minimum and maximum values; 3)
interpretation of the estimated combination coefficient is difficult.

To overcome all the shortcomings of the current existing nonparametric combination
methods, we will develop a distribution-free approach that combines the diagnostic tests or
the scores of all the biomarkers in a stepwise fashion. Two stepwise proceeding procedures
are considered, i.e., step-down and step-up, which we describe in details in the following,
using the step-down procedure as an example:

1. Estimate VUS for each of p diagnostic tests or biomarkers based on the Mann-
Whitney statistic by Equation (4);

2. Assign the order from 1 to p for each diagnostic test or biomarker based on their
estimated VUS from the largest to the smallest.
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3. Combine the first two markers (i.e., markers with first two largest VUS) using empir-
ical search for combination coefficients presented by Pepe and Thompson Pepe and
Thompson (2000).

4. Having derived the univariate composite score in Step 3 by linearly combining first
two markers, combine it with the third marker (i.e., marker with the third largest
VUS) using empirical searching combination again.

5. Proceed in this fashion until the ordered pth marker (i.e., marker with smallest VUS)
is included in the linear combination.

The estimated combination coefficient by searching needs to be saved in each step, and
in the end, the order of p’s combination coefficients needs to be adjusted to match their
corresponding markers. The step-up procedure is exactly the same as the step-down one
except that in Step 2, the order from 1 to p for each diagnostic test or biomarker is assigned
based on their estimated VUS from the smallest to the largest.

Given p biomarkers, there exist p! ways of permuting them, and hence there exist p!
stepwise procedures. The proposed step-down and step-up procedures are just two out of
those p! ways. However, when p is relatively large, it is not feasible to carry out all the p!
ways. For example, when p ≥ 50, there exist 50! ≈ 3×1064 stepwise procedures. Another
reason that we only consider step-down and step-up procedures is rooted in order restrict-
ed inference Robertson et al. (1988), where it is argued that any other stepwise method
selecting different proceeding orders would have performance somewhere in between the
step-down and step-up procedures.

The advantages of our proposed stepwise approach are: 1) it is distribution-free and
therefore it is robust; 2) it is easy to implement with computer iterations and therefore
it offers a relief from the computational burden in the empirical search of combination
coefficients in p-dimensional space as p > 2 as encountered in Pepe and Thompson Pepe
and Thompson (2000); 3) simulation studies in Section 4 demonstrate that the stepwise
approach (especially the step-down one) may outperform the other methods under some
scenarios, and for other scenarios, its performance is comparable to that of other methods.

4. Simulation Studies

Simulations are conducted to investigate the performance of the different combination
methods as it is difficult, if not impossible, to analytically evaluate the performance of the
aforementioned methods. For µ in equations (7) and (8), both weighted and un-weighted
versions are calculated as follows: µw = (n1µ1 + n2µ2 + n3µ3)/ (n1 + n2 + n3) and
µuw = (µ1 + µ2 + µ3)/ 3. Overall, we empirically investigate the performance of eight
approaches, namely, the scaled stochastic distance method with µw (SSD1), the scaled s-
tochastic distance method with µuw (SSD2), the penalized stochastic distance method with
µw(PSD1), the penalized stochastic distance method with µuw (PSD2), the step-down pro-
cedure which proceeds from the marker with largest VUS to the one with smallest VUS
(SW1), the step-up procedure which proceeds from the marker with smallest VUS to the
one with largest VUS (SW2), the min-max approach extended to three diagnostic cate-
gories (Min-Max), and the linear combination coefficients from cumulative logistic regres-
sion (Cum-Logistic).

To investigate the performance of all eight approaches enpirically, six different settings
of the joint distributions of five diagnostic tests (p = 5) are considered. For each setting,
multivariate observations are generated from the underlying distributions with different
sample sizes. The univariate composite scores S1i, S2j and S3k are calculated by combining

Health Policy Statistics Section – JSM 2012

1361



the observed data using the estimated c from a specific combination method; and then VUS
of the combined marker is estimated using the unbiased Mann-Whitney statistic in Equation
(4). For each setting, 10,000 Monte Carlo repetitions are conducted. For each method, the
mean VUS as well as the chance of obtaining the largest VUS across 10,000 Monte Carlo
repetitions are reported in Tables 1–6.

4.1 Multivariate normal distributions with equal variance

Data from multivariate normal distributions with different mean vectors and equal variance
matrices corresponding to three ordinal diagnostic categories are generated with

µ1 =


0.1
0.1
0.1
0.1
0.1

 , µ2 =


0.8
1.1
1.4
1.7
2.0

 , µ3 =


1.6
2.2
2.8
3.4
4.0

 ,

and Σ1 = Σ2 = Σ3 = 0.7× I5×5+0.3×J5×5, 0.5× I5×5+0.5×J5×5, 0.3× I5×5+
0.7×J5×5, where I and J stand for an identity matrix and a matrix with all elements equal
to 1, respectively. These three different covariance matrices correspond to scenarios with
low, medium, and high correlation respectively, and the corresponding simulation results
are presented in Tables 1–3.

Overall speaking, the simulation results presented in Tables 1–3 show that SW1, SS-
D1, SSD2, and Cum-Logistic have better performance than the other approaches. The
performance of each method somewhat depends on the correlation. When correlation is
relatively small, Table 1 (ρ = 0.3) shows that SW1 performs much better than SSD1, SS-
D2 or Cum-Logistic. As correlation increases from small to large, Table 3 (ρ = 0.7) shows
the performance of SW1 is slightly inferior to that of SSD1 or Cum-Logistic in view of the
mean VUS. Under the setting with correlation ρ = 0.5 (Table 2), all of SW1, SSD1, SSD2,
Cum-Logistic have comparable good performance.

Although the method using cumulative logistic regression might work well for certain
scenarios, there exist some numerical difficulties with fitting cumulative logistic regression
model. The iterative algorithms for maximum likelihood estimates of the model parameters
can easily fail to converge, especially when the sample sizes are small. For fair compar-
isons, those ill-posed Monte Carlo samples are marked and excluded for calculating the
mean VUS corresponding to Cum-Logistic.

4.2 Multivariate normal distributions with unequal variance

Now we consider multivariate normal distributions with different mean vectors and unequal
variance matrices corresponding to three ordinal diagnostic categories. The mean vectors
are the same as in Section 4.1, with variance matrices set as follows,

Σ1 = 0.7× I5×5 + 0.3× J5×5

Σ2 = 0.5× I5×5 + 0.5× J5×5

Σ3 = 0.3× I5×5 + 0.7× J5×5

As shown in Table 4, the performances of SSD1, SSD2, SW1 and Cum-Logistic under
this setting have good and comparable performance.

4.3 Multivariate log-normal distributions with unequal variance-covariance

In this section, we would like to investigate the diagnostic accuracy of the combined marker
from different methods, assuming that multiple biomarkers follow multivariate log-normal
distributions, that is, the log-transformed scores are multivariate normally distributed. Data
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are first generated from the multivariate normal setting in Section 4.2 and then exponenti-
ated to get the multivariate log-normal observations.

In this case, the normality assumption does not hold and the normal-based approaches
such as SSD1 do not work at all, which is expected, as sample means and variance matrices
under this setting cannot measure the location and variation correctly for non-normal data.
From Table 5, it is suggested that SW1 proceeding from the marker with largest VUS to
the marker with smallest VUS dominate the other methods.

4.4 Multivariate normal-χ2-lognormal-exponential-gamma distributions via normal
copula

We further investigate the performances of different methods assuming the p-variate s-
cores follow multivariate normal-χ2-lognormal-exponential-gamma distributions coupled
together via normal copula Kojadinovic and Yan (2010) with exchangeable correlations ρ
being 0.3, 0.5 and 0.7 for non-diseased, intermediate and diseased category, respective-
ly. The marginal distributions of p biomarkers for non-diseased, intermediate and diseased
subjects are chosen as follows, respectively,

N(0.1, 1)
χ2
0.1

LN(−2.80, 1)
exp(0.1)
Γ(0.1, 1)

,


N(0.8, 1)

χ2
1.1

LN(−0.16, 1)
exp(1.7)
Γ(2.0, 1)

,


N(1.6, 1)

χ2
2.2

LN(0.53, 1)
exp(3.4)
Γ(4.0, 1)

.

Under this setting, the mean structures are exactly the same as in Section 4.1. From
Table 6, we can see the step-down procedure (SW1) proceeding from the marker with
largest VUS to the one with smallest VUS is far more superior than all the other methods.

In summary, out of all the methods considered, the step-down procedure (SW1) is a
good choice for combining multiple biomarkers, followed by the scaled stochastic distance
method (SSD1 and SSD2), the cumulative logistic regression method, SW2, the penalized
stochastic distance method (PSD1 and PSD2), and Min-Max. While SW1 is not based
on normality, it requires p − 1 nonparametric searching steps. On the other hand, SSD1
(or SSD2) requires normal assumption, but they are more efficient with large numbers of
biomarkers.

5. Analysis of Data Example

In this section, all eight approaches investigated in simulation studies are applied to a real
data set of 118 subjects from a cohort study in early stage Alzheimer’s disease (AD) from
the Washington University Knight Alzheimer’s Disease Research Center to combine sever-
al psychometric tests for larger discriminating ability, i.e., larger VUS, than any individual
psychometric test scores.

Each individual was assessed by experienced clinicians. The diagnosis of AD was
based on the Clinical Dementia Rating (CDR) according to published rules Morris (1993).
In this application, we are concentrating on three diagnostic categories, non-demented (C-
DR 0, 45 individuals), very mildly demented (CDR 0.5, 44 individuals), and mildly de-
mented (CDR 1, 29 individuals). Approximately 2 weeks after the clinical evaluation,
subjects also completed a battery of psychometric tests. Episodic memory, which involves
the recollection of specific events, situations and experiences, e.g., first day of school or
graduation, was assessed by 5 of those psychometric tests, the Logical Memory (LM), Dig-
it Span Forward (DSF), Digit Span Backward (DSB), Associate Learning subtests of the
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Wechsler Memory Scale (WMS) Wechsler and Stone (1973) and the Visual Retention Test
(Form C, 10-s exposure) (VRT) Benton (1963). Xiong et al. Xiong et al. (2006) reported
the estimated VUS for these 5 psychometric tests: 0.724 (LM), 0.522 (DSF), 0.599 (DSB),
0.630 (WMS), and 0.587 (VRT).

The linear combinations with associated VUS from the SSD1, SSD2, PSD1, PSD2,
Cum-Logistic, SW1 and SW2 methods are provided in the following, where the combina-
tion coefficient corresponding to LM is set to 1 to guarantee a unique solution.

LM DSF DSB V RT WMS (VUS)
SSD1 1.0000 0.1533 0.2272 0.3915 0.0765 (0.8077)
SSD2 1.0000 0.1513 0.2219 0.3924 0.0747 (0.8066)
PSD1 1.0000 0.4863 0.6464 0.7902 0.7121 (0.8106)
PSD2 1.0000 0.4742 0.6233 0.7810 0.6957 (0.8108)
Cum-Logistic 1.0000 0.1610 0.4396 0.2934 0.1654 (0.8138)
SW1 1.0000 0.1162 0.4830 0.1290 0.3558 (0.8296)
SW2 1.0000 0.0729 0.1553 0.0924 0.3360 (0.8235)

The min-max approach provides the following combination

1.0000×max{LM,DSF,DSB, V RT,WMS}+1.1956×min{LM,DSF,DSB, V RT,WMS}

with an estimated VUS of 0.7724 for the combined marker. The Shapiro-Wilk test for mul-
tivariate normality Royston (1982) returns p-values of < 0.0001, < 0.0001 and 0.0184 for
non-diseased, intermediate and diseased category, respectively. Therefore, the results using
the procedures based on normality (SSD1, SSD2, PSD1, PSD2) should not be interpreted.
All 8 methods provide a linearly combined marker that yields a larger VUS than any of
the original test and the step-down method (SW1) provides a linear combination with the
largest VUS.

6. Discussion

In this article, we extend two existing combination approaches to deal with three ordi-
nal diagnostic categories. We also propose two new types of linear combination methods
to combine diagnostic tests or biomarkers to improve diagnostic accuracy measure, VUS.
The first proposed normal-based approach requires only the estimated means and variance-
covariances of multiple diagnostic tests for each diagnostic category to calculate the linear
combination coefficients. Therefore, it is efficient with large numbers of biomarkers, which
is quite common nowadays with high-throughput bioinformatics tools, for instance, mi-
croarray technologies. Under the normality assumption with moderate to large correlations,
our simulations show the normal-based approach, especially SSD1, has relatively good per-
formance in terms of obtaining a combined marker with the largest VUS. Recently, Zhang
Zhang (2010) proposed to directly maximize the accuracy index VUS with three diagnostic
categories under normality assumption. Although appealing, the mathematical equations
for finding the derivatives are formidable. The author stated that the analytic solution to
directly maximizing the VUS is not generally attainable. For this reason, the proposed
normal-based approach may offer investigators an opportunity to combine the diagnostic
tests and biomarkers for the disease processes with more than three ordinal categories. The
second proposed approach is a stepwise approach which is distribution-free in nature and
hence is robust with non-normal data. The computing effort and cost in obtaining the com-
bination coefficient is significantly less than the empirical search in p-dimensional space
Pepe and Thompson (2000). Our simulations show, for either non-normal data or normal
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data with small correlations, the step-down procedure (SW1) proceeding from the marker
with largest VUS to the marker with smallest VUS is a reasonable choice for biomarker
combination. It is worthwhile to point out that both the stepwise approach and the normal-
based approach could be easily generalized to diseases with more than three diagnostic
categories. The cumulative logistic regression approach (Cum-Logistic) has great chance
to produce a combined marker with largest VUS under normality assumption with large
sample sizes. Note that one of the assumptions underlying cumulative logistic regression
model is the proportional odds. This is to say, the coefficients that describe the relationship
between, say, the lowest versus all higher categories of the response variable are the same
as those that describe the relationship between the next lowest category versus all higher
categories, etc. We recommend to test this assumption before applying this approach to the
combination of markers. The min-max combination method is a fast one, although the per-
formance is not as good as simulations indicated. It is interesting to explore if adding some
other order statistics will improve the combination while maintaining its computational
efficiency in the future research.

Some related research topics are currently under investigation. The methods explored
here implicitly assume that the scaling metric of each of the biomarkers is linear. However,
for some cognitive tests, this may not be the case, see Crane et al. Crane et al. (2008). It will
be of great interest to determine whether some approaches that first produce a linear scaling
metric for each biomarker and then apply the proposed methods may provide additional
ability to distinguish among disease severity categories. Furthermore, it is also of interest
to explore the performance of a generalized version of the cumulative logistic regression
approach discussed in Section 2.2 without the proportional odds assumption.
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Table 1: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.9135 — 0.8916 — 0.9113 0.9216 0.9100 0.8566

(0.194) — (0.010) — (0.183) (0.511) (0.085) (0.015)
(20, 30, 50) 0.9095 0.9095 0.8883 0.8894 0.9079 0.9147 0.9051 0.8519

(0.084) (0.080) (0.002) (0.002) (0.158) (0.601) (0.066) (0.008)
(30, 40, 50) 0.9074 0.9074 0.8885 0.8889 0.9088 0.9111 0.9027 0.8504

(0.084) (0.084) (0.001) (0.001) (0.201) (0.576) (0.050) (0.004)
(50, 50, 50) 0.9057 — 0.8880 — 0.9072 0.9082 0.9006 0.8483

(0.176) — (0.002) — (0.242) (0.541) (0.039) (0.001)
Simulation setting: normal data with equal variance
Σ1 = Σ2 = Σ3 = 0.7× I5×5 + 0.3× J5×5

Table 2: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.8951 — 0.8441 — 0.8944 0.8977 0.8759 0.8239

(0.332) — (0.000) — (0.289) (0.348) (0.021) (0.009)
(20, 30, 50) 0.8905 0.8905 0.8383 0.8412 0.8896 0.8913 0.8702 0.8188

(0.156) (0.154) (0.000) (0.000) (0.290) (0.386) (0.008) (0.007)
(30, 40, 50) 0.8879 0.8879 0.8396 0.8406 0.8896 0.8879 0.8677 0.8168

(0.163) (0.162) (0.000) (0.000) (0.356) (0.313) (0.003) (0.002)
(50, 50, 50) 0.8860 — 0.8395 — 0.8875 0.8849 0.8655 0.8147

(0.342) — (0.000) — (0.411) (0.245) (0.001) (0.000)
Simulation setting: normal data with equal variance
Σ1 = Σ2 = Σ3 = 0.5× I5×5 + 0.5× J5×5

Table 3: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.9131 — 0.8104 — 0.9107 0.8931 0.8546 0.8301

(0.530) — (0.000) — (0.369) (0.091) (0.002) (0.007)
(20, 30, 50) 0.9090 0.9090 0.8011 0.8074 0.9070 0.8894 0.8485 0.8250

(0.268) (0.258) (0.000) (0.000) (0.408) (0.062) (0.000) (0.004)
(30, 40, 50) 0.9066 0.9066 0.8044 0.8065 0.9080 0.8872 0.8463 0.8228

(0.235) (0.235) (0.000) (0.000) (0.502) (0.027) (0.000) (0.001)
(50, 50, 50) 0.9049 — 0.8053 — 0.9064 0.8845 0.8440 0.8207

(0.442) — (0.000) — (0.549) (0.010) (0.000) (0.000)
Simulation setting: normal data with equal variance
Σ1 = Σ2 = Σ3 = 0.3× I5×5 + 0.7× J5×5

SSD1: scaled stochastic distance method with µ accounting for unbalanced sample size
SSD2: scaled stochastic distance method with µ accounting no unbalanced information
PSD1: penalized stochastic distance method with µ accounting for unbalanced info
PSD2: penalized stochastic distance method with µ accounting no unbalanced info
SW1: step-down procedure (stepwise method proceeding from marker with largest VUS
to smallest VUS)
SW2: step-up procedure (stepwise method proceeding from marker with smallest VUS to
largest VUS)
Min-Max: min-max approach implemented for three diagnostic categories
Cum-Logistic: linear combination coefficients from cumulative logistic regression
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Table 4: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.8954 — 0.8456 — 0.8943 0.8982 0.8766 0.7994

(0.336) — (0.000) — (0.273) (0.365) (0.024) (0.001)
(20, 30, 50) 0.8916 0.8916 0.8400 0.8428 0.8904 0.8925 0.8711 0.7937

(0.167) (0.159) (0.000) (0.000) (0.278) (0.388) (0.008) (0.000)
(30, 40, 50) 0.8884 0.8884 0.8412 0.8421 0.8900 0.8887 0.8684 0.7916

(0.159) (0.157) (0.000) (0.000) (0.345) (0.335) (0.003) (0.000)
(50, 50, 50) 0.8863 — 0.8411 — 0.8878 0.8855 0.8661 0.7892

(0.336) — (0.000) — (0.398) (0.265) (0.001) (0.000)
Simulation setting: normal data with unequal variance

Table 5: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.6727 — 0.5784 — 0.8378 0.8835 0.8678 0.7981

(0.002) — (0.004) — (0.066) (0.849) (0.075) (0.003)
(20, 30, 50) 0.7078 0.7066 0.4845 0.4208 0.8257 0.8769 0.8625 0.7931

(0.000) (0.000) (0.001) (0.001) (0.033) (0.932) (0.031) (0.001)
(30, 40, 50) 0.7082 0.7077 0.4303 0.4141 0.8323 0.8717 0.8590 0.7910

(0.000) (0.000) (0.000) (0.000) (0.028) (0.949) (0.022) (0.000)
(50, 50, 50) 0.7095 — 0.4099 — 0.8372 0.8674 0.8561 0.7887

(0.000) — (0.000) — (0.027) (0.957) (0.014) (0.000)
Simulation setting: multivariate log-normal data

Table 6: Mean VUS and chance of obtaining largest VUS (under in parenthesis)
(n1, n2, n3) SSD1 SSD2 PSD1 PSD2 Cum-Logistic SW1 SW2 Min-Max
(20, 20, 20) 0.7808 — 0.7740 — 0.7829 0.8252 0.8116 0.6870

(0.080) — (0.018) — (0.015) (0.798) (0.088) (0.003)
(20, 30, 50) 0.7782 0.7780 0.7702 0.7733 0.7815 0.8115 0.8020 0.6775

(0.019) (0.017) (0.002) (0.004) (0.018) (0.895) (0.044) (0.000)
(30, 40, 50) 0.7771 0.7771 0.7723 0.7732 0.7879 0.8077 0.8000 0.6743

(0.017) (0.018) (0.002) (0.003) (0.030) (0.892) (0.039) (0.000)
(50, 50, 50) 0.7767 — 0.7724 — 0.7912 0.8050 0.7986 0.6709

(0.024) — (0.006) — (0.043) (0.886) (0.041) (0.000)
Simulation setting: normal-χ2-lognormal-exponential-gamma copula data

SSD1: scaled stochastic distance method with µ accounting for unbalanced sample size
SSD2: scaled stochastic distance method with µ accounting no unbalanced information
PSD1: penalized stochastic distance method with µ accounting for unbalanced info
PSD2: penalized stochastic distance method with µ accounting no unbalanced info
SW1: step-down procedure (stepwise method proceeding from marker with largest VUS
to smallest VUS)
SW2: step-up procedure (stepwise method proceeding from marker with smallest VUS to
largest VUS)
Min-Max: min-max approach implemented for three diagnostic categories
Cum-Logistic: linear combination coefficients from cumulative logistic regression
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