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Abstract
A new item response model is proposed for which the trait is positive. Three such models, the log-
logistic, the log-normal, and the Weibull, are presented along with their item information curves.
The data of seven addiction items from the DSM-IV from a study on alcohol addiction is analyzed
by these three models using Bayesian Markov chain Monte Carlo methods. The item characteristic
curves and item information curves are presented for all three models. The person scores for four
item response patterns are presented for the log-logistic model.
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1. Introduction

There has been increased interest in applying item response theory (IRT) models to mea-
suring levels of addiction, including alcohol addiction (Beseler, Taylor, & Leeman, 2010;
Gelhorn et al., 2008; Saha, Chou, & Grant, 2006; Wu et al., 2009), marijuana addiction
(Wu et al., 2009), and gambling addiction (Sharp et al., 2012; Strong, Breen, & Lejuez,
2004; Strong, Breen, Lesieur, & Lejuez, 2003; Strong, Daughters, Lejuez, & Breen, 2004;
Strong & Kahler, 2007; Strong, Lesieur, Breen, Stinchfield, & Lejuez, 2004).

Most current Bernoulli IRT models, including all of the models used above, assume
each latent trait follows a standard normal density (Embretson & Reise, 2000; Fox, 2010).
Although there is recent work that weakens the assumption of normality, especially symme-
try (Azevedo, Bolfarine, & Andrade, 2011; Bazán, Branco, & Bolfarinez, 2006; Bolfarine
& Bazán, 2010; Molenaar, Dolan, & Boeck, 2012; Woods & Thissen, 2006), the support
of the trait is still assumed to be the entire real line. While this standard assumption may
be appropriate for traits such as ability or attitude, it creates both conceptual and technical
problems traits such as addiction.

Traits such as addiction have a positive probability for the absence of the trait. The
standard assumption forces the trait for a non-addict to be located at negative infinity with
probability zero, so that non-addicts are effectively excluded from the addiction contin-
uum. Potentially dependent persons who endorse no items cannot be distinguished from
non-addicts who would also endorse no items but can be independently identified by in-
dependent criteria. A more realistic assumption is that the trait for addiction follows a
distribution with positive support with non-addicts located at zero.

IRT models with positive traits are not new. The original Rasch model posited a pos-
itive trait (Rasch, 1966), and similar models have been repeatedly proposed (Cressie &
Holland, 1983; Ramsay, 1989). Recently, van der Maas, Molenaar, Maris, Kievit, and
Borsboom (2011) proposed a “positive ability model” derived from information processing
principles.
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2. Positive Trait Item Response Models

Let Y1; : : : ; YK be a set of Bernoulli random variables denoting items, such that Yk D 1 if
a person i endorses the item and Yk D 0 if not. Let Zi , i D 1; : : : ; I be continuous random
variables denoting i -th person’s level of addiction such that Zi D 0 if i is not addicted and
Zi > 0 otherwise. Let F be an absolutely continuous distribution function with positive
support. The positive trait item response model (PTIRM) posits that the probability that
person i endorses item k is
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The parameter ˛k > 0 is interpreted as the severity of the addiction as revealed by the k-th
item, with increasing ˛k denoting increasing severity. The parameter ˇk > 0 represents
how well the k-th item can discriminate between levels of severity, with increasing ˇk

denoting finer discriminability.
Three specific PTIRMs are readily available. First is the log-logistic:
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Second is the log-normal:
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And third is the Weibull:

�k.zi / D 1 � exp

 
�

z
ˇk

i

˛k

!
:

As previously mentioned, the log-logistic with ˇk D ˇ is Rasch’s (1966) original item
response model . The log-normal is Steven’s psychophysical stimulus-response function
(Stevens, 1957; Thomas, 1983). The Weibull model, although frequently used in biostatis-
tics, is, I believe, new as a psychometric model. Other distributions are possible, e.g.,
log-Cauchy, generalized gamma.

These three models can be expressed as a log-linear extension of generalized linear item
response models (Mellenbergh, 1994), namely as h Œ�.z/� D ˇ log.z/ � log.˛/; where h is
the logit, probit, or complementary log-log link function.

The item information function provides an index of item precision as a function of the
latent trait. The log-logistic item information function is
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The log-normal item information function is
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The Weibull item information function is
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3. Inference

Bayesian inference was used to obtain parameter estimates. Let Y be the I � K matrix of
binary outcomes with entries yik denoting the i th person’s response to item k. Under the
standard IRT assumptions of independence among subjects and local independence among
items along with no missing data and prior independence among parameters, the posterior
density of the model parameters is

pr .f˛kg ; fˇkg ; fzig jY/ /

IY
iD1

pr.zi /
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kD1

�k.zi /
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1�yik pr.˛k/ pr.ˇk/:

Markov chain Monte Carlo (MCMC) methods were used to obtain the 2K CI marginal
parameter distributions (Fox, 2010; Patz & Junker, 1999). The the mutually independent
prior densities were ˛k � gamma.:1; :1/, ˇk � gamma.:1; :1/, and zi � log-normal.0; 1/:

From the priors, Pr.0 < ˛k < 6/ D :95 and Pr.0 < ˇk < 6/ D :95 for all k.
The Bayesian approach allows the responses of all respondents to be used, including

those who endorse no items and those who endorse all items.

4. Data Set

The data sources were two public-use files from the Clinical Trials Network for the methadone
and non-methadone maintenance trials for abstinence-based contingency management (Peirce
et al., 2006; Petry et al., 2005) which had previously been analyzed using a standard IRT
model (Wu et al., 2009). The data comprised 854 subjects responding to the 7 alcohol
dependency items of the DSM-IV at baseline, prior to any intervention. Of the 854, 167
(19.6%) reported they had never used alcohol in the past nor were currently using alcohol.
These subjects were given a trait score of z D 0. The remaining 687 were assumed to
be potentially addicted to alcohol and assumed to have a trait score z > 0. The DSM-IV
items were (1) toler — increasing tolerance of alcohol, (2) wdraw — experience with-
drawal symptoms, (3) amount — using larger amounts, (4) unable — unable to control
use, (5) time — large amount of time spent in acquiring alcohol, (6) giveup — giving up
important activities, and (7) contin — continued use despite accompanying problems.

All data management, analyses, and graphical displays were conducted in R (R Devel-
opment Core Team, 2012) with Rstudio (RStudio, Inc, 2012). The 2K C I D 14 C 687

marginal parameter distributions were obtained by MCMC using JAGS (Plummer, 2003,
2011) and the R2jags package (Su & Yajima, 2012). All MCMC convergence diagnostics
were satisfactory; in particular, the Brooks-Gelman-Rubin potential scale reduction statistic
was less than 1.1 for all parameters (Gelman, Carlin, Stern, & Rubin, 2004). The graphics
were produced with the lattice package (Sarkar, 2008).
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5. Results

Figure 1 presents the item characteristic curves for the three models. Although the curves
show, as expected, slightly different forms, the ordering of the curves along the latent trait
axis (Addiction Score) is the same for all three models. For each model, all the character-
istic curves show roughly the same item severity (˛k) and discriminability (ˇk), except for
wdraw, which has larger severity and smaller discriminability.
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Figure 1: Item Character Curves for the Log-Logistic, Log-Normal, and Weibull Models

Figure 2 presents the item information curves for the three models. Unexpectedly,
the item information curves are different from each other. The log-logistic model shows
greatest precision for unable, followed by the precisions for contin and giveup. In contrast,
the log-normal model shows greatest precision for giveup followed by unable and next
contin. In further contrast, the Weibull model shows greatest precision for giveup followed
by contin then by time and amount. Also, the location of the score of greatest precision is
greater for the Weibull than it is for either the log-logistic or log-normal for all items.

Figure 3 presents the person scores for four item response patterns under the log-logistic
model. The upper left panel presents the results for a potential addict endorsing none
(0000000) of the 7 items. The mean addiction score is 0:58. The black line displays the
prior standard log-normal density for the person score. The red line presents the posterior
density of the score for that pattern. The blue line is the log-normal density with the ob-
served mean and variance as parameters. The red and blue lines have similar location but
do not coincide. The red posterior density has the same location but less variance than the
black prior.

The upper right panel displays the results of a person with the pattern 0001011 and
an observed mean score of 1.79. The lines have the same interpretation as in the previous
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Figure 2: Item Information Curves for the Log-Logistic, Log-Normal, and Weibull Models

panel. The blue observed density coincides with the the red posterior density.
The lower left panel displays the results of person with the pattern 111110 and an

observed mean score of 2.98. The lower right panel displays the results of person who
endorses all items (111111) with an observed mean score of 5.81. In both cases the blue
observed densities nearly coincide with the red posterior densities.

6. Summary

The PTIRM appears to be a viable alternative to the usual IRT models for positive traits.
Interpretation of item parameters is roughly the same as that for standard IRT models.
Bayesian inference via MCMC is a satisfactory method for obtaining parameter and person
distributions. Different PTIRMs yield similar ICCs but different IICs. Different PTIRMS
yield similar person scores.
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Figure 3: Person Scores for the Log-Logistic Model
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