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Abstract
For clinical trials where repeated measurements from a subject are obtained over the course of

study, the Mixed Model with Repeated Measure (MMRM) approach is frequently used to analyze
the aggregated data and explore the longitudinal profile of the investigational medication. A com-
mon practice when applying the MMRM is to model all non-missing measurements as response.
However, due to the complexity of the estimation algorithm and the lack of closed form solution of
the estimates, the effect of intermediate measurements on the efficacy estimates is not transparent.
The understanding of such effect is of practical importance for study planning and results inter-
pretation. This work focuses on some hypothetical experiments where the MMRM is employed
to analyze the change from baseline treatment effect based on repeated observations. Theoretical
and numerical properties of the treatment effect estimates, with or without the intermediate obser-
vation(s) as response will be discussed. Technical considerations when pre-specifying the analysis
method will be highlighted.

Key Words: MMRM, intermediate measurements

1 Introduction

For clinical trials where repeated measurements from a subject are obtained over the
course of study, the Mixed Model with Repeated Measure (MMRM) approach is frequently
used to analyze the aggregated data and explore the longitudinal profile of the investiga-
tional medication. A common practice when applying the MMRM is to model all non-
missing measurements as response. However, due to the complexity of the estimation
algorithm and the lack of closed form solution of the estimates, the effect of intermediate
measurements on the efficacy estimates is not transparent. The understanding of such effect
is of practical importance for study planning and results interpretation. Maxwell (1998) and
Venter et al. (2002) explored this topic, focusing on the MMRM approach and the Analysis
of Covariance (ANCOVA) method under a linear growth model assumption. Their study
suggest when testing for treatment effects, decent power gain can be achieved by including
at least three or more intermediate measurements, compared to a simple pre-post design.

In this work, we study the analytic and numeric properties of the treatment effect es-
timates derived under three commonly used linear mixed models. The primary focus is to
investigate how the point estimate and the associated standard error depend on the inter-
mediate measurements. Further, the efficiency gain and/or bias reduction (if any) will be
evaluated under the context of numeric stability of each model through simulations.

This paper is structured as follows. Section 2 introduces the notations and three com-
monly used models in practice. Section 3 gives detailed derivation of placebo-adjusted
change from baseline treatment effect estimates and shows that conditioning on the the
variance-covariance parameters, the estimates do not depend on intermediate observations
in all three scenarios. Section 4 discusses briefly the impact of missing data.
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2 Model Specifications

Following the notations in Verbeke and Molenberghs (2009), assume there are N sub-
jects, each having ni observations yik for i = 1, . . . , N and k = 1, . . . , ni. Denote
Yi = (yi1, . . . , yini)

′, the linear mixed model for the repeated measurements yik is given
by  ni

Yi 1
=

ni
Xi p

β
1

+
ni

Zi q
bi 1

+
ni
εi 1

q
bi 1

∼ N(0,D)

ni
εi 1

∼ N(0,Σi)

(1)

where Xi is a ni×p design matrix for the fixed effects β, Zi is a ni×q design matrix for the
the random effects bi. The random vectors b1, . . . ,bN and ε1, . . . , εN are independently
distributed as normal with mean 0 and covariance matrices D and Σi, respectively.

This gives the marginal model for the data,

Yi ∼ N
(
Xiβ, ZiDZ′i + Σi

)
(2)

Let Vi = ZiDZ′i + Σi and Wi = V−1i . Assume that there are at most ` observations
per subject (i.e., the largest Σi is of dimension `× `), let α denote all q(q + 1)/2 different
parameters in D and `(` + 1)/2 parameters in Σ. The maximum likelihood estimator
(MLE) of β, conditional on α, is given by

β̂(α) =

(
N∑
i=1

X′iWiXi

)−1 N∑
i=1

X′iWiYi (3)

where α can be estimated (thus substituted) by MLE or restricted MLE (REML).
In this paper, three model specifications will be discussed to cover different scenarios

of clinical trials.

(1) The longitudinal data analysis (LDA) model for a parallel design with total 7 time
points (baseline, Visit 1, Visit 2, ... , Visit 6),

yik = subjecti + β0 + β1trti + β2visiti1 + β3visiti2 + β4visiti3
+ β5visiti4 + β6visiti5 + β7visiti6
+ β8trti visiti1 + β9trti visiti2 + β10trti visiti3
+ β11trti visiti4 + β12trti visiti5 + β13trti visiti6
+ εik,

(4)

where

trti =

{
1 for treatment
0 for placebo

and visitik =

{
1 for visit k
0 otherwise

.

This is the same model used in Dinh and Yang (2011) for their simulation, except
that in this paper Visit 0 (for the baseline observation) is used as the reference level
for estimating other fixed effects.

The change from baseline treatment effect can be derived as follows,

E[y16 − y10|trt1 = 1]− E[y26 − y20|trt2 = 0]

=
[
(β0 + β1 + β7 + β13)− (β0 + β1)

]
−
[
(β0 + β7)− (β0)

]
= β13
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(2) Constrained longitudinal data analysis (cLDA) model for a parallel design with total
7 time points,

yik = subjecti + β0 + β1visiti1 + β2visiti2 + β3visiti3
+ β4visiti4 + β5visiti5 + β6visiti6
+ β7trti visiti1 + β8trti visiti2 + β9trti visiti3
+ β10trti visiti4 + β11trti visiti5 + β12trti visiti6
+ εik.

(5)

It is clear that the only difference of cLDA vs. LDA is that β1 in the LDA is “fixed”
to be 0 and therefore there is one less fixed effect (parameter) in the cLDA model.
The change from baseline treatment effect can be similarly derived, which is given
by β12.

(3) The LDA model for a simple 2-treatment with 2-period (2×2) crossover design with
a total of 3 time points (baseline, Visit 1 and Visit 2) in each period.

yijk = subjecti + β0 + β1periodj + β1trti + β3visiti1 + β4visiti2
+ β5trti visiti1 + β6trti visiti2 + εik,

(6)

where

periodj =

{
1 for period j
0 otherwise

.

The change from baseline treatment effect under this model is given by β6. Notice in
this model, subject is included as a random effect for all observations from a single
subject, thus creating within-subject correlations among observations across periods.
See more discussions in Section 3.3.

3 Explicit Expression of β̂(α)

The derivation in this section assumesN is even and there are equal number of subjects
in each treatment group. Further assume there is no missing data at any time point for each
subject.

3.1 β̂(α) for the LDA Model

With the model specification of (4), the corresponding linear mixed model in the form
of (1) is given as follows,

7
Yi 1

=
7
Xi 14

β
1

+
7
Zi 1

· bi +
7
εi 1

, (7)

where for i = 1, . . . , N ,

• Random variables bi ∼ N(0, τ2) and random vectors εi ∼ N(0,Σ), where bi’s and
εi’s are independent.

• The design matrix for the random effect is simply

Zi = (1, 1, 1, 1, 1, 1, 1)′ , 1.
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• The design matrix X for subjects in the treatment group is given by

XT ,



1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


,

and for subjects in the placebo group is given by

XP ,



1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0


.

Since there is no missing data, all subjects in either treatment group share the same
design matrix (XT and XP ) and their covariance matrices are the same, too. There-
fore,

∑N
i=1 X′iWiXi in (3) can be written as

N∑
i=1

X′iWiXi =

N/2∑
i=1

X′TWXT +

N/2∑
i=1

X′PWXP

=
N

2

(
X′TWXT + X′PWXP

)
.

In the rest of this note,
∑N

i=1 X′WX and
∑N

i=1 X′iWiXi will be used interchange-
ably unless stated otherwise.

Assume Cov[ε] = Σ is an unstructured variance-covariance matrix where

Σ =

7



σ20 σ01 σ02 · · · σ06
σ10 σ21
σ20 σ22

σ23
...

... σ24
σ25

σ60 · · · σ26


,

7

(8)

where σij = σji = ρijσiσj . Then

Vi = ZiDZ′i + Σi

= 1 · τ2 · 1′ + Σ

=

7



σ2
0 + τ2 σ01 + τ2 σ02 + τ2 · · · σ06 + τ2

σ10 + τ2 σ2
1 + τ2

σ20 + τ2 σ2
2 + τ2

σ2
3 + τ2

...
... σ2

4 + τ2

σ2
5 + τ2

σ60 + τ2 · · · σ2
6 + τ2


.

7

(9)
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To derive the explicit expression of β̂13 using the result (3), we first need to derive the
explicit form of (

∑N
i=1 X′iWiXi)

−1. It is clear that inverting a matrix is typically done
numerically as the algebraic expression is usually extremely complicated. However, due to
the special structure of X (sparse matrix with entries being 1 or 0), it turns out the inverse
of
∑N

i=1 X′iWiXi can be derived explicitly. The key approach is to use row operations
(and row operation only) to further simplify them and then apply block matrix calculations.
The calculations are divided into three steps,

1© Derive a matrix TL to perform row operations to simplify X′T and X′P .

2© Calculate (
∑N

i=1 X′iWiXi)
−1 using block matrix inverse.

3© Derive β̂(α) and then extract β̂13.

For step 1©, it consists of performing three sets of row operations sequentially.

(1.1) Subtract ROW 1 by ROW 2, then ROW 3 by ROW 9, ROW 4 by ROW 10, ..., ROW
8 by ROW 14. This can be achieved by left multiplying X′T (X′P ) with

T1 =



1 -1
0 1

1 -1
1 -1

1 -1
1 -1

1 -1
1 -1

1
1

1
1

1
1



. (10)

(1.2) Subtract ROW 2 by ROW 9 to ROW 14. Subtract ROW 1 by ROW 3 to ROW 8. The
corresponding matrix is T2,

T2 =



1 0 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1

1
1

1
1

1
1

1
1

1
1

1
1



(11)

(1.3) Next, switch ROW 2 with ROW 3, then ROW 3 with ROW 4, continue till ROW 7
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with ROW 8. This can be achieved by the following matrix T3,

T3 =



1
0 0 1

0 1
0 1

0 1
0 1

0 1
1 0

1
1

1
1

1
1



. (12)

Denote

TL = T3T2T1 =



1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1
0 1 -1

0 1 -1
0 1 -1

0 1 -1
0 1 -1

0 1 -1
1 0 -1 -1 -1 -1 -1 -1

1
1

1
1

1
1



. (13)

Then we have

TL · X′T =

 07×7

I7×7

 and TL · X′P =

 I7×7

07×7

 (14)

Now proceed to step 2© and calculate (
∑N

i=1 X′iWiXi)
−1. Notice that(

N∑
i=1

X′iWiXi

)−1
=

2

N

(
X′TWXT + X′PWXP

)−1
=
N

2
T′L

(
TLX′TWXTT′L + TLX′PWXPT′L

)−1
TL

=
2

N
T′L

07×7

I7×7

W
[
07×7 I7×7

]
+

I7×7

07×7

W
[
I7×7 07×7

]−1 TL

=
2

N
T′L

W−1 07×7

07×7 W−1

TL

Next, proceed to step 3© and derive the explicit form of β̂(α) and subsequently β̂13.
Let Yi|1 denote the vector observations from subject i who are on the treatment group
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(trti = 1) and Yi|0 for subject i on placebo group (trti = 0). Recall (3),

β̂(α) =

(
N∑
i=1

X′iWiXi

)−1 N∑
i=1

X′iWiYi

=

N/2∑
i=1

X′TWXT +

N/2∑
i=1

X′PWXP

−1 N/2∑
i=1

X′TWiYi|1 +

N/2∑
i=1

X′PWiYi|0


=

2

N
T′L

W−1 07×7

07×7 W−1

TL (TL)−1

N/2∑
i=1

 07×7

W

Yi|1 +

N/2∑
i=1

 W

07×7

Yi|0


=

2

N
T′L


∑N/2

i=1 Yi|0∑N/2
i=1 Yi|1

 . (15)

To obtain the form of β̂13, left multiply β̂(α) by c = 1(0, 0, 0, . . . , 1)14,

β̂13 = c · β̂(α) = c · 2

N
T′L


∑N/2

i=1 Yi|0∑N/2
i=1 Yi|1

 .
Therefore

β̂13 =
2

N
(1, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 1) ·


∑N/2

i=1 Yi|0∑N/2
i=1 Yi|1


= (ȳ6|1 − ȳ0|1)− (ȳ6|0 − ȳ0|0), (16)

where ȳ6|1 (ȳ0|1) is the average of all observations at Visit 6 (baseline) from subjects who
are on treatment, while ȳ6|0 (ȳ0|0) is the average of all observations at Visit 6 (baseline)
from subjects who are on placebo. It is straight forward to use the matrix algebra to derive
Var(β̂13) = 4

N

(
σ20 − 2ρ06σ0σ6 + σ26

)
.

3.2 β̂(α) for the cLDA Model

The corresponding linear mixed model is almost identical to (7) in the LDA model,

7
Yi 1

=
7
Xi 13

β
1

+
7
Zi 1

· bi +
7
εi 1

, (17)

where the random variables bi, εi and the design matrix Zi are defined in the same way as
their counterparts in (7). The key difference is that marginal treatment effect is not included
in the cLDA model to reflect the constraint that measurements at baseline have the same
mean for all subjects.

Thus, the design matrix X in cLDA for subjects in the treatment group is given by

XT ,



1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1


,
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and for subjects in the placebo group is given by

XP =



1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 1 0


.

Similar to the LDA model, the change from baseline treatment effect estimator is given
by β̂12, with the MLE of β(α) given by

β̂(α) =

(
N∑
i=1

X′iWiXi

)−1 N∑
i=1

X′iWiYi

=
2

N

(
X′TWXT + X′PWXP

)−1 N/2∑
i=1

X′TWiYi|1 +

N/2∑
i=1

X′PWiYi|0

 .

Following the similar steps outlined in Section 3.1, step 1© is to derive the transform
matrix TL to simplify X′T and X′P . It turns out one operation is sufficient: subtract ROW
1 by ROW 2 to ROW 7. This can be achieved by the following matrix TL,

TL =



1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0
1

1
1

1
1

1
1

1
1

1
1

1



. (18)

Applying this operation gives

TL · X′T =



I7×7

0 1
0 1
0 1
0 1
0 1
0 1


and TL · X′P =


I6×7

07×7

 ,

Let M′ and 0′ denote the submatrices,

M′ =



0 1
0 1
0 1
0 1
0 1
0 1

 and 0′ =



0 0
0 0
0 0
0 0
0 0
0 0

 ,
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the MLE β̂(α) can be re-written as

β̂(α) = T′L

(
N

2

[
I

M′

]
W
[

I M
]

+
N

2

[
I
0′

]
W
[

I 0
])−1

·N/2∑
i=1

[
I

M′

]
W Yi|1 +

N/2∑
i=1

[
I
0′

]
W Yi|0

 . (19)

With some simplifications,

β̂(α) = T′L
2

N


N/2∑
i=1


1
2 0

1
2
V06
v00

−1
2I

−V06
v00

I

 Yi|1 +

N/2∑
i=1


1
2 0

−1
2
V06
v00

1
2I

V06
v00

−I

 Yi|0
 . (20)

To get β̂12, let c = 1(0, 0, . . . , 0, 1)13 and it is clear that c ·T′L = (0, 0, . . . , 0, 1), thus

β̂12 =
2

N
(0, 0, . . . , 0, 1) · β̂(α)

=
(
ȳ6|1 − ȳ6|0

)
− ρ06σ0σ6 + τ2

σ20 + τ2
(
ȳ0|1 − ȳ0|0

)
. (21)

Let L′ = (− v06
v00
, 0, 0, 0, 0, 0, 1). Then we have

Var(β̂12) =
4

N2

Var
( N/2∑
i=1

L′ ·Yi|1

)
+ Var

( N/2∑
i=1

−L′ ·Yi|0

)
=

4

N

(
σ26 + τ2 − (ρ06σ0σ6 + τ2)2

σ20 + τ2

)
.

In the absence of random effect where τ = 0, the variance simplifies to σ26(1− ρ206).

3.3 β̂(α) for the Crossover Model

Recall the LDA model (6) for a simple 2-treatment with 2-period (2 × 2) crossover
design with total 3 observation time points (baseline, Visit 1 and Visit 2),

yijk = subjecti + β0 + β1periodj + β2trti + β3visiti1 + β4visiti2
+ β5trti visiti1 + β6trti visiti2 + εik,

where

periodj =

{
1 for period j
0 otherwise

,

with the change from baseline treatment effect given by β6. Under this specification, as-
sume subjecti ∼ N(0, τ2), the covariance matrix for the 6 observations from a single
subject is given by

V =



σ2
0 + τ2 σ01 + τ2 σ02 + τ2 τ2 τ2 τ2

σ10 + τ2 σ2
1 + τ2 σ12 + τ2 τ2 τ2 τ2

σ20 + τ2 σ21 + τ2 σ2
2 + τ2 τ2 τ2 τ2

τ2 τ2 τ2 σ2
0 + τ2 σ01 + τ2 σ02 + τ2

τ2 τ2 τ2 σ10 + τ2 σ2
1 + τ2 σ12 + τ2

τ2 τ2 τ2 σ20 + τ2 σ21 + τ2 σ2
2 + τ2

 . (22)
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As a special case, if the random effect subject is nested within period, then the off-
diagonal block of V given in (22) will be all 0. In this section, the derivation shall proceed
with the general non-zero off-diagonal elements followed by the discussion of nested ran-
dom effect. Similar to the previous sections, denote the V−1 by W. Due to the symmetric
nature of V, W has the following block structure,

W =



w11 w12 w13 w14 w15 w16

w12 w22 w23 w24 w25 w26

w13 w23 w33 w34 w35 w36

w14 w15 w16 w11 w12 w13

w24 w25 w26 w12 w22 w23

w34 w35 w36 w13 w23 w33

 =

[
W11 W12

W12 W11.

]
(23)

Consider that N subjects are evenly divided into two treatment sequences, Sequence
1: treatment followed by placebo and Sequence 2: placebo followed by treatment. Each
subject has 6 observations, denoted as Yi = (yi10, yi11, yi12, yi20, yi21, yi22). Assume there
is no missing data, then the MLE for β(α) under model (6) is given by

β̂(α) =

(
N∑
i=1

X′iWiXi

)−1 N∑
i=1

X′iWiYi

=

N/2∑
i=1

X′TPWXTP +

N/2∑
i=1

X′PTWXPT

−1 N/2∑
i=1

X′TPWYi|1 +

N/2∑
i=1

X′PTWYi|2


=

2

N

(
X′TPWXTP + X′PTWXPT

)−1 N/2∑
i=1

X′TPWYi|1 +

N/2∑
i=1

X′PTWYi|2

 ,

(24)

where Yi|1 and Yi|2 denote the 6 observations for subject i in the sequence 1 and 2, respec-
tively. Here W is the inverse of V given by (22), XTP is the design matrix for subjects in
sequence 1,

XTP =


1 1 1 0 0 0 0
1 1 1 1 0 1 0
1 1 1 0 1 0 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0

 , (25)

and XPT is the design matrix for subjects in sequence 2,

XPT =


1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 0 0
1 0 1 1 0 1 0
1 0 1 0 1 0 1

 . (26)

Similar steps as in previous sections will be taken to derive β̂(α) with some added
tricks. Step 1© is to perform row operations to simplify both design matrices.

(1.1) Subtract ROW 1 by ROW 3, then ROW 4 by ROW 6 and ROW 5 by ROW 7. This
can be achieved by left multiplying X′TP (and X′PT ) by

T1 =



1 -1
1

1
1 -1

1 -1
1

1


. (27)
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(1.2) Switch ROW 2 with ROW 4 and ROW 3 with ROW 5. The corresponding row
operation matrix is T2,

T2 =



1
0 1

0 1
1 0

1 0
1

1


. (28)

(1.3) Subtract ROW 1 by ROW 2 and 3, then subtract ROW 5 by ROW 6 and 7, with the
corresponding matrix T3,

T3 =



1 -1 -1
1

1
1

1 -1 -1
1

1


. (29)

(1.4) Finally, roll ROW 4 up to ROW 1. This can be achieved by T4,

T4 =



1
1

1
1

1 -1 -1
1

1


. (30)

Applying these four operations gives

T4T3T2T1 · X′TP =


1′1×3 0′1×3

03×3 I3×3

I3×3 03×3

 and T4T3T2T1 · X′PT =


1′1×3 0′1×3

I3×3 03×3

03×3 I3×3

 .

Multiplying all four row operation matrices gives,

TL =



0 1
1 0 -1 -1 -1 1 1

0 1 -1
0 1 -1

1 0 -1 -1
1

1


. (31)

Step 2© is to compute the inverse of X′TPWXTP + X′PTWXPT . From step 1©,(
X′TPWXTP + X′PTWXPT

)−1
= T′L ·

 21′W111 1′W11 + 1′W12 1′W11 + 1′W12

W111 + W121 2W11 2W12

W111 + W121 2W12 2W11

−1 TL

= T′L M−1
1 TL
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It can be shown that

M−1
1 = T

 δ−1 0 0
0 1

2V11
1
2V12

0 1
2V12

1
2V11

T′ =

 1
δ − 1

2δ1
′ − 1

2δ1
′

− 1
2δ1

1
4δ + 1

2V11
1
4δ + 1

2V12

− 1
2δ1

1
4δ + 1

2V12
1
4δ + 1

2V11

 ,
where δ = 1′W111− 1′W121. Plug these results into (24),

β̂(α) =
2

N

(
X′TPWXTP + X′PTWXPT

)−1 N/2∑
i=1

X′TPWYi|1 +

N/2∑
i=1

X′PTWYi|2


=

2

N
TL

N/2∑
i=1

 1
2δ

(
1′W11 − 1′W12

)
1
2δ

(
1′W12 − 1′W11

)
− 1

2δ11′W11 + 1
4δW112 − 1

2δ11′W12 + 1
4δW112 + 1

2I
− 1

2δ11′W11 + 1
4δW112 + 1

2I − 1
2δ11′W12 + 1

4δW112

 ·Yi|1

+

N/2∑
i=1

 1
2δ

(
1′W11 − 1′W12

)
1
2δ

(
1′W12 − 1′W11

)
− 1

2δ11′W11 + 1
4δW112 + 1

2I − 1
2δ11′W12 + 1

4δW112

− 1
2δ11′W11 + 1

4δW112 − 1
2δ11′W12 + 1

4δW112 + 1
2I

 ·Yi|2

 ,

where W112 = W11 + W12. Let c = (0, 0, 0, 0, 0, 1) and c ·T′L = (0, 1, 0,−1,−1, 0, 1).
Then,

β̂6 = c · β̂(α)

=

((
ȳ1,1,2 − ȳ1,1,0

)
−
(
ȳ2,0,2 − ȳ2,0,0

))
2

+

((
ȳ2,1,2 − ȳ2,1,0

)
−
(
ȳ1,0,2 − ȳ1,0,0

))
2

.

The subscript-triplet represents (period, treatment, visit), e.g., ȳ1,1,2 is the average of
observations at Visit 2 from subjects who are in period 1 and on treatment (trt = 1), and
ȳ2,0,0 is the average of observations at Visit 0 from subjects who are in period 2 and on
placebo (trt = 0). From this result we can see that, the change-from-baseline treatment
effect estimator under this LDA model is simply the average of two change-from-baseline
estimators based on subjects in each sequence.

The variance of the estimate can be derived similarly as in the previous sections. Let
L′ =

(
− 1

2 , 0,
1
2 ,

1
2 , 0,−

1
2

)
, and we have

Var(β̂6) =
4

N2

N

2

(
L′VL + (−L′)V(−L)

)
=

4

N

σ20 − 2ρ02σ0σ2 + σ22
2

(32)

4 Impact of Missing Data

As shown in Section 3, in all three scenarios considered, the placebo-adjusted treatment
effect does not depend on intermediate observations, assuming that the variance-covariance
parameters are given. In other words, the MMRM model works exactly the same as the pre-
post design with ANCOVA model, in calculating the point estimate with known variance
parameters. In this sense, for a MMRM model, if the missing data only occurs at interme-
diate observations, the best method to obtain the point estimate is to ignore all intermediate
data and only use the baseline and last visit data. This would give the same estimate if the
“true” values of the missing observations are observed.

However, estimates of the variance-covariance parameters α will be affected by the
intermediate measurements, regardless. Depending on the choice of Σ and the dimension

Biopharmaceutical Section – JSM 2012

748



of α, including more intermediate observations may gain efficiency for simple Σ (e.g.
AR(1)) since fewer parameters need to be estimated (σ2 and ρ in case of AR(1)). But if
conservative structure of Σ is specified, e.g., heterogenous Toeplitz or unstructured, similar
efficiency gain may not be likely since the additional observations are used to compensate
the increased number of parameters.

Of note, if the missing data happens at baseline or at the last visit, then the handling
would be completely different and will be studied further.

5 Numerical Studies

As discussed in the previous sections, the focus of this paper is to study the impact
of intermediate observations on the point estimates of the change from baseline treatment
effect. Two simulation studies are conducted with the following specifications based on the
model (17) with 5 time points and N = 40 at each group with no missing data:

• β = (0.3, 0.8, 0.2, 0.4, 0.4, 0.4, 0.3, 0.7, 1.1, 1.6)

• bi
iid∼ N(0, 1.22)

• Two covariance matrices are specified. The simple AR(1):
2.0000 0.6000 0.1800 0.0540 0.0162
0.6000 2.0000 0.6000 0.1800 0.0540
0.1800 0.6000 2.0000 0.6000 0.1800
0.0540 0.1800 0.6000 2.0000 0.6000
0.0162 0.0540 0.1800 0.6000 2.0000

 . (33)

Thus Var(Y0) = Var(Y4) = 2 + 1.22 = 3.44 and Cov(Y0, Y4) = 0.0162 + 1.22 =
1.4562. And the unstructured covariance matrix:

1.0000 0.8764 0.7100 0.5367 0.3098
0.8764 1.2000 1.0369 0.8818 0.6788
0.7099 1.0369 1.4000 1.2700 1.0998
0.5367 0.8818 1.2700 1.8000 1.6628
0.3098 0.6788 1.0998 1.6628 2.4000

 . (34)

Thus Var(Y0) = 1 + 1.22 = 2.44, Var(Y4) = 2.4 + 1.22 = 3.84 and Cov(Y0, Y4) =
0.3098 + 1.22 = 1.7498.

• The numerical study is based on 1000 simulations.

In each setup we compare the mean and standard deviation of the point estimates for
treatment effect and the associated variance parameters. In addition, number of times the
model converges properly will be tallied.

In the first setup where AR(1) is used as covariance matrix, the points estimates for β10,
σ20 , σ25 and σ05 are summarized as follows:

Visits Included CR β̂10 (SD) σ̂20 (SD) σ̂25 (SD) σ̂05 (SD)
Baseline, Visit 1 to 4 100 1.608 (0.439) 3.438 (0.361) 3.438 (0.361) 1.448 (0.358)
Baseline, Visit 2 to 4 100 1.608 (0.439) 3.436 (0.373) 3.436 (0.373) 1.449 (0.383)
Baseline, Visit 3 to 4 100 1.608 (0.439) 3.437 (0.402) 3.437 (0.402) 1.457 (0.418)
Baseline, Visit 4 100 1.680 (0.439) 3.437 (0.444) 3.437 (0.444) 1.454 (0.431)

Here “CR” stands for the “Convergence Rate”, or the percentage of times that a model
converges. As expected, the point estimates are close to the true values (seen in the simula-
tion setup) and are also close to each other among these four models. However, due to the
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simple covariance structure, more intermediate observations leads to reduced variability of
the variance estimates. For the second setup where unstructured covariance matrix is used,
the results are as follows:

Visits Included CR β̂10 (SD) σ̂20 (SD) σ̂25 (SD) σ̂05 (SD)
Baseline, Visit 1 to 4 17.1 1.534 (0.450) 2.470 (0.394) 3.407 (0.548) 1.582 (0.392)
Baseline, Visit 2 to 4 97.3 1.577 (0.438) 2.440 (0.453) 3.806 (0.681) 1.758 (0.473)
Baseline, Visit 3 to 4 100 1.577 (0.435) 2.441 (0.450) 3.838 (0.704) 1.776 (0.482)
Baseline, Visit 4 100 1.577 (0.435) 2.441 (0.450) 3.838 (0.704) 1.776 (0.482)

Again, the point estimates are very close among these four models, however the simpli-
fied models with fewest time points (e.g., Baseline Visit 4) is stable and still produces close
results to models with one or more intermediate observations. Here we observe including
more time points increases the complexity of the model and thus offsets the benefit of the
additional data.

6 Conclusion and Discussion

This work considers three commonly used models for clinical trials and shows that, the
placebo-adjusted change from baseline treatment effect does not depend on the intermedi-
ate observations, given the variance-covariance parameters. For the derivation in Section
3, N is assumed to be even and equal sample size is assumed for each treatment group.
These assumptions are not essential. It can be shown that, for an odd N and unequal treat-
ment groups sizes, the conclusion still holds. Also, the derivation can be generalized to any
number of measurements on a subject.

The assumption of no missing data is more essential which the derivation in Section
3 heavily depends on. Section 4 discusses the case of missing intermediate observations.
Other cases of missing data will be considered in the future research.

REFERENCES

P. Dinh and P. Yang. Handling baselines in repeated measures analyses with missing data at random. Journal
of Biopharmaceutical Statistics, 21(2):326–341, 2011.

J. Jiang. REML estimation: Asymptotic behavior and related topics. The Annals of Statistics, 24(1):255–286,
1996.

S.E. Maxwell. Longitudinal designs in randomized group comparisons: When will intermediate observations
increase statistical power? Psychological Methods, 3(3):275, 1998.

S. Portnoy. Asymptotic behavior of likelihood methods for exponential families when the number of parame-
ters tends to infinity. The Annals of Statistics, 16(1):356–366, 1988.

A. Venter, S.E. Maxwell, and E. Bolig. Power in randomized group comparisons: The value of adding a single
intermediate time point to a traditional pretest-posttest design. Psychological methods, 7(2):194, 2002.

G. Verbeke and G. Molenberghs. Linear mixed models for longitudinal data. Springer Verlag, 2009.

Biopharmaceutical Section – JSM 2012

750


