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Abstract
With the recent surge in the popularity of craft beers and home brewing, the styles of beer that

are available to consumers have increased tremendously. However, many beer drinkers are unaware
that there are many numerical measurements that are used to describe beer. This paper introduces
the numerical measurements used to describe the main styles of beer defined by the Beer Judge
Certification Program such as specific gravity, alcohol content, bitterness, and color. An interesting
aspect of these characteristics is that they are presented as interval data, for which many common
statistical methods don’t readily apply. As a result, a novel method for clustering interval data is
used to group and describe the similarities in the beer styles.
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1. Introduction

In the past twenty odd years, there has been rapid growth in the number of craft breweries
and craft beer drinkers in the United States. Indeed, in 1980 there were only 8 craft brewers,
that number increased to 537 in 1994, and over 1900 in 2011 (Brewers Association 1, n.d.,
Brewers Association 2, n.d.). This influx of craft breweries has broadened the spectrum of
styles of beer that people are familiar with from the common Light American Lagers (such
as Bud Light, Coors Light, and Miller Lite) to many different style such as Stouts, Porters,
and India Pale Ales that show up in bars and restaurants throughout the United States.

In addition to the growth of the craft beer industry, the homebrewing hobby has grown
to over 1 million Americans (Brewers Association 3, n.d.). Perhaps more so than craft
brewers, homebrewers explore the many styles of beer. Data from the National Homebrew
Conference shows that many different styles are represented including some that are rarely
seen from commercial breweries (Jeff, 2012).

With the increasing awareness to the many varieties of beer, many people may not be
aware of the many numerical characteristics that can be used to describe a beer. The Beer
Judge Certification Program (BJCP) has a database of “key statistics” used to describe typi-
cal beers from their recognized styles of beer (http://www.bjcp.org/stylecenter.php). These
statistics are used to provide guidance to judges and entrants in homebrew competitions
and are generally accepted as a good way to describe styles of beer on a similar scale.

This paper will introduce these key statistics defined by the BJCP, use the guidelines to
simulate individual beers in order to describe and rank the perceived bitterness from hops
for the styles, and use cluster analysis to group similar styles together. The paper finishes
with a discussion on what additional information, beyond the scope of this analysis, that
could be used to improve the bitterness rankings and groupings.

2. Beer Statistics and Simulating Individual Beers

The BJCP defines 23 main styles of beer with several substyles in each for a total of 80
styles of beer (http://www.bjcp.org/stylecenter.php). For 72 of these styles (in 20 of the
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main styles) they provide guidelines for brewers and judges based on five different numer-
ical characteristics of beer. These characteristics are:

• OG: The original gravity of a beer is the relative density (or specific gravity, SG)
compared to water before fermentation is started.

• FG: The final gravity is the specific gravity of a beer after fermentation is complete.

• ABV: The percent alcohol by volume of a beer fermentation is complete.

• IBU: The International Bittering Unit is a measure of the bitterness of beer from
the amount of hops used during the brewing process.

• SRM: The Standard Reference Method is used to measure color intensity and dark-
ness of a beer. Briefly, SRM is defined as 10 times the light absorbency of a beer
sample illuminated by a light source with a wavelength of 430 nanometers measured
through a half inch glass cuvette measured on a logarithmic scale (Daniels, 1998).
Low values such as 2 or 3 appear straw-like in color under normal light, values
around 10 - 15 are amber to copper in color, and values of 30 or more tend towards
dark brown to black.

There are several other beer characteristics that can be calculated from the BJCP key
statistics that are useful for describing beer. They include:

• OE: The original extract of a beer is the mass (grams) of sugar in 100 grams of
unfermented beer.

• FE: The final extract of a beer is the mass (grams) of sugar in 100 grams of fer-
mented beer.

– Both OE and FE can be calculated from the original and final gravities using
De Clerck’s equation (De Clerck, 1958):

Extract = −205.347Gravity2 + 668.72Gravity − 463.37

• RA: Real attenuation is the percent of sugars converted to alcohol and CO2 from
the yeast in a beer. To some extent, low numbers indicate that the beer will be maltier
while high values indicate the beer will be drier. Real attenuation is calculated from
OE and FE using Balling’s approximation (De Clerck, 1958) of:

RA ≈ 1− (0.1808OE + 0.8192FE) /OE

The original five characteristics (from BJCP) will be used to construct groups of similar
styles (Section 3) while the latter will be used in conjunction with IBU to calculate and
rank the hop bitterness of beer styles (Section 4). One complicating factor is that, for each
style of beer, the BJCP gives a range of values that they would consider to be consistent
or typical with the style. This doesn’t imply that all beers for a given style fall inside
the ranges provided by BJCP; instead they’ve constructed the ranges based on numerous
commercial beers from each style. As a result these ranges, which seemingly appear to be
interval style data, are essentially marginal distributions of each style for each of the five
characteristics. However, because the BJCP doesn’t release the information on the actual
beers they used to create their guidelines, individual beer information is not easily available.
As a replacement to this information, simulation can be used to generate individual beers
from each style according to the guidelines.

Unfortunately, it is not as straightforward as just generating observations directly from
the marginal distributions because:
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Table 1: Correlation Matrix of BJCP Key Statistics based on mid-ranges.

OG FG ABV IBU SRM
OG 1.00 0.77 0.97 0.53 0.24
FG 1.00 0.65 0.49 0.46

ABV 1.00 0.49 0.18
IBU 1.00 0.34
SRM 1.00

(a) since only ranges are given, the distributional form is unknown and,

(b) many of the five characteristics are highly correlated with each other.

To work around the first issue, we will assume the distribution for each style, i =
1 . . . 72, follows a five-dimensional multivariate normal distribution with mean vector, µi,
equal to the mid-range of each BJCP characteristic. Standard deviations for each style and
characteristic are calculated using the range/6 rule of thumb. To incorporate the corre-
lation between characteristics, we first make the assumption that the correlations between
characteristics is the same for all styles. This is then found by obtaining the correlations
between the means of each style and are displayed in Table 1.

For the analyses in Sections 3 and 4, 10,000 datasets were simulated with each of the
72 styles being represented exactly once in each simulated dataset.

3. Grouping Similar Beer Styles

Although the BJCP provides groupings of the beer styles using the main-styles, by their
admission “The groupings in the Style Guidelines are somewhat arbitrary, and often did
not represent a unanimous decision of those on the Style Committee who worked on the
document” (BJCP, n.d.). As a result, there may be ways to improve the groupings. One
such potential way is to use cluster analysis to construct groups of similar styles based
on the style guideline’s numerical characteristics. However, given that the guidelines are
presented as intervals, standard clustering algorithms such as hierarchical clustering cannot
be directly used to incorporate the variability in a style. Of course, one could easily use
the mid-range to construct a crude clustering of the styles, but this ignores the additional
information provided by the intervals. Instead, a clustering technique is developed that uses
simulated datasets (as described in Section 2) to group the styles while still incorporating
the information available from the intervals. This method uses hierarchical clustering at
two-stages and is described as follows.

3.1 Two-Stage Clustering Algorithm

1. For each simulated dataset, use hierarchical clustering (with complete linkage) and
obtain two potentially different classifications by cutting the resulting tree into both
a low number and a high number of clusters (the method for obtaining the number
of clusters is described in Section 3.2). These classifications are used to create the
distance matrix for the second clustering stage.

2. Given the pair of classifications for each simulated dataset from Step 1, construct a
distance matrix for the styles where each entry (i.e., distance between a pair of styles)

Section on Statistical Computing – JSM 2012

2515



is the 1− pij , where pij is the proportion of clusterings where the style i and j were
classified in the same cluster. For example, out of a total of 20,000 clusterings (i.e.,
10,000 datasets, each clustered twice), American India Pale Ale and English India
Pale Ale were in the same cluster about 94.2% of the time (not surprising as these
two styles are rather similar) and would have a “distance” of 1 − 0.942 = 0.058.
Similarly, Imperial Stout and a Light American Lager (to very different styles of
beer) have a distance of 1−0.0004 = 0.9996 (i.e., they were is the same cluster only
0.04% of the time). Figure 1 displays the pairwise distance matrix for all 72 styles.

3. Using the distance matrix from Step 2, use hierarchical clustering (with average link-
age) to construct a hierarchical tree for the beer styles using standard approaches to
analyze the results (e.g., dendrograms, estimating optimal number of clusters, etc.).

The rationale to obtaining two sets of classifications for each set of simulated beers is
that by having a low number of clusters, the broad sense connections between styles can
be more easily identified by allowing many styles of beer to “intermingle” in the same
cluster. However, by doing this, any sub-clusters that break beer styles into more focused
categories is lost. This is where obtaining a second set of classifications with a large number
of clusters is useful. The danger of using only a high number of clusters is that when
creating the distance matrix for the second stage, having too many clusters will mean that
most beers will never be in a cluster together and the resulting hierarchical tree would
give the impression that there is absolutely no connection between many styles of beer.
Blending these results together should allow the more interesting sub-cluster structure to
remain while still showing a connection between all the beer styles at some level.

The colored dendrogram displayed in Figure 2, constructed using R code from Francois
(2005), shows the results of the two-stage clustering approach. Using the maximum average
silhouette width (Rousseeuw, 1987), the algorithm resulted in 19 clusters, of which there
were five singletons (Imperial IPA, Eisbock, Strong Scotch Ale, Imperial Stout, and Old
Ale; black color in Figure 2), and 14 clusters with two or more styles (the colors in Figure
2 correspond to clusters). Many of the resulting clusters make intuitive sense; for example,
one cluster contains many English styles such as Mild, Ordinary and Special Bitters along
with Scottish Light 60/ and Heavy 70/. While these styles are not categorized in the same
main groupings by the BJCP, they all generally can be characterized by having low gravity,
fairly low IBUs, and are amber to red in color. Similarly, another cluster contains such
lighter beers as Standard and American Lagers, Cream Ale, Witbier and Weissbier, Kolsch,
Blonde Ale, and American Wheats. This cluster essentially combines the Light Lager and
Light Hybrid Beer categories of the BJCP. Additionally, many of the styles from the Porter,
Stout, and Dark Lager BJCP categories are placed together due to their similar color (dark
brown to black) and specific gravity (low OG with average FG) structure.

Overall, given that many of the resulting clusters categorize similar beer styles, these
results could be useful to individuals interested in trying new beer styles based on their
recognition of styles within the same cluster. Further, those looking to try something dif-
ferent can use the results to pick new beers from clusters they are familiar with.

3.2 Determining the Number of Clusters

The Step 1 of the algorithm from Section 3.1 uses the silhouette width in two ways to
calculate the number of clusters (K). The first just uses the standard approach of selecting
K to be where the maximum average silhouette width is used. The second finds local
maximums in the average silhouette width (across all potential values of K), choosing the
largest K that occurs at a local maximum. In particular, it uses the following procedure.
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1. For k = 1, 2, . . . ,Kmax, calculate the average silhouette width (ASW) by cutting
the hierarchical tree at k clusters. (Note that in this application, Kmax = 50.)

2. Use a smoother to help remove some of the excess variation in the ASW across the
values of k. One method to do so (implemented for the algorithm in Section 3.1)
is to use the locpoly function from the KernSmooth package in R (Wand, 1995;
Wand, 2011). This is done to help identify only the clear peaks in the ASW. Figure 3
displays an example of the ASW’s from one of the simulated datasets along with the
smoothed portion.

3. Find the local maximums from the smoothed ASW (using first and second deriva-
tives), choosing K to be where the last local maximum occurs.

4. If no local maximum can be determined using the derivative method, pick K to be
the maximum ASW. (This would be the same as using the standard approach for
using ASW to determine K.)

Although for the purpose of clustering beer styles this method gives reasonable results,
it has not been extensively tested or evaluated. Further research should be done to investi-
gate whether this method can be used to better identify the optimal number of clusters and
whether it could be useful to find any sub-cluster structure within a dataset.

4. Perceived Hop Bitterness

With the increasing popularity of highly hopped beers, many beer manufacturers are begin-
ning to label their products with the amount of IBUs in them to give consumers a sense of
the “hoppiness” of their beer. However, while IBUs are a major component in measuring
how hoppy a beer tastes, they are not the only factor in the perceived bitterness of a beer. In
particular, the bittering effect of hops is less noticeable in beers with higher specific gravi-
ties. Instead measures that take into account the gravity (or maltiness) of the beer could be
used to give a more accurate way of describing a beers hoppiness. For example, a common
and simple guideline used by brewers to determine the balance of hops and malt in their
beer is the OG to IBU ratio. Another idea came from Eric Myers of the blog Top Fermented
to multiply the IBU:OG ratio by the apparent attenuation, very similar to real attenuation
but is defined as (OE−FE)/OE, to help account for the remaining non-fermented sugars
in the beer (Myers, 2009). A simpler, potentially more intuitive hop bitterness measurement
could be just to create a scaled IBU by multiplying the IBU by the real attenuation. This
measurement adjusts the amount of hop bitterness from IBUs by the percent of remaining
sugars in the beer (i.e., sIBU = IBU ×RA).

Figures 4 and 5 show the hoppiness rating for the 72 BJCP beer styles based on the
scaled IBU method (Figure 4) and Myers’ method (Figure 5). For each style, the 10,000
simulated datasets were used to approximate the distributions of the scaled IBU and Myers’
statistic. The intervals displayed in Figures 4 and 5 represent the mean ± one standard
deviation for each style. The color on the intervals show the mid-range SRM of the style
and they are sorted in increasing order by their mean values. For ease of comparison across
figures, these measures have been standardized to be on a 0 - 100 scale.

Both of these methods have their merits and generally agree with each others rankings.
The scaled IBU method shows that there are just a few styles of beer that are much more
hoppy than others with the majority of styles overlapping in hoppyness with many other
styles. The Myers’ hoppiness score shows a much more steady growth in hoppiness with
only one style (Imperial IPA) being significantly more hoppy than the others. However, it
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isn’t clear which method is ultimately better. Ideally, a panel of expert beer judges could
be used to evaluate these methods and offer input as to which (if either) is better. Unfor-
tunately, this idea may not be overly feasible. Instead, either method could be used as a
relatively simple way for beer enthusiasts to get a relative sense of the hoppiness of a beer.

5. Discussion

While the analyses done here provide an interesting way to view the connections between
the different beer styles, given the limitations of working with only the intervals provided
by the BJCP, only a general description of styles can be done. Preferably, information from
individual beers would be available. Unfortunately, it is unlikely that many commercial
brewers would be willing to make this information public. One possible solution would be
to acquire information from homebrewers. Given the plethora of freely shared beer recipes
available online, it would presumably be much easier to acquire a sizable dataset from the
homebrew community. In addition to obtaining information on the values that the BJCP
use to create their guidelines, knowing the complete breakdown of the ingredients could
lead to improved ways to cluster styles or rate bitterness. For example, the bitterness of a
beer comes from more than just the amount of hops added. Some malts add a different type
of bitterness to a beer; an example of this is roasted barley which is used to give a coffee-
like bitterness to beer. Additionally, the use of dry-hopping (i.e., adding hops to partially
fermented beer), adds a very marginal amount of bitterness to a beer, but can impart a large
amount of hop flavor and aroma which can be associated with “hoppiness”. These are just
a few of the complex issues that are problematic in any type of bitterness rankings.

As stated in Section 3.1, the cluster algorithm developed to incorporate correlated in-
terval data has not been extensively tested. Further research is needed to be able to better
understand the impact of the two-stages and, in particular, the novel approach to estimating
the number of clusters using the local maximums of the average silhouette width. How-
ever, it shows promise and is general enough to easily be applied to other research problems
where interval data is present.
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Lite American Lager
Standard American Lager
Premium American Lager

Munich Helles
Dortmunder Export

German Pilsner (Pils)
Bohemian Pilsener

Classic American Pilsner
Vienna Lager

Oktoberfest/Marzen
Dark American Lager

Munich Dunkel
Schwarzbier

Maibock/Helles Bock
Traditional Bock

Doppelbock
Eisbock

Cream Ale
Blonde Ale

Kolsch
American Wheat or Rye Beer

North German Altbier
California Common Beer

Dusseldorf Altbier
Standard/Ordinary Bitter

Special/Best/Premium Bitter
Extra Special/Strong Bitter

Scottish Light 60/
Scottish Heavy 70/
Scottish Export 80/

Irish Red Ale
Strong Scotch Ale
American Pale Ale

American Amber Ale
American Brown Ale

Mild
Southern English Brown Ale
Northern English Brown Ale

Brown Porter
Robust Porter

Baltic Porter
Dry Stout

Sweet Stout
Oatmeal Stout

Foreign Extra Stout
American Stout

Imperial Stout
English IPA

American IPA
Imperial IPA

Weizen/Weissbier
Dunkelweizen

Weizenbock
Roggenbier (German Rye Beer)

Witbier
Belgian Pale Ale

Saison
Biere de Garde
Berliner Weisse

Flanders Red Ale
Flanders Brown Ale/Oud Bruin

Straight (Unblended) Lambic
Gueuze

Fruit Lambic
Belgian Blond Ale

Belgian Dubbel
Belgian Tripel

Belgian Golden Strong Ale
Belgian Dark Strong Ale

Old Ale
English Barleywine

American Barleywine

Figure 1: Distance matrix for second stage clustering of the 72 beer styles. The darker the
color, the more often the pair of styles appeared in the same clustering.
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IMPERIAL IPA
EISBOCK
STRONG SCOTCH ALE
IMPERIAL STOUT
ENGLISH BARLEYWINE
AMERICAN BARLEYWINE
FOREIGN EXTRA STOUT
AMERICAN STOUT
DRY STOUT
MUNICH DUNKEL
SCHWARZBIER
BROWN PORTER
SWEET STOUT
AMERICAN BROWN ALE
ROBUST PORTER
OATMEAL STOUT
LITE AMERICAN LAGER
BERLINER WEISSE
STANDARD/ORDINARY BITTER
SPECIAL/BEST/PREMIUM BITTER
SOUTHERN ENGLISH BROWN ALE
MILD
SCOTTISH LIGHT 60/
SCOTTISH HEAVY 70/
BOHEMIAN PILSENER
GERMAN PILSNER (PILS)
DORTMUNDER EXPORT
CLASSIC AMERICAN PILSNER
AMERICAN PALE ALE
EXTRA SPECIAL/STRONG BITTER
CALIFORNIA COMMON BEER
DUSSELDORF ALTBIER
NORTH GERMAN ALTBIER
AMERICAN AMBER ALE
SAISON
FLANDERS RED ALE
OKTOBERFEST/MARZEN
BELGIAN PALE ALE
SCOTTISH EXPORT 80/
VIENNA LAGER
IRISH RED ALE
FLANDERS BROWN ALE/OUD BRUIN
NORTHERN ENGLISH BROWN ALE
DARK AMERICAN LAGER
DUNKELWEIZEN
ROGGENBIER (GERMAN RYE BEER)
GUEUZE
STRAIGHT (UNBLENDED) LAMBIC
FRUIT LAMBIC
STANDARD AMERICAN LAGER
WEIZEN/WEISSBIER
PREMIUM AMERICAN LAGER
MUNICH HELLES
CREAM ALE
WITBIER
KOLSCH
BLONDE ALE
AMERICAN WHEAT OR RYE BEER
DOPPELBOCK
BELGIAN DARK STRONG ALE
ENGLISH IPA
AMERICAN IPA
BELGIAN TRIPEL
BELGIAN GOLDEN STRONG ALE
MAIBOCK/HELLES BOCK
BELGIAN BLOND ALE
BIERE DE GARDE
BELGIAN DUBBEL
OLD ALE
TRADITIONAL BOCK
BALTIC PORTER
WEIZENBOCK

Figure 2: Beer style clustering results using method outlined Section 3.1. Non-black colors
denote groups, styles in black represent singletons that were not assigned to groups.
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Figure 3: Average silhouette widths of clusters from simulated beer dataset along with
local polynomial smoother. Maximum average silhouette width occurs atK = 3, while the
last local maximum occurs at K = 30.
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Figure 4: Scaled IBU (mean ± one standard deviation) for BJCP beer styles.
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Figure 5: Myers’ hoppiness score (mean ± one standard deviation) for BJCP beer styles.
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