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Abstract
Stationary ergodic processes with finite alphabets are estimated by finite memory processes from a
sample, an n-length realization of the process, where the memory depth of the estimator process is
also estimated from the sample using penalized maximum likelihood (PML). Under some assump-
tions on the continuity rate and the assumption of non-nullness, a rate of convergence in d̄-distance
is obtained, with explicit constants. The results show optimality of the PML Markov order estimator
for not necessarily finite memory processes.
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1. Introduction

This paper is concerned with the problem of estimating stationary ergodic processes with
finite alphabet from a sample, an observed length n realization of the process, with the
d̄-distance being considered between the process and the estimated one. The d̄-distance
was introduced by Ornstein [13] and became one of the most widely used metrics over
stationary processes. Two stationary processes are close in d̄-distance if there is a joint
distribution whose marginals are the distributions of the processes such that the marginal
processes are close with high probability (see Section 4 for the formal definition). The class
of ergodic processes is d̄-closed and entropy is d̄-continuous, which properties do not hold
for the weak topology [18].

Ornstein and Weiss [14] proved that for stationary processes isomorphic to i.i.d. pro-
cesses, the empirical distribution of the k(n)-length blocks is a strongly consistent estima-
tor of the k(n)-length parts of the process in d̄-distance if and only if k(n) ≤ (log n)/h,
where h denotes the entropy of the process.

Csiszár and Talata [8] estimated the n-length part of a stationary ergodic process X by
a Markov process of order kn. The transition probabilities of this Markov estimator process
are the empirical conditional probabilities, and the order kn → +∞ does not depend on
the sample. They obtained a rate of convergence of the Markov estimator to the process X
in d̄-distance, which consists of two terms. The first one is the bias due to the error of the
approximation of the process by a Markov chain. The second term is the variation due to
the error of the estimation of the parameters of the Markov chain from a sample.

Model selection methods in various settings seek a tradeoff between the bias and the
variation. There are classical results aiming at identifying the balance, see for instance the
indices of resolvability in the work by Barron [2, 3, 4].

In this paper, the order kn of the Markov estimator process is estimated from the sam-
ple. Some of the subsequent results were also presented at the IEEE International Sympo-
sium on Information Theory, Cambridge, Massachusetts, July 2012. The complete proofs
of all of the results given in this paper are contained in [20]. The penalized maximum
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likelihood (PML) is a natural generalization of the Bayesian information criterion, that is
often regarded as an approximation of the criteria derived from the minimum description
length principle (see Section 3 for the formal definition). For the order estimation, PML
with general penalty term is used. The resulted Markov estimator process finds a tradeoff
between the bias and the variation as it uses shorter memory for faster memory decays of
the process X . If the process X is a Markov chain, the PML order estimation recovers its
order asymptotically with a wide range of penalty terms.

Not only an asymptotic rate of convergence result is obtained but also an explicit bound
on the probability that the d̄-distance of the above Markov estimator from the process X
is greater than ε. It is assumed that the process X is non-null, that is, the conditional
probabilities of the symbols given the pasts are separated from zero, and that the continuity
rate of the process X is summable and the restricted continuity rate is uniformly convergent.
These conditions are usually assumed in this area [6, 9, 10, 12]. The summability of the
continuity rate implies that the process is isomorphic to an i.i.d. process [5].

2. Infinite Memory Processes

Let X = {Xi,−∞ < i < +∞} be a stationary ergodic stochastic process with finite
alphabet A. We write Xj

i = Xi, . . . , Xj and xji = xi, . . . , xj ∈ Aj−i+1 for j ≥ i. If
j < i, xji is the empty string. For two strings xi1 ∈ Ai and yj1 ∈ Aj , xi1y

j
1 denotes their

concatenation x1, . . . , xi, y1, . . . , yj ∈ Ai+j . Write

P (xji ) = Pr(Xj
i = xji )

and, if P (x−1
−m) > 0,

P (a|x−1
−m) = Pr(X0 = a | X−1

−m = x−1
−m).

For m = 0, P (a|x−1
−m) = P (a).

The process X is called non-null if

pinf = min
a∈A

inf
x−1
−∞∈A∞

P (a|x−1
−∞) > 0.

The continuity rate of the process X is

γ(k) = sup
x−1
−∞∈A∞

∑
a∈A

∣∣P (a|x−1
−k)− P (a|x−1

−∞)
∣∣ .

If
∑∞

k=1 γ(k) < +∞, then the process X is said to have summable continuity rate.

Remark 1. Since for any x−1
−k ∈ Ak and z−k−1

−m ∈ Am−k, m ≥ k,

inf
x−k−1
−∞

P (a|x−1
−∞) ≤ P (a|z−k−1

−m x−1
−k) ≤ sup

x−k−1
−∞

P (a|x−1
−∞),

the above definition of continuity rate is equivalent to

γ(k) = sup
i>k

max
x−1
−i∈Ai

∑
a∈A

∣∣P (a|x−1
−k)− P (a|x−1

−i )
∣∣ .
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The restricted continuity rate of the process X is

γ(k|m) = max
x−1
−m∈Am

∑
a∈A

∣∣P (a|x−1
−k)− P (a|x−1

−m)
∣∣ , k < m.

Similarly to Remark 1, note that the above definition is equivalent to

γ(k|m) = max
k<i≤m

max
x−1
−i∈Ai

∑
a∈A

∣∣P (a|x−1
−k)− P (a|x−1

−i )
∣∣ .

Hence, limm→+∞ γ(k|m) = γ(k) for any fixed k. We say that the process X has uniformly
convergent restricted continuity rate with parameters θ1, θ2, kθ if

γ(k)θ1 ≤ γ(k | ⌈θ2k⌉) if k ≥ kθ, for some θ1 ≥ 1, θ2 > 1.

The k-order entropy of the process X is

Hk = −
∑

ak1∈Ak

P (ak1) logP (ak1), k ≥ 1,

and the k-order conditional entropy is

hk = −
∑

ak+1
1 ∈Ak+1

P (ak+1
1 ) logP (ak+1|ak1), k ≥ 0.

Logarithms are to the base 2. It is well-known for stationary processes that the conditional
entropy hk is a non-negative decreasing function of k, therefore its limit exists as k → +∞.
The entropy rate of the process is

H̄ = lim
k→+∞

hk = lim
k→+∞

1

k
Hk.

Note that hk − H̄ ≥ 0 for any k ≥ 0.
The process X is a Markov chain of order k if for each n > k and xn1 ∈ An

P (xn1 ) = P (xk1)

n∏
i=k+1

P (xi|xi−1
i−k), (1)

where P (xk1) is called initial distribution and
{
P (a|ak1), a ∈ A, ak1 ∈ Ak

}
is called transi-

tion probability matrix. The case k = 0 corresponds to i.i.d. processes. The process X is
of infinite memory if it is not a Markov chain for any order k < +∞. For infinite memory
processes, hk − H̄ > 0 for any k ≥ 0.

In this paper, we consider statistical estimates based on a sample Xn
1 , an n-length part

of the process. Let Nn(a
k
1) denote the number of occurrences of the string ak1 in the sample

Xn
1

Nn(a
k
1) =

∣∣∣{i : Xi+k
i+1 = ak1, 0 ≤ i ≤ n− k

}∣∣∣ .
For k ≥ 1, the empirical probability of the string ak1 is

P̂ (ak1) =
Nn(a

k
1)

n− k + 1
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and the empirical conditional probability of a ∈ A given ak1 is

P̂ (ak+1| ak1) =
Nn(a

k+1
1 )

Nn−1(ak1)
.

For k = 0, P̂ (ak+1| ak1) = P̂ (ak+1). The k-order empirical entropy is

Ĥk(X
n
1 ) = −

∑
ak1∈Ak

P̂ (ak1) log P̂ (ak1), 1 ≤ k ≤ n,

and the k-order empirical conditional entropy is

ĥk(X
n
1 ) = −

∑
ak+1
1 ∈Ak+1

P̂ (ak+1
1 ) log P̂ (ak+1| ak1), 0 ≤ k ≤ n− 1.

3. Penalized Maximum Likelihood

An information criterion assigns a score to each hypothetical model (here, Markov chain
order) based on a sample, and the estimator will be that model whose score is minimal.

Definition 2. For an information criterion

ICXn
1
( · ) : N → R+,

the Markov order estimator bounded by rn < n, rn ∈ N, is

k̂IC(X
n
1 | rn) = arg min

0≤k≤rn
ICXn

1
(k).

Remark 3. Here, the number of candidate Markov chain orders based on a sample is finite,
therefore the minimum is attained. If the minimizer is not unique, the smallest one will be
taken as argmin.

A popular approach to choosing information criteria is the minimum description length
(MDL) principle [15, 4]. In particular, the normalized maximum likelihood (NML) [19]
and the Krichevsky–Trofimov (KT) [11] code lengths are natural information criteria be-
cause the former minimizes the worst case maximum redundancy for the model class of
k-order Markov chains, while the latter does so, up to an additive constant, with the av-
erage redundancy. The Bayesian information criterion (BIC) [16] can be regarded as an
approximation of the NML and KT code lengths. The family of penalized maximum like-
lihood (PML) is a generalization of BIC.

The likelihood of the sample Xn
1 with respect to a k-order Markov chain model of the

process X with some transition probability matrix
{
Q(ak+1|ak1), ak+1 ∈ A, ak1 ∈ Ak

}
, by

(1), is
P ′(Xn

1 ) = P ′(Xk
1 )

∏
ak+1
1 ∈Ak+1

Q(ak+1| ak1)Nn(a
k+1
1 ).

For 0 ≤ k < n, the maximum likelihood is the maximum in Q(ak+1|ak1) of the second
factor above, which equals

MLk(X
n
1 ) =

∏
ak+1
1 ∈Ak+1

P̂ (ak+1| ak1)Nn(a
k+1
1 ).

Note that logMLk(X
n
1 ) = −(n− k)ĥk(X

n
1 ).
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Definition 4. Given a penalty function pen(n), a non-decreasing function of the sample
size n, for a candidate order 0 ≤ k < n the PML criterion is

PMLXn
1
(k) = − logMLk(X

n
1 ) + (|A| − 1)|A|kpen(n)

= (n− k) ĥk(X
n
1 ) + (|A| − 1)|A|kpen(n).

The k-order Markov chain model of the process X is described by the conditional
probabilities

{
Q(ak+1|ak1), ak+1 ∈ A, ak1 ∈ Ak

}
, and (|A| − 1)|A|k of these are free pa-

rameters.
The second term of the PML criterion, which is proportional to the number of free

parameters of the k-order Markov chain model, is increasing in k. The first term, for a
given sample, is known to be decreasing in k. Hence, minimizing the criterion yields a
tradeoff between the goodness of fit of the sample to the model and the complexity of the
model.

Remark 5. If pen(n) = 1
2 log n, the PML criterion is called Bayesian information criterion

(BIC), and if pen(n) = 1, Akaike information criterion (AIC) [1].

4. Statistical Estimation of Processes

The problem of statistical estimation of stationary ergodic processes by finite memory pro-
cesses is considered, and the following distance is used. The per-letter Hamming distance
between two strings xn1 and yn1 is

dn(x
n
1 , y

n
1 ) =

1

n

n∑
i=1

I(xi ̸= yi), where I(a ̸= b) =

{
1 if a ̸= b
0 if a = b

,

and the d̄-distance between two random sequences Xn
1 and Y n

1 is defined by

d̄(Xn
1 , Y

n
1 ) = min

P
EP dn(X̃

n
1 , Ỹ

n
1 ),

where the minimum is taken over all the joint distributions P of X̃n
1 and Ỹ n

1 whose marginals
are equal to the distributions of Xn

1 and Y n
1 .

The process X is estimated by a Markov chain of order k = kn from the sample in the
following way.

Definition 6. The empirical k-order Markov estimator of a process X based on the sample
Xn

1 is the stationary Markov chain, denoted by X̂[k], of order k with transition probabil-

ity matrix
{
P̂ (ak+1| ak1), ak+1 ∈ A, ak1 ∈ Ak

}
. If the initial distribution of a stationary

Markov chain with these transition probabilities is not unique, then any of these initial
distributions can be taken.

The order k of the empirical Markov estimator X̂[k] is estimated from the sample,
using the PML criterion. The estimated order needs to be bounded to guarantee an accurate
assessment of the memory decay of the process.

The optimal order can be smaller than the upper bound if the memory decay of the
process is sufficiently fast. Define

Kn(rn, γ, f(n)) = min {⌊rn⌋ , k ≥ 0 : γ(k) < f(n)} ,
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where f(n) ↘ 0 and rn ↗ ∞. Since γ is a decreasing function, Kn increases in n but
does not exceed rn. It is less than rn if γ vanishes sufficiently fast, and then the faster γ
vanishes, the slower Kn increases.

The process estimation result of the paper is the following.

Theorem 7. For any non-null stationary ergodic process with summable continuity rate
and uniformly convergent restricted continuity rate with parameters θ1, θ2, kθ, and for any
µn > 0, the empirical Markov estimator of the process with the order estimated by the
bounded PML Markov order estimator k̂n = k̂PML(X

n
1 | η log n), η > 0, with 1

2 log n ≤
pen(n) ≤ O(

√
n) satisfies

Pr

(
d̄
(
Xn

1 , X̂[k̂n]
n
1

)
>

β2
p2inf

max

{
γ̄
(⌊

η
θ2

log n
⌋)

, n
− 1

4θ1

(
1−4η log

|A|4
pinf

)}
+

1

n1/2−µn

)

≤ exp

(
−c4 4

µn logn−| log pinf|
(
Kn(η logn,γ̄, cnpen(n))+ log logn

log |A|

))
+ exp

(
− c5η

3

logn
nη 2 log |A|

)
+ 2−snpen(n)

if n ≥ n0, where c > 0 is an arbitrary constant, sn → ∞ and β2, c4, c5, n0 > 0 are
constants depending only on the distribution of the process.

Remark 8. If the process X is a Markov chain of order k, then the restricted continuity
rate is uniformly convergent with parameters θ1 = 1, θ2 > 1 arbitrary (arbitrarily close to
1), kθ = k + 1, and if n is sufficiently large, Kn = k and

max

{
γ̄
(⌊

η
θ2

log n
⌋)

, n
− 1

4θ1

(
1−4η log

|A|4
pinf

)}
= n

− 1
4θ1

(
1−4η log

|A|4
pinf

)
.

An application of the Borel–Cantelli lemma in Theorem 7 yields the following asymp-
totic result.

Corollary 9. For any non-null stationary ergodic process with summable continuity rate
and uniformly convergent restricted continuity rate with parameters θ1, θ2, kθ, the empiri-
cal Markov estimator of the process with the order estimated by the bounded PML Markov
order estimator k̂n = k̂PML(X

n
1 | rn) with 1

2 log n ≤ pen(n) ≤ O(
√
n) and

5 log log n

2 log |A|
≤ rn ≤ o(log n)

satisfies

d̄
(
Xn

1 , X̂[k̂n]
n
1

)
≤ β2

p2inf
max

{
γ̄
(⌊

rn
θ2

⌋)
, n

− 1
4θ1

}
+

(log n)c6√
n

2| log pinf|Kn(rn,γ̄, cn pen(n))

eventually almost surely as n → +∞, where c > 0 is an arbitrary constant, and β2, c6 > 0
are constants depending only on the distribution of the process.

Remark 10. In Corollary 9, in the upper bound the first term is the bias due to the error of
the approximation of the process by a Markov chain. The second term is the variation due
to the error of the estimation of the order and the parameters of the Markov chain based on
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a sample. If the memory decay of the process is slow, the bias is essentially γ(⌊rn/θ2⌋),
and the variance is maximal. If the memory decay is sufficiently fast, then the rate of the
estimated order k̂n and the rate of Kn are smaller, therefore the variance term is smaller
while the bias term is smaller as well. The result, however, shows the optimality of the
PML Markov order estimator in the sense that it selects an order which is small enough
to allow the variance to decrease but large enough to keep the bias below a polynomial
threshold.

5. Discussion

In this paper, stationary ergodic processes have been estimated by finite memory processes
from a sample, where the memory depth of the estimator process is also estimated from
the sample using PML. Under some assumptions on the process, a rate of convergence in
d̄-distance has been obtained. The results show an optimality of the PML Markov order
estimator for not necessarily finite memory processes. In [20], the PML Markov order es-
timator has been shown to be consistent with the oracle-type order estimate under some
assumptions on the process. The consistency result requires larger penalty terms for PML
than the process estimation result. This reflects the expectation that the estimation of the
structure parameter needs larger penalty terms than the estimation of the sampling distri-
bution; see, for example, [17] and [16].
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