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Abstract 
Interim futility analysis is a critical component in oncology phase III studies due to high 
failure rate in spite of strong efficacy signals observed in phase II trials. For phase III 
trials with a time-to-event endpoint, a typical interim futility analysis is performed. We 
propose a two-stage futility analysis in phase III adaptive trials with a time-to-event 
endpoint to decide whether to continue enrollment or stop the trial completely in the early 
portion of the study without any requirement on minimum follow-up time. This approach 
is appropriate if the proportional hazard assumption is valid. However, it is rarely true in 
practice that proportional hazard assumption holds. We propose a two-stage interim 
futility design that allows a third option: pause enrollment and wait for mature follow up. 
To prevent operational challenge and save time, a stage-one futility analysis is performed 
without requirement on minimal follow-up. In case the futility bar has not crossed, we 
pause the study and wait for data to mature to make a final decision at stage-two. This 
approach mitigates the risk of stopping early for futility when it takes time for the study 
drug to differentiate from the control. We perform a simulation study to illustrate and 
compare this proposed design with conventional futility designs. 
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1. Introduction 
The goal of a phase III randomized clinical trial (RCT) is to provide sufficient evidence 
that the benefit-risk profile of an experimental drug is better than the standard of care. A 
randomized phase III trial is usually based on hundreds or thousands of patients and takes 
several years to recruit patients and to complete. At the same time, there is uncertainty on 
treatment effect prior to conducting a phase III confirmatory trial. For instance, in 
Oncology, many phase II trials which provide the efficacy proof-of-concept (PoC) for 
phase III confirmatory trials are single arm studies without comparison and the sample 
sizes are small. At the same time, early endpoints such as response rate are used in the 
phase II studies while the ultimate objective in phase III trial is usually to prolong overall 
survival with the relationship between early endpoints and ultimate endpoint unclear. The 
use of intermittent endpoints and the inevitable disadvantages of phase II study design 
have brought in challenges of evaluating the benefit of the experimental drug prior to 
conducting a phase III trial. Therefore, it is worthwhile considering close monitoring of 
the study and stop early after examining interim data, to avoid recruitment and additional 
patient exposure to ineffective treatment.  In case the treatment effect of the experimental 
group is not as good as has expected, the trial should stop early to prevent patients from 
exposing to ineffective experimental treatment. Stopping early for futility also has other 
advantages including savings in financial resources and staff, which are important in 
today's pharmaceutical environment.  
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The most common approach of futility analysis implementation is group sequential 
methods (Whitehead and Matsushita, 2003; Lanchin JM, 2009, Pocock, 2006).  It uses 
early data from patients recruited up to a specific time point and make futility decision 
under the assumption that future data follow the same pattern. However, the assumption 
has its limitations and may even be scientifically flawed. For example, with time-to-event 
endpoints, the assumption of proportional hazards is often made but could be violated 
during the trial. In cancer immune-therapy where response rate is relatively low while the 
response duration is long, there tends to be no separation in survival between the 
experimental arm and the control arm at the beginning of the treatment. In this case, the 
assumption of proportional hazards would no longer be valid. In the pivotal study of 
ipilimumab in patients with metastatic melanoma (Hodi et al. 2010), the survival curves 
of ipilimumab and the control arm (gp100) did not separate until after 4 months. There is 
a much bigger magnitude of survival effect in the later time than that in the first 4 
months. Should the futility analysis be conducted at an earlier time with majority of 
events fall into first four months in the ipilimumab study using traditional futility 
approach, the study may have stopped for futility though the final result is positive. Jital 
et al. (2012) performed a retrospective analysis and showed that studies with positive 
treatment effect may have stopped early for futility using conventional approaches. 
Another disadvantage of conventional futility analysis approach is that it does not take 
into account the cost (including patient exposure cost, financial cost and time cost) and 
the potential benefit (including treatment effect size and market revenue) explicitly in the 
futility decision. The decision of stopping recruitment for a trial early is a complicated 
decision (unless there is safety concerns) and should incorporate not only treatment effect 
size observed up to a specific time point, but also consider the adjusted probability of 
success (POS) of the experimental drug at the time of the interim analysis, the cost has 
already spent and additional cost needed for the rest of the study (Jital et al. 2012; Chen 
and Bechman 2009).   
 
In this paper, we propose a novel two-stage futility analysis design with potential pausing 
of recruitment to provide opportunity to attain mature data. This would ease some of the 
issues of falsely stopping the trial early for futility while the treatment effect is indeed 
significant but delayed. We also incorporate benefit and cost in terms of sample size and 
explicitly take these into futility consideration. Since overall survival is the most 
commonly used endpoint in Phase III oncology trials, we will use it throughout this 
paper. Without loss of generality, the same approach can be extended to other time-to-
event endpoints in different therapeutic areas. 
 

2. Proposed Design 
  
We start this section by introducing some concepts and notations. We are interested in a 
time-to-event endpoint (say, overall survival). Let ∆ (>0) denote the target effect size in 
the phase III confirmatory trial (log hazard ratio scale), α denote the overall type I error 
rate of the trial and β denote the type II error rate of the trial without incorporating any 
interim analysis. Therefore, the number of events needed to detect treatment effect ∆ with 

type I error and type II error doublet ( βα , ) is 2

2)(
*4

Δ
+

= βα ZZ
D . We can further 

assume a constant enrollment rate, total enrollment period and study period and an 
exponential failure rate in the control arm. Therefore, sample size needed to reach D 
events can be calculated (Lachin J. M and Foulkes M. A. 1986).   
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For a phase III oncology trial, type I error rate is usually set at 2.5% level (one-sided). 
Consider a phase III study in the first line non-small cell lung cancer (NSCLC) setting, 
where a 25% hazard reduction in survival is clinically meaningful. We design a study to 
have 90% power (type I error rate 10%) to detect a 25% hazard reduction at 2.5% type I 
error level, without adjusting for interim analysis. To allow flexibility in decision 
making, the futility rules are set up as non-binding, i.e., whether to follow the futility 
rules or not would not inflate the overall type I error. This would provide flexible 
decision makings. 
 
 
2.1 Optimal interim futility bound  
We consider only one interim analysis for the study. Let t (0<t<1) be the portion of 
information at interim analysis. Let ),( IAiA βα be the type I error rate and type II error 
rate at the interim analysis. After incorporating the interim analysis, the overall power of 
the study is: 

),Pr(1 11
*

βββ −− >>=− ZXZX
IAIA   

Let 3C denote the total cost of the phase III trial, and IAC  denote the cost that is spent up 
to the interim analysis. We assume that the experimental arm has a prior probability p of 
being active with treatment effect ∆ and probability p−1 being inactive. In many 
cases, p  is also noted as probability of success (POS). This assumption is straightforward 
and we usually use the industry benchmark for estimating p . To be more sophisticated, 
we can incorporate a prior distribution of the drug being active based on information 
from previous studies, instead of a single value p , which we will not elaborate in detail 
in this paper. Chen and Beckman (2009) proposed an optimal futility boundary that 
maximizes the expected benefit per expected resource unit expended, i.e., benefit-cost 
ratio. The optimization is performed by maximizing the utility function of benefit-cost 
ratio, where the numerator is the expected power of getting a positive phase III result 
adjusted for probability-of-success (POS), multiplied by the benefit of the drug; and the 
denominator is the expected phase III trial cost, adjusted for possibly stopping for futility. 
Let B denote benefit (e.g., size of patient population or market revenue as appropriate). 
The benefit-cost ratio R can be expressed as the following: 

])1()1()[(
)1(
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Since B depends on factors other than the phase III trial itself, such as the landscape and 
competitions from other similar drugs in development, it is hard to estimate upfront. 
However, it doesn't play any role in deriving the futility boundary and we can treat it as a 
nuisance parameter.  
 
Chen and Beckman (2009) have discussed in length in their paper how p and t could 
impact the futility bound and type II error spent at the interim analysis and the robustness 
of the futility bound. Since the futility bound is set up based on the assumption that future 
data follow same pattern as observed, we assume the futility rules using the optimal 
benefit-cost ratio are based on mature survival follow up data. 
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2.2 Two-stage futility design  
We set up the two-stage futility analysis design as the following: A futility bar is set up 
based on mature follow-up data at d2 events, using Chen and Beckman's (2009) approach. 
Based on this futility bar, a stage-one futility analysis is conducted when a portion of the 
d2 events have occurred. At this stage-one futility analysis, we do not require sufficient 
follow up time, i.e., the data is preliminary comparing to data with mature follow up. 
There are two possible outcomes of this stage-one futility analysis: If the data show high 
confidence that the study would pass the futility bar based on d2 events, the study will 
continue enrollment without stage-two futility analysis; If the data is not able to show 
high confidence of passing the futility bar at d2 events, the enrollment will be paused and 
the study will be on hold, and a stage-two futility analysis will be conducted after data 
become mature with d2 events. At the stage-two futility analysis, the decision is to either 
continue enrollment or to stopping the study completely.  
 
Conditional power is used for decision making at stage-one futility analysis. Let θ denote 
the treatment effect of interest and Z1 the test statistic at stage-one futility analysis.  
Conditional power can be formulated as 

),( 1 θZCP =Pr{Pass stage-two futility analysis | 1Z },  
where θ is the target treatment effect. Depending on how stringent and how much 
confidence is required at the stage-one futility analysis, different conditional power 
thresholds to pause enrolment can be set up for the stage-one futility bound. Simulations 
are recommended and operating characteristics should be provided in order to select an 
appropriate bound. As an illustration, we use at least 70% conditional power of passing 
the stage-two futility analysis under observed treatment effect as our the criteria of 
continuing enrollment at stage-one futility analysis.  
 
 

3. An Example: A Phase III Oncology Study 
 
In this section, we consider an example of a phase III oncology pivotal study. A total of 
660 patients will be enrolled with a 1:1 ratio into the experimental arm and the control 
arm. The study will complete when 510 events have occurred. With this sample size, the 
study has 90% power (without accounting for interim analyses) to detect a hazard ratio of 
0.75 (25% hazard reduction) when controlling the type I error at 2.5% (one-sided).  
Assume the median survival in the control arm is 6 months, the study would require 
enrollment duration of 22 months and a minimum follow up of 6 months. We assume 
20% initiation cost, i.e., 20% resource is spent prior to the study start. The rest of 80% 
resource is spent uniformly on each of the patient enrolled.  Suppose a futility interim 
analysis is conducted at 30% information. It is projected that approximately 60% of the 
total cost has been spent at the 30% information time. There are two approaches to attain 
30% deaths: the first approach is to enroll approximately 50% patients and to pause 
enrollment and follow up them until 30% deaths have occurred. The second approach is 
to continue enrollment until the target number of deaths have occurred. The latter 
approach is commonly used since it is more operational feasible and would not 
jeopardize study timeline. However, the trade off is that the data at interim analysis may 
have different pattern from the future data. In the two-stage futility analysis, we allow the 
use of preliminary data without mature follow up to make an earlier decision. Therefore, 
it provides a middle ground between the two approaches. We assume 60% and 70% of 
total cost has been spent prior to the interim analysis under the first and second approach, 
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respectively. Table 1 shows the optimal futility boundaries at two-stage interim analysis 
after 60% cost has been spent. 
 

Table 1 Optimal futility boundaries at two-stage interim analysis after spending 60% of 
total cost 

POS (p) Information 
at stage-one 
interim ( 1t ) 

Information at 
stage-two 
interim ( 2t ) 

Futility 
bound at 
stage-two 
interim 
(hazard 
ratio) 

Futility 
bound at 
stage-one 
interim 
(hazard 
ratio) 

Empirical 
bound at 
final analysis 
(hazard ratio) 
for a positive 
trial 

0.3 0.2 0.3 0.93 0.88 0.84 
0.5 0.2 0.3 0.95 0.91 0.84 
0.7 0.2 0.3 0.98 0.93 0.84 
0.3 0.3 0.4 0.90 0.86 0.84 
0.5 0.3 0.4 0.92 0.89 0.84 
0.7 0.3 0.4 0.94 0.90 0.84 
 
 
 

4. Simulations 
 
In this section, we conduct simulations to evaluate the characteristics of the two-stage 
futility interim analysis design. 
 
We consider four different futility designs: 1) Two-stage futility analysis. A preliminary 
futility analysis is conducted without minimum follow up when 20% information has 
achieved. If there is more than 70% confidence (in terms of conditional probability) that 
our data will pass the futility analysis with mature follow up when there is more 
information, the study will continue without pausing enrollment. If the confidence level is 
less than 70%, the study would pause, patients will continue survival follow up and the 
stage-two interim analysis will be conducted when 30% events have occurred. 2) 
Conventional futility analysis. The futility is conducted when 30% events occurred. No 
minimum follow-up time required. 3) Conventional futility analysis. The futility is 
conducted when 20% events occurred. No minimum follow-up time required. 4) No 
futility interim analysis and the study would continue until the end.  
 
We use the same data set up as that in the example. A total of 660 patients are 
randomized into either the experimental arm or the control arm with 1:1 ratio. An 
enrollment period of 22 months and a minimum follow up of 6 months after enrollment 
completion is needed. The target hazard ratio is 0.75. The study is completed when 510 
deaths have occurred.  
 
In the first scenario, we simulate data under proportional hazard assumption. True hazard 
ratio (HR) in the data simulations is set as 0.7, 0.75, 0.8, 0.9 and 1, respectively. We 
evaluated each of the four designs on the simulated data and decide whether the study 
will be stopped early for futility or continue till the end, and whether the study result will 
be positive. We performed 1000 simulations and summarized the probability of achieving 
positive result at the end of the study in order to compare the operating characteristics of 
four designs. We also evaluate the relative cost in each design. Table 2 and Table 3 
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provide the probability of positive result and the relative cost under different scenarios, 
respectively. We can see that when the proportional hazard assumption is valid, all three 
interim analysis designs perform similarly well.  
 

Table 2 Probability of positive trial under different hazard ratios (based on 1000 
simulations) 

 
True HR Two-stage 

futility analysis 
One-stage 
futility analysis 
at 30% info 

One-stage 
futility analysis 
at 20% info 

Without futility 
analysis 

0.7 0.92 0.93 0.91 0.98 
0.75 0.85 0.85 0.83 0.90 
0.8 0.63 0.64 0.61 0.71 
0.9 0.19 0.19 0.19 0.22 
1 0.023 0.024 0.023 0.026 
 
 

Table 3 Expected cost relative to total trial cost under different hazard ratios 
(based on 1000 simulations) 

True HR Two-stage 
futility analysis 

One-stage 
futility analysis 
at 30% info 

One-stage 
futility analysis 
at 20% info 

Without futility 
analysis 

0.7 0.96 0.97 0.96 1 
0.75 0.9 0.91 0.91 1 
0.8 0.73 0.75 0.72 1 
0.9 0.40 0.44 0.40 1 
1 0.38 0.43 0.36 1 
 
 
Secondly, we consider the case that survival curves between the experimental arm and 
the control arm is unlikely to separate at the beginning but have large separation at the 
later portion of the study. Let λ be the hazard ratio between the experimental arm and the 
control arm. We let λ=1 for the first four months, i.e., represents no treatment difference 
in the first 4 months. We let λ=1, 0.8, 0.7, 0.6 respectively, from month 5 to the end. 
When λ=1, it represents the scenario that there is no treatment effect. When λ=0.8, 0.7 or 
0.6, it represents the scenarios where the study is positive. In Table 3, we can see that the 
type I error is comparable across four designs and when the true hazard ratio is 0.7 or 0.6 
after four months, our proposed futility design would gain more power. Table 4 shows 
the expected cost in each design. The relative costs among three interim designs are 
similar, while without interim analysis, we always have to spend the total cost.  

Table 4 Probability of positive trial under different hazard ratios (based on 1000 
simulations) 

 
True HR Two-stage 

futility analysis 
One-stage 
futility analysis 
at 30% info 

One-stage 
futility analysis 
at 20% info 

Without futility 
analysis 

0.6 0.7 0.65 0.63 0.83 
0.7 0.46 0.43 0.4 0.56 
0.8 0.2 0.2 0.2 0.26 
1 0.02 0.021 0.02 0.024 
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Table 5 Expected cost relative to total trial cost under different hazard ratios 
(based on 1000 simulations) 

True HR Two-stage 
futility analysis 

One-stage 
futility analysis 
at 30% info 

One-stage 
futility analysis 
at 20% info 

Without futility 
analysis 

0.6 0.81 0.84 0.80 1 
0.7 0.65 0.70 0.65 1 
0.8 0.49 0.53 0.5 1 
1 0.39 0.50 0.47 1 
 
 
 
 

5. Conclusion 
 
Current futility analysis with time-to-event endpoint performs futility evaluations using 
study data at a snapshot of the data under the assumption that the future data follows 
same pattern as the observed data. There are limitations especially when proportional 
hazards assumption is in doubt. In this paper, we proposed a two-stage futility analysis 
which gives us an opportunity to look at the data at a later time when there is mature 
follow up information. Simulations showed that when proportional hazard assumption is 
violated, the two-stage futility analysis approach can save cost and have higher power 
comparing to other approaches. At the same time, we build in the optimal boundary in the 
two-stage futility analysis so that the return on investment is optimized after explicit 
incorporation of the drug development assumptions, such as benefit, cost and probability 
of success. 
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