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Abstract 
The Statistics of Income Division of the IRS started a panel sample of individual returns 
in 2007 for longitudinal analyses. This panel sample has also been used for cross-
sectional estimations of multiple variables that are skewed and weakly correlated. 
Therefore, cross-sectional weights are needed to refer to the out-year population and 
multiple variables of interest. Calibration method is therefore applied to adjust weights 
such that sample estimates are close to population benchmarks. In this paper, we look at 
issues such as calibration cells, initial weights, prediction models and weight bounding. 
We share some experience in calibrating weights using R. We aim to produce final 
weights that are reasonable for multiple variables of interest.  
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1. Introduction 
 
The Statistics of Income Division (SOI) of the IRS started a new panel sample of 
individual returns in Tax Year 2007. This panel sample is intended to be used for 
longitudinal analyses and for cross-sectional estimations. Therefore, there are two sets of 
estimation weights: the longitudinal weights and the cross-sectional weights. The 
longitudinal weights refer to the population at the initial selection of the longitudinal 
sample. These weights are usually adjusted to take into account the attrition of the sample 
over time. The longitudinal weights are used when performing analyses of the 
longitudinal data through years. The cross-sectional weights are used to produce point 
estimates each year. Because of changes in the population through time, the cross-
sectional weights are different from the longitudinal weights. A set of cross-sectional 
weights for each year should refer to the population of that year. 

 
The first year of the panel is termed the base-year, while subsequent years are called out-
years. The base-year panel sample was a stratified sample, where stratum boundaries 
were formed using the return’s selection income. Selection Income is derived from the 
components of a taxpayer’s adjusted gross income plus certain nontaxable items. Since 
different selection probabilities are used across the strata, varying from 0.34% to 100%, 
the base weights vary dramatically. This poses a particular problem for returns whose 
out-year income grows so dramatically that its associated base weight is no longer 
appropriate for cross-sectional estimations. In addition, a small refreshment sample is 
added each year for the purpose of cross-sectional estimations. How to incorporate the 
refreshment sample returns is another issue related to weighting the panel returns. 
Further, the base-year sample was stratified by one variable, while the out-year cross-
sectional estimations are needed for multiple variables that are highly skewed and weakly 
correlated. Therefore, cross-sectional weights derived from base-year selection 
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probabilities may need to be adjusted to refer to the out-year population and multiple 
variables of interest. In this paper, we develop cross-sectional weights for the sample of 
surviving panel returns and refreshment returns and look at weighting issues for the 
cross-sectional estimations. We consider some practical issues related to producing the 
out-year cross-sectional weights, including issues such as calibration cell definitions, 
initial weights, prediction models and weight bounding. We share some experience in 
calibrating weights using R. Our goal is to produce a set of final weights that produce 
reasonable cross-sectional estimates for multiple variables of interest.  
  
 

2. Outline of the Base-Year Panel Sample (TY2007) 
 

The TY2007 base-year panel sample was selected from the population of TY2007 
returns. It was a stratified sample, where the stratum was defined by the selection income 
The sample included a random selection part and a secondary CWHS part. The random 
selection part was selected using permanent random number that was the transformed 
last-four digits of the return’s primary SSN. The sampling rates were different across 
strata. The secondary CWHS part included returns having any of ten specific last four 
digits of the secondary SSN. Including the secondary CWHS sample incurred no 
additional cost since these returns would be processed for other purposes.   Returns were 
retained in  the sample in out-years if it was possible to link returns across years using the 
primary and secondary SSN’s. A base-year panel return stays in the panel in the 
following years if either its primary SSN, secondary SSN, or both file tax returns in the 
out-year. These are referred as “surviving panel returns”. 
 
For the base-year panel return weights, notice that the secondary CWHS part represents 
only returns of married couples filing jointly, while the random part represents returns of 
all marital and filing statuses. To calculate return weights, we poststratify the random part  
into two groups within each stratum: returns that are married and filing jointly and all 
other returns. Within each poststratified cell, the base sampling weight is simply the 
population size divided by the sample size. 
 
The base-year sampling rates across strata, along with the associated base weights, are 
shown in Table 1.  
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Table 1. Base-Year Return Weights (TY2007) 
 

Married Filing 
Jointly

Other filing 
Statuses

1 100.00            1.0                       1.0                       
2 100.00            1.0                       1.0                       
3 50.00             2.1                       2.0                       
4 50.00             2.0                       2.0                       
5 22.51             4.4                       4.4                       
6 3.38               30.0                     25.9                     
7 2.00               47.7                     55.4                     
8 1.40               480.0                    968.2                    
9 1.40               502.5                    998.7                      

10 0.34               252.7                    331.3                    
11 1.86               51.5                     52.9                     
12 2.44               39.2                     39.3                     
13 12.18             8.1                       7.9                       
14 28.60             3.5                       3.6                       
15 50.00             2.0                       2.1                       
16 100.00            1.0                       1.0                       
17 100.00            1.0                       1.0                       

Stratum
Sampling Weigh (N /n )

Sampling Rates 
(%)

  
 
 

3. Out-Year Cross-Sectional Sample and Initial Weights 
 
To support the cross-sectional estimation, a small refreshment sample is selected every 
year.  It is also a stratified sample that has the same stratum definition as the base-year 
panel sample. The selection income is adjusted for the inflation so that the out-year 
selection income is compatible to the base-year selection income. The refreshment 
sample adds some newly rich returns1 and some new entrants. It helps to keep the out-
year sample representative. 
  
The surviving panel returns and refreshment returns together compose the cross-sectional 
sample that is used to make out-year estimations on Sales and Capital Assets (SOCA). 
Therefore, it is also referred as the SOCA cross-sectional sample. In this paper, we look 
at the weight development for one of the out-years, Tax Year 2010. The TY2010 SOCA 
cross-sectional sample includes 222,545 returns. Of those, 200,907 are surviving panel 
returns and 21,638 are refreshment sample returns. Our goal is to develop return weights 
so that the TY2010 SOCA sample can best represent the TY2010 population. In terms of 
the SOCA cross-sectional sample return weights, we start with ‘probability-based’ initial 
weights. Then we make adjustment by throwing in additional auxiliary information. The 
initial weights before adjustments are described here.  

   
The initial return weight is based on the inverse of return’s selection probabilities when 
the return is linked to base-year return/returns. For returns that did not file in the base-

                                                 
1 The newly rich filers are either new filers with high-income or stratum jumpers.   
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year, ad hoc weights are assigned.  We first link TY2010 SOCA sample returns to the 
TY2007 population using the primary SSN (PSSN) and secondary SSN (SSSN). If there 
is a match, the primary filer’s selection probability P1 is assigned based on the stratum of 
the base-year return’s. If the return’s filing status is joint, we check to see if the SSSN is 
linked to the base-year PSSN or SSSN (sample data first, then population data).  If there 
is a match, the secondary filer’s selection probability P2 is assigned based on the stratum 
of the base-year return. Otherwise, P2=0. Out of the 222,545 TY2010 SOCA cross-
sectional sample returns, 204,455 have matched returns in the base-year population and 
18,090 returns have no match.  
 
For the 204,455 returns that are linked to the base-year population, the initial weight of 
any return is calculated based on its primary filer’s selection probability P1 and secondary 
filer’s selection probability P2. If P2=0, then the initial weight d =1/P1 .  If P1 and P2 are 
both from the same base-year return, then d =1/P1. If P1 and P2 are from two different 
base-year returns, then d is the inverse of the joint selection probability, i.e., d =1/ ((1/P1) 
+ (1/P2) – (1/P1)(1/P2)). Technically, some returns were subject to both base-year panel 
sample selection and the out-year refreshment sample selection, which creates a 
complicated selection probability. Therefore, we take this ad hoc approach, since the 
initial weights may be adjusted later through subsequent calibration and trimming 
adjustments.  

  
The 18,090 unmatched returns are treated as new filers. Since sampling rates across strata 
for the refreshment are small, new filers are under-represented. Therefore, weights for 
unmatched returns should be large compared to the matched. We use an ad hoc approach 
for initial weights of unmatched returns, using the empirical 90th percentile of matched 
return weights in the corresponding poststratified cell. This ensures that the weights are 
relatively large but not influential.. Again, these adjustments are performed within each 
poststratified cell, i.e., married filing jointly vs. all other filing statuses within each 
selection income stratum. 
 
 

4. Weight Adjusting Using Calibration Approach 
 
With this SOCA cross-sectional sample, we are interested in the estimation for some key 
variables. Since these variables are not closely correlated with each others, a set of 
weights that works well for the estimation of one variable may not be good for other 
variables. In order to find a set of compromised weights that balance all the key variables, 
we make use of an available resource of known out-year population totals of those key 
variables. In the end, we hope to have a weighted sample that reflects the out-year 
population and provides reasonable estimates of multiple key variables.  
 
SOI has rich information on important variables from the large yearly cross-sectional 
sample (at the return-level). We then use a calibration approach to adjust the initial 
weights to produce weighted estimates to match these known population totals (e.g., 
Särndal et. al. 1992; Kott 2009).  
 
Let dk be the initial weight of return k (after trimming) and wk be the calibration weight of 
return k. The calculation weights wk are calculated through an iterative process of 
adjustments. In other words, calibration is a weight-adjustment method that creates a set 
of weights, {wk}, such that (1) they are close to the original design weights dk (i.e., as the 
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sample size grows arbitrarily large, wk converges to dk) and are therefore nearly design-
unbiased; and (2) satisfy a set of calibration equations: 

 
kS

k k kS U

w N

w

=

=

∑
∑ ∑x x

,                                                                                     (4.1)    

 
where N  and  are the known control totals. There is one calibration equation for 
each auxiliary x-variable. Different distance functions specified for dk  and wk produce 
different kinds of weights (Deville and Särndal 1992). For example, using a linear 
distance function along the linear prediction produces the generalized regression 
estimator. Several extensions, including bounds on the size of the final weights have been 
proposed in the literature (Rao and Singh 1997; Singh and Mohl 1996; etc.). 

kU∑ x

 
Table 2 gives the variables that we are interested. We would like to have the adjusted 
weights that give the estimates on these variables close to the population benchmarks. 
These variables have low correlation with each other. We may not be able to take care of 
all 16 variables since too many variables in the calibration model can cause convergence 
problem. So, we consider these variables in the order of the importance as shown in 
Table 2.   

 
Table 2. Key Auxiliary Variables in the Order of Importance 

 
Variable Description

x 1 Net short-term capital gain/loss

x 2 Net long-term capital gain/loss

x 3 Net short-term gain/loss from Sales of Capital Assets

x 4 Net long-term gain/loss from Sales of Capital Assets

x 5 Short-term gain from Form 6252 and short-term gain/loss from Forms 4684, 6781, and 8824

x 6

Net short-term gain or (loss) from partnerships, S corporations, estates, and trusts from 
Schedule(s) K-1

x 7

Gain from Form 4797, Part I; long-term gain from Forms 2439 and 6252; and long-term 
gain/loss from Forms 4684, 6781, and 8824

x 8

Net long-term gain or (loss) from partnerships, S corporations, estates, and trusts from 
Schedule(s) K-1

x 9 Capital gain distributions reported on Schedule D

x 10 Total short-term sales of capital assets amount

x 11 Total long-term sales of capital assets amount

x 12 Short-term capital loss carryover

x 13 Long-term capital loss carryover

x 14 Net capital gain/loss(limited) reported on Schedule D

x 15 Adjusted Gross Income

x 16 Selection Income (Stratifying variable)  
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5. Application of Weight Calibration 
 

In this section, we look at how calibration weighting is performed. We discuss some 
practical issues and solutions when creating calibration groups, assigning initial weights 
and dealing with outliers, putting bounds on final weights, and choosing a calibration 
distance function. We then analyze the calibration results and compare with the 
benchmarks. Finally, we summarize our weight adjustment strategy. Our data are highly 
dispersed. So we form calibration groups and apply calibration method within each 
group. In this paper, we look at two groups to discuss our weighting strategy and address 
our issues. 
 
5.1 Calibration Data 
Throughout the text, we use two example cases of data to illustrate the practical issues 
and our solutions. The Case 1 includes 574 returns whose selection incomes range from -
$20 million to -$150 million and the second group includes 2,273 returns whose selection 
incomes range from -$1 million to -$5 million. The key variables are x1 – x16 in the order 
of their importance, as shown in Table 2. The selection income x16 is the least important 
in terms of estimation bias in its out-year total. Figure 1 is the scatterplot matrix of the 
first eight variables in Case 1. We can see that variables are not closely related to each 
other and there are extreme values in all variables (most of the correlation coefficients 
range from 0.01 – 0.3.0). Similar relationship holds for other variables and for Case 2 
example.  
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Figure 1. Scatterplot Matrix of Variables x1 – x8 ( Case 1 Example) 

 
 
5.2  Calibration Using R 
We use the software R to produce the calibrated weights. R’s survey package (Lumley 
2008) includes the calibrate() function for producing various calibration weights.  There 
are some particular choices to make when using this function, since there are options to 
vary the following: (1) the prediction model that relates the study variable y to the 
auxiliary x-variables, (2) the distance function, and (3) other parameters.  

 
After the sample dataset is read into R, we must create a survey design object as input to 
the calibration function.  This ensures that the calibration function uses the proper sample 
design and weighting information.  We offer the following arbitrary code to achieve this 
(where terms within the [ ] brackets are user-specified): 

 
sam.dsgn<-svydesign(id=~[ID variable name], weights=~D,  

                                data=as.data.frame([sample dataset name])) 
 

Here is the R code of our weight calibration:  
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W1 <- calibrate(design = sam.dsgn,  
formula=function of x-variables, 
 population = [vector of population control totals], 
bounds = c(U, L),  
calfun = c([distance function]), 
maxit=[integer value],  
epsilon=([decimal value]) 

 
Our choices for the calibrate function that determine the weights are explained in the 
following. 
 
W1 <- calibrate(design = sam.dsgn,  
formula=~X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11+X12+X13+X14+X15+X16, 
population = poptot, 
bounds = c(0, 8),  
calfun = c("linear"), 
maxit=2000,  
epsilon=0.07) 
  
• Formula = specifies the prediction model. Our variables of interest Y are the same as 

the auxiliary variables X.  So we choose the linear model as our prediction model. We 
start by throwing all 16 variables in the model. If R’s console shows a warning that 
the calibration does not converge due to model problem, then we need to adjust the 
prediction model for convergence. 

•         population = the known control totals for the population size (N) and totals of the 
variables x1-x16. 

•         calfun=c("linear") specifies that the distance function is linear. Our resulting 
calibration weights will be those associated with the generalized regression estimator 
(e.g., Sarndal et. al. 1992).  R also supports other two distance functions: raking and 
logit. Empirically we found little differences in the weights when using different 
distance functions.  

•         c(L, U)  is the argument that puts a bound on weight adjustment such that L< wk/dk 
<U. Since the linear distance function can produce negative weights, we set L=0 to 
force weights to be positive and U=8 to limit a calibrated weight not to exceed 8 
times of its initial weight. R does not offer the option to specify different bounds for 
each sample unit k, which can be problematic when we want the calibrated weights 
wk (not wk/dk ) to be bounded. In particular, we want all wk to be at least 1. We will 
deal with this subsequently using R’s trimWeight() function. 

•         maxit is the parameter that specifies the maximum number of iterations in the 
calculation. We set maxit=2,000 here to allow up to 2,000 iterations. 

•         epsilon is the tolerance parameter and is an extremely useful feature. It is a 
maximum allowable relative distance between the estimated total and the population 
total for calibration variables, including the intercept if specified in the model. We 
normally start with a small tolerance parameter. If the calibration fails to converge 
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because the specified epsilon larger than allowed, then the calibrate function will 
produce an error message in the console that with the value of epsilon from the last 
specified iteration. We can then reset the correct value for epislon. In the above 
example, if we first set epsilon=0.001, the convergence could fail with the message: 
“Failed to converge: eps=0.06985287 in 2,001 iterations,” After resetting 
epsilon=0.07, the calibration will converge. Note that W1 is the R object that is 
produced from the calibrate function. To obtain an output object that includes only 
the vector of calibrated weights, we need to use the weights() function in R.   

5.3 Further Adjusting by Poststratification 
When the calibration converges at a particular epsilon tolerance parameter, there can be a 
difference between the estimated total and the population total for the auxiliary variables 
and the population size.  For example, if we set epsilon=0.07, then the relative difference 
should not be more than 7%. We actually do not require the estimates to match the 
benchmark totals exactly, as long as the difference is reasonable. However, we do need to 
have the sum of calibration weights match the post-strata population sizes exactly. For 
our Case 1 example, the above calibration with tolerance parameter epsilon=0.07 results 
in calibration weights wk such that ∑wk = 1,018, while the known population size 
N=1,095. In order to match the population size N, we make further adjustment through 
poststratification using R’s function postStratify() function: 
 
W2 <- postStratify(W1, [stratum variable], [ population count by stratum]) 

 
Let wk

' denote the poststratified weights. Then wk
' satisfy that ∑wk

' = N. This adjustment 
may slightly increase the relative difference on calibration variables. 
 
 

6. Issues and Solutions in the Weight Calibration 
 
In this section, we discuss issues we have to consider when we develop weights through 
calibration. Specifically, we address issues, such as assigning initial weights and dealing 
with outlier weights, creating groups for calibration, putting bounds on final weights, 
choosing the prediction model. We look at these issues through some examples. 

 
6.1 Initial Weights  
The initial weights will be adjusted using calibration method. But before weight 
adjusting, it is important to realize that there may be outliers in initial weights. The initial 
weights are carried from the base-year selection. However, income changes over time due 
to economic success/failure or return composition change (e.g., marriage or divorce), 
which leads to units shifting to different strata where selection probabilities were 
different in the base-year sample. Returns with very low income in the base-year may end 
up with extremely high income in the out-year. A problem arises when returns shift strata 
due to dramatic changes in yearly income2. Some stratum jumpers that experience very 
large growth in income (the absolute value), along with their large weights, will have 
extremely large influence upon the estimates of income and tax variables at income levels 
where most panel members have much smaller weights. Those returns with both large 
weights and large incomes can inflate the variance and cause estimation bias. Therefore, 
appropriate weight trimming for the extreme stratum jumpers is considered here. Instead 

                                                 
2 All incomes in out-years are adjusted so that they are comparable to the base-year 2007 

income. 
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of customized trimming, we trim weights to the 90th percentile within each cell for 
matched returns. In other words, the ad hoc initial weight assigned to unmatched return is 
the cap for trimming initial weights. 
 
Calibration is a reweighting procedure that adjusts initial weights so that equations in 
(4.1) are satisfied or approximately satisfied. As discussed in Section 3, it would be really 
complicated to calculate exact selection probability for some returns. Therefore, we had 
some ad hoc treatment for some returns to come up with initial weights. We want to 
know if this is a big deal.  Another issue on initial weights is outlier weights from stratum 
jumpers. We want to see if we have to trim those extreme weights.  

 
We still take the above group 1 data for example and look at three sets of initial weights:  

 
dk – initial weights derived from the selection probabilities, 1<= dk<= 1,007  
dk

T  –  truncated weights where large initial weights dk are truncated, 1≤ dk
T

 <= 3.47 
dk

C – a constant weight for all returns, i.e., dk
C = N/n =1.9077 for all k 

 
The initial weights dk are carried from the base-year selection probabilities with ad hoc 
treatments for some returns. There are outliers in dk from stratum jumpers. 12 returns 
have an initial weight larger than 39 and rest 562 returns are all under 8.2. To avoid 
extreme initial weights, we truncate dk to its 90th percentile within each weighting cell. 
The truncated weights are denoted as dk

T. The truncated weights in this group are no 
larger than 3.47. The third set of initial weights, dk

C, ignore the selection probabilities and 
simply assumes an ad hoc constant weight for all returns.  
 
We apply the same calibration procedure described in Section 4 for each of three sets of 
initial weights. They all converge with a prediction model of 16 variables, but at different 
epsilon levels - 0.024 for dk

T 0.077 for dk
C and 0.293 for dk. Then the calibrated weights 

are further adjusted by poststratification to match the population size and by trimming to 
force weights to fall in the range of 1 to 10. We look at the relative bias between the 
estimate and the population bench mark and compare them for the three sets of initial 
weights and for each of 16 variables. Figure 2 summarizes the relative biases. The 
probability-based initial weights without trimming outliers (dk) result in much larger bias 
than truncated weights (dk

T) and constant (dk
C) for most variables. dk

T and dk
C are close in 

terms of the bias.  
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Figure 2. Relative Bias Comparison for Three Sets of Initial Weights 

 
The above analysis shows that trimming outlier initial weights to 90th percentile within 
each weighting cell works well. For returns without base-year matches, the ad hoc 
treatment of assigning an initial weight of 90th percentile is also a reasonable choice since 
the constant weight    weights dk

C is not much different from dk
T in terms of estimation 

bias. Therefore, we choose dk
T , the trimmed probability weights with ad hoc treatment, 

as the initial weights in the calibration procedure for all groups. In summary, the ad hoc 
treatment to initial weights is fine, as long as those initial weights are in a reasonable 
range. This is because calibration adjustment can fine tune initial weights to a certain 
degree. Extreme initial weights can cause problem in calibration, either convergence 
problem (does not converge at all) or large bias problem (converge, but at a large 
tolerance level). So they should be trimmed to a reasonable level. 

  
In the following analyses, only trimmed initial weight dk

T is used. Other forms of initial 
weights (dk and dk

C) are not considered anymore. 
 
6.2 Forming Calibration Cells  
Intuitively, we want calibration cells to be homogeneous, while having a reasonably large 
enough cell sample size for each of them. We look at the example of Case 2.  There are 
2,273 returns with initial weight dk

T ranging from 1 to 57. We still choose the linear 
prediction model and relax the bound option to be c(0, 300). For any number of variables 
in the prediction model, the tolerance parameter epsilon has to be so large in order for the 
calibration convergence. To calibrate on all 16 variables, we need at least epsilon = 21.05 
for the calibration to converge. That is, the maximum allowable relative bias for 
calibration variables and the intercept is 2105%. Even to calibrate on only two variables 
x1 and x2, we need at least epsilon = 4.41. This precision level is obviously not 
acceptable. 

 
Then we divide the group into four cells by the combination of I1 and I2, where  
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The cell sample sizes are 379, 322, 309 and 1,263 for cells 1-4. We apply calibration 
procedure within each cell.  For a full prediction model of 16 variables, the minimum 
tolerance parameters epsilon needed for calibration convergence are 0.172, 0.137, 0.120 
and 0.002 for four cells respectively.  Other examples also show that homogeneity helps 
calibration convergence and the precision.   
 
6.3 Choice of Variables in the Prediction Model 
Our specified prediction model is a linear with a maximum of 16 variables.  Sometimes, 
too many variables in the prediction model may not converge or converge at a large 
tolerance level. Take for example the Case 2 data. There are four calibration cells. As 
indicated in Section 5.2, with a full prediction model of x1-x16, calibration converges in 
each cell, but at high tolerance parameters. Another option is to see if the calibration may 
converge at a much smaller tolerance level after dropping out a few less important 
variables from the model. Table 3 gives two model options. Option 1 is to use the full 
model in each cell. Option 2 is to choose a model that can converge at a much smaller 
Epsilon. The variables dropped from the model are less important anyway. The 
estimation biases for two options are summarized in Figure 3. It obviously shows that 
option 2 outperforms option 1 in terms of bias. 

 
Table 3. Model Choice and Epsilon for Convergence 

Cell 
Option 1 Option 2 

Variables in 
the model 

Epsilon for 
convergence Variables in the Model Epsilon for 

Convergence 

1 Full 0.173 
14 variables  
(without x10 and x16) 0.001 

2 Full 0.137 
13 variables  
(without x10, x15 and x16) 0.001 

3 Full 0.120   9 variables (x1 - x9) 0.001 
4 Full 0.002 16 variables (full model) 0.002 
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           Figure 3. Relative Bias Comparison for Two Model Options 

 
 
6.4 Final Adjustment to the Desired Weight Bounds 
The weight bounding option in R’s calibration function is only for wk/dk , not for wk. 
Therefore, after the calibration and the poststratification adjustments, there is still a 
problem with the adjusted weights, wk

', in that some weights may be smaller than 1 and 
some weights may be outside the desired upper bound. We may force the final weights to 
fall in the desired range using R’s function trimWeight(). For example, if our desired final 
weight bounds are [1, 10], then we can restrict the weights to be within these bounds by 
further adjust wk

' using R’s trimWeights() function:   
 

W3 <- trimWeights(W2, lower=1, upper=10, strict=TRUE) 
 
where W2 is the calibrated and poststratified weight and W3 is the trimmed weight. 
Weights outside the bounds are trimmed to be equal to the boundary values and the total 
amount trimmed is redistributed among the weights for observations that were not 
trimmed.  This ensures that the total of the weights before and after the trimming remains 
the same. The reapportionment of the ‘excess weight’ can push the non-trimmed weights 
over the boundary limits. If the option strict=TRUE is used, then the function calls itself 
recursively to prevent this. This adjustment may increase the relative bias on calibration 
variables. Let denote wk

* the final weights after calibration, poststratification and weight 
trimming, then wk

* satisfy that ∑ wk
* = N and 1≤ wk

* ≤10. 
 
 

7. Summary of Weight Adjustment Strategy 
 
In our weight adjustment applications, we make use of the known population benchmarks 
and balance the estimation precision of multiple variables. The calibration approach using 
R works well for this purpose. This section summarizes our weight adjustment strategy.  
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1. Prepare data for calibration  
hts 

nce homogeneity and the cell sample size. 

2. Adjust initial weights by calibration approach using R 
=0.001. Then adjust the value 

ibration converges for the full model at a large 

: L=0 to prevent negative weights, U too small may 

3. Further adjust calibrated weights 
alibrated weights so that the total of 

0, U0) using function 
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