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Abstract
Many clinical trials data are complicated by the existence of fully missing values or left-censored

values known to lie below detection limits, due to biological reasons or assay technical limitations.
A conventional practice is to use the actual Lower Limit of Quantification (LLOQ) into the missing
value. In this article, we describe a multiple imputation (MI) method for multiply imputing the
missing and left-censored values of cytokines and metabolites to understand the potential treatment
effects on these biomarkers. A key advantage of multiple imputation is that, once multiple imputed
data sets are created, standard analysis methods for complete data can be applied, with imputa-
tion uncertainty being addressed by applying MI combining rules. It also provides a convenient
approach to limit of quantification issues. We compare the proposed MI method with the existing
methods including the conventional substitution analysis and the simple imputation techniques, and
demonstrate its superiority in terms of relative bias, efficiency and coverage probability for the 95%
confidence interval through simulation studies and a real study which evaluated active treatments
on biomarkers to allergen in asthmatics.

Key Words: Assay; Biomarker; Limit of Quantification; Missing data; Multiple Imputation; Cen-
soring.

1. Introduction

In randomized clinical trials, assessing the effect of treatments on the biomarker of disease
are often complicated by the existence of fully missing values and left-censored values.
Missing data arise naturally due to missed patient visits and premature discontinuations of
treatment.

The left-censored data can result when values fall below a lower limit of quantification
(LLOQ) of a instrument such as assay. Values below LLOQ are not provided or reported
as non-quantitative, that is, < LLOQ, as they are considered to have high coefficients of
variation. The simplest approach for dealing with such data is the compete-case analysis
by removing or deleting all observations falling below the LLOQ. This approach is unap-
pealing as it potentially discards useful information in the data. Several ad-hoc methods
are proposed in literature, which replace values falling below the LLOQ with some fraction
of LLOQ, such as the value of LLOQ itself, LLOQ/2 or LLOQ/

√
2. This simple substitu-

tion approach can lead to bias and invalid estimates of standard error, particularly when a
large proportion of values fall below the LLOQ. Singh et al. (2002) analyzed the substitu-
tion method on censored response values in environmental studies, concluding that highly
biased estimates result even in cases with a small percent of censored values and only a
single detection limit. Richardson et al. (2003) found that substitution led to biased param-
eter estimates in the regression analysis with covariate alone subject to LLOQ. They show
that the direction and magnitude of bias depends on substituted values, measurement error
variance, and the underling true distribution of the covariate. Helse et al. (2002) reviews
several of these substitution procedures, concluding that the substitution method leads to
biased estimates and has no theoretical basis. These results provide strong evidence against
using ad hoc substitution techniques. Multiple imputation (MI) is less common for dealing
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with the left-censored values than for missing data, but it represents an appealing option. A
key advantage of MI is that, once multiple imputed data sets are created, standard analysis
methods for complete data can be applied, with imputation uncertainty being addressed by
applying MI combining rules. Some recent applications include Hopke et al. (2001), Lubin
et al.(2004), Chu et al.(2008), Uh et al.(2008), Guo et al. (2010), Lee et al.(2012) and Liu
et al. (submitted to Pharmaceutical Statistics).

In this article, we investigate the MI method that is based on an imputation model
condition on additional observed variables (for example, treatment, age and gender, etc.).
We show this method compares favorably to the conventional simple substitution method
and the existing imputation techniques, specially when a large proportion of observations
are below the limit of quantification and the sample size is small.

For the rest part of this article, the outline of the MI method is given in Section 2. A
set of simulation studies is presented in Section 3 to investigate the performance of the MI
methods compared with the conventional method using simple substitution. In Section 4,
we describe the results for the incomplete cytokine/metabolite data based on the proposed
MI approach. Finally, Section 5 offers a few concluding remarks.

2. Model and Methods

In clinical trials, censoring and missing may occur in many lab values due to biological
reasons or assay technical limitations. Left-censored (or called censored from below) takes
place when observations with a value at or below some threshold, all set to the value of
that threshold, so that the true value might be equal to or smaller than the threshold. The
threshold is often called the LLOQ.

2.1 Conventional method

One of the conventional methods that deal with left-censoring is to use LLOQ itself or
LLOQ/2 to replace the censored values. This method is very simple compared to MI
method in imputation but it may destroy distribution properties. And to deal with missing
data, one of the conventional methods is to naively exclude them from analysis or simply
fill in with the mean of available non-censored and non-missing data. Here we define
the conventional method as the following: replace left-censored data with LLOQ/2 and
replace missing with the mean of available non-censored and non-missing data. Suppose
the observed data are y1, . . . , yn and the LLOQ is denoted as τ . Then we predict y as

yi,conv =


yi if yi > τ
τ/2 if yi ≤ τ∑

i(yiI(yi>τ))∑
i I(yi>τ) if yi = NA

(1)

This conventional method has many limitations. For example, it cannot be applied to sce-
narios that LLOQ is smaller than 0, because LLOQ/2 failed to jump into censoring area.

2.2 Tobit Regression

One of the existing multiple imputation methods that handle missing and left-censored val-
ues is developed using Tobit regression. Tobit Regression was designed to estimate linear
relationships between variables when there is either left- or right-censoring in the dependent
variable. Tobit regression supposes that for each observed yi there exists a latent variable
y∗i which linearly depends on its corresponding covariateXi = (xi1, . . . , xip)

T and the lin-
ear relationship between y∗i and Xi is determined by β = (β1, . . . , βp)

T . In addition, there
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is a normally distributed error term which captures the random noise between the latent
variable y∗i and its covariate Xi.

yi =

{
y∗i if y∗i > τ
τ if y∗i ≤ τ

Here, we define the existing method as the following: suppose we have only two treat-
ment arms A and B,

y∗i =

{
βA + εA,i, εA,i ∼ N(0, σ2

A) if treatment = A
βB + εB,i, εB,i ∼ N(0, σ2

B) if treatment = B
(2)

Note that this method uses only information from available dependent variable yi to predict
censored data and missing data. This method does not incorporate all observed variables
(for example, age) when generating imputed values. In addition, it performs imputation
for censored or missing data on each treatment arm separately which allows for different
means and variances in two treatment arms.

However, we argue that when we have a very small clinical trial with around 15 obser-
vations for each treatment and high percentage of left-censoring and missing, do we still
benefit by doing imputation separately on each treatment arm or would it be better to com-
bine data on treatment arms to increase the available data and perform imputation together?
The trade-off is loss in the flexibility of allowing different variances in two treatment arms.
When additional information like period, age and gender is available, can we benefit from
incorporating the information in imputing censored data and missing data? Hence, our
proposed model is:

y∗i = βTXi + εi, εi ∼ N(0, σ2) (3)

Thus, the mean for the censored data should be

E(Yi) =

{
Φ

(
βTXi − τ

σ

)
[βTXi + σλi]

}
+ Φ(

τ − βTXi

σ
)τ

where λi =
φ

(
τ−βTXi

σ

)
[
1−Φ

(
τ−βTXi

σ

)] . λi is called the inverse Mills ratio (IMR) which measures

the amount of censoring - the higher λi, the more censoring. φ(·) and Φ(·) represent the
normal probability density and cumulative distribution function, respectively.

2.3 Imputation procedure

Practically, the following steps are used for sampling values which are below LLOQ. If an
observation yi from subject i is a censored value, we denote the “hidden” variable as Wi

and assume it follows a truncated normal distribution. In order to infer a general formula for
sampling a censored variableWi, we now assumeWi is censored by an interval [a, b]. Then
our case is actually a special case with a = −∞ and b = LLOQ because the “hidden”
value is no larger than LLOQ. We first obtain β̂ and σ̂, estimates of β and σ, respectively,
from Tobit model. Then introduce a latent variable Z (Damien, 2001) which has the joint
distribution with Wi given by

fWi,Z(w, z) ∝ I(
0,exp

(
− (w−β̂T Xi)2

2σ̂2

))(z)I(w ∈ (a, b))

Therefore the full conditional distributions fZ|Wi
(z|w) and fWi|Z(w|z) are

Z|(Wi = w) ∼ U

(
0, exp

(
−(w − β̂TXi)

2

2σ̂2

))
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Wi|(Z = z) ∼ U(max(a, β̂TXi − σ̂
√
−2 ln(z)),min(b, β̂TXi + σ̂

√
−2 ln(z)))

Then we can perform Gibbs sampling based on the above conditional distributions.
For Missing data, if an observation yi from subject i is missing, we denote the “hidden”

variable as Mi and assume it follows N(β̂TXi, σ̂
2).

The above steps for imputing values that are no larger than LLOQ and values that are
missing are repeated for m times to obtain m-imputed datasets.

3. Simulation

3.1 Simulation settings

The performances of the conventional method, the existing method and our proposed method
were investigated by simulations in this section. Five criteria were used for assessment.
Suppose we perform N simulations and within each simulation we perform M imputations:

1. Bias of treatment effect estimate:

1

N

N∑
i=1

(β̂trt,i − βtrt)

β̂trt,i is the average of M multiple imputation (MI) estimates of βtrt in the ith simu-
lation.

2. Variance of treatment effect estimate:

1

N − 1

N∑
i=1

(β̂trt,i −
1

N

N∑
i=1

β̂trt,i)
2

3. Mean squared error of treatment effect estimate

1

N − 1

N∑
i=1

(β̂trt,i − βtrt)2

4. 95% confidence interval (CI) coverage probability: it is estimated by the proportions
of simulations with CI containing the true treatment effect. A good method should
have the coverage probability close to the nominal coverage level, in our case, 95%.
The CI of the ithsimulation is calculated as(

β̂trt,i − zα
√
var(β̂trt,i), β̂trt,i + zα

√
var(β̂trt,i)

)
where α is the significance level 0.05, so zα = 1.96. For the ithsimulation, the
variance of treatment effect estimate is calculated as (Little and Rubin, 2002)

var(β̂trt,i) = T̄i +Bi × (M + 1)/M

where T̄i is the average of the within imputation variance of the ithsimulation, cal-
culated as

T̄i =
1

M

M∑
j=1

(se(β̂jtrt,i))
2
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β̂jtrt,i is the MI estimate of treatment effect of the ithsimulation and the jth imputa-
tion. B is the between-imputation variance, calculated as

Bi =
1

M − 1

M∑
j=1

(β̂jtrt,i − β̂trt,i)
2

5. 95% CI bandwidth: a method with a shorter CI bandwidth is preferred. It is estimated
as the mean of the width of N simulated CIs

1

N

N∑
i=1

(
2zα

√
var(β̂trt,i)

)
We performed N = 1000 simulations, M = 15 multiple imputation within each sim-

ulation and 100 Gibbs sampling within each multiple imputation. In terms of computing
time, our proposed method is not excessively labor intensive. Two types of study designs
are simulated: a parallel study and a 2×2 crossover study. For the parallel study, each treat-
ment arm was assumed to have only 15 subjects and treatment effect varies from smaller
effect to larger effect (β = 0.5, 2.5, 5, 7.5). The censoring percentage varies from 10%
up to 60% and the missing percentage is around 6% ∼ 8%. For the crossover study, each
sequence was assumed to have has 8 subjects and two periods with 64 observations in to-
tal. The censoring percentage and missing percentage are similar to the settings in parallel
study. The subjects’ random effect is assumed to be 94% of total random effects.

3.2 Simulation results

3.2.1 Parallel study

Simulation results for the parallel study are summarized in Table 1. When the treatment
effect is small, all three methods demonstrate small bias of the estimates of treatment ef-
fect. And their estimates are very close. However, when treatment effect becomes larger,
our proposed method outperforms the other two methods, especially when the censoring
percentage becomes larger.

For the variance of the treatment effect estimate, although the conventional method has
smaller variance than the two multiple imputation methods, our proposed method has the
smallest mean squared error of treatment effect estimate, especially when treatment effect
becomes larger and censoring becomes heavier.

Based on the definitions, for the 95% CI coverage rate it is the higher the better while
for the 95% CI bandwidth it is the shorter the better. The existing method has the highest
coverage rate but it also has the longest 95% CI bandwidth. Our proposed method has a
little bit lower coverage rate than the existing method but its 95% CI bandwidth is much
shorter than the existing method.

In summary, our proposed method is more accurate and stable than the other two meth-
ods, especially when censoring is heavier.

3.2.2 Crossover study

Simulation results of crossover study are summarized in Table 2. For illustration purpose,
the corresponding graphs were in appendix. Our proposed method has the smallest bias
of treatment effect estimate, especially when treatment effect is larger and percentage of
censoring is higher.
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For variance of treatment effect estimate, the conventional method has competitive
small variance with our proposed method. But our proposed method has the smallest mean
squared error, especially when censoring becomes heavier.

Although conventional method has the shortest 95% CI bandwidth, it has the worst
95% CI coverage probability. The other two MI methods have higher coverage of true
treatment effect. But only our proposed method has consistently high coverage, especially
when censoring is heavy.

Again, overall our proposed method outweighs the other two methods in terms of ac-
curacy and stability, especially as the censoring becomes heavier.

4. Example

The following example was used to test the simulation results. This study was a two-part
randomized, placebo-controlled, crossover trial in asthmatics, to evaluate the differential ef-
fects of three treatments, MT, ML and ND, on these markers: sputum cysteinyl leukotrienes
(LTC4, LTD4, LTE4), and sputum cyotokines (IL5, IL 13, TARC and Eotaxin). The end-
points were the concentrations of these markers at 7 hours after allergen challenges. Some
values of these biomarkers were either fully missing or below the limit of quantification.
Table 3 lists the percentages of censoring and missing for each biomarker. Note that the
censoring could be high up to 60%.

In using LTC4 as an example, to investigate whether we could find any difference in
the three methods in terms of treatment comparison with placebo. The results were sum-
marized in Table 4. For treatment ML, it was found that the three methods gave different
results. Both the conventional and existing methods failed to have significant p-values (>
0.1) while our proposed method was significant (p-value = 0.0668).

5. Discussion

Biomarkers are now a key component of many clinical studies. The application of biomark-
ers will improve decision making, accelerate drug development and reduce development
costs. However, biomarker data are commonly subject to missing and left censoring. The
emerging use of biomarkers in clinical studies suggests the need to address these issues,
otherwise their application may be compromised. Motivated by cytokine/metabolite assay
data, we proposed a multiple imputation for the analysis of biomarker data with missing
and left-censored values. Simulation results show that the proposed MI method outper-
forms the conventional simple substitution method and the existing imputation method that
does not incorporate available information, specifically in the cases of a large proportion of
observations below the limit of quantification or a very small sample size.

The MI method presented in this article focused on a single measurement of biomarker.
To assess the robustness of the proposed method, we applied it for the imputation of cen-
sored and missing values in a crossover study setting, and surprisingly found the MI method
still performed well at least in the simulation scenarios investigated. However, further de-
velopment of the MI method for handling repeated measurements in the crossover study
(e.g., incorporating the correlations between repeated measurements into the imputation
model by using mixed models) is worthwhile in our future studies.
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Table 3: The percentages of censoring and missing of each biomarker in a real study.

Cytokine %censoring (#censoring/N) %missing (#missing/N)
LTC4 61%(39/64) 8%(5/64)
LTD4 44%(28/64) 8%(5/64)
LTE4 5%(3/64) 8%(5/64)
IL5 8%(5/64) 5%(3/64)
IL13 34%(22/64) 6%(4/64)

TARC 28%(18/64) 5%(3/64)
Eotaxin 25%(16/64) 6%(4/64)

Table 4: Comparison of three methods in a real study, in terms of fold change of LTC4
concentration over placebo.

Treatment Method Geometric Mean of 90% CI for Geometric P-Value Effect
fold change mean of fold change 2-sided@ Size
over Placebo over Placebo

MT Conventional 0.87 (0.60,1.27) 0.5400 -0.22
MT Existing 1.00 (0.44,2.29) 0.9973 -0.06
MT Proposed 0.64 (0.34,1.21) 0.2520 -0.53
ML Conventional 0.75 (0.40,1.42) 0.4448 -0.41
ML Existing 0.75 (0.28,2.00) 0.6283 -0.32
ML Proposed 0.44 (0.21,0.92) 0.0668 -0.71
ND Conventional 1.01 (0.64,1.61) 0.9571 -0.02
ND Existing 1.23 (0.50,3.05) 0.6991 -0.29
ND Proposed 0.90 (0.44,1.84) 0.8000 -0.11

@Not adjusted for simultaneous multiple comparisons
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6. Appendix

Figure 1: Comparison of three methods in terms of bias of treatment effect estimate for the
crossover study. Black line - conventional method; blue line - existing method; red line -
proposed method.

Figure 2: Comparison of three methods in terms of variance of treatment effect estimate
for the crossover study. Black line - conventional method; blue line - existing method; red
line - proposed method.
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Figure 3: Comparison of three methods in terms of mean squared error (MSE) of treat-
ment effect estimate for the crossover study. Black line - conventional method; blue line -
existing method; red line - proposed method.

Figure 4: Comparison of three methods in terms of 95% confidence interval coverage for
the crossover study. Black line - conventional method; blue line - existing method; red line
- proposed method.
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Figure 5: Comparison of three methods in terms of 95% confidence interval bandwidth for
the crossover study. Black line - conventional method; blue line - existing method; red line
- proposed method.
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