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Empirical Bayesian Analyses of High-Throughput Sequencing Data

Thomas J. Hardcastle*
Abstract

Methods for the analysis of high-throughput sequencing data must exploit the ‘large p’ nature
of the data if they are to overcome the small sample sizes that are commonly available. This paper
presents a flexible and powerful methodology for analysis of high-throughput sequencing data based
on an empirical Bayesian approach.

The methods are demonstrated on two problems in high-throughput sequencing, that of differen-
tial expression discovery and of locus detection based on genome-aligned reads. For the application
of differential expression, we show that the methods perform at least as well as any alternative ap-
proach. In the application to locus discovery, we show how, beginning with an initially poor approx-
imation to the loci, we can use this empirical Bayesian approach to bootstrap to a much improved
definition of the loci.

The methods developed here form a general strategy for the analysis of high-throughput se-
quencing data and may in principle be used with any set of models and distributions for the data.
Novel modifications to the basic approach that reduce the computational effort required and increase
the performance of these methods are introduced.

Key Words: empirical Bayesian methods, high-throughput sequencing, differential expression,
locus detection

1. Introduction

The development of high-throughput sequencing technologies in recent years [3, 12, 13, 18]
has led to a massive increase in genomic data represented by counts. In the raw form,
these data consist of the number of times a particular sequence is observed in a sequenced
library, whether the source is, for example, genomic DNA, DNA fragments produced by
immunoprecipitation, messenger RNA (mRNA) or small RNAs (sRNA). In a number of
applications made possible by high-throughput sequencing, we may wish to group multiple
tags together and acquire a single count for that grouping. For example, in mRNA-seq
analyses, the relevant count is that of the number of sequences that align to a particular
gene, exon, or splice variant. Similarly, in analyses of sSRNA-seq data, methods exist to
group individual sequences into loci that represent SRNA precursors. In either case, for
each distinct tag or grouping of tags, we have an ordered list, or tuple, of discrete counts
with the sample order the same in each tuple.

Analyses of high-throughput sequencing data provide a classic example of the ‘small
n, large p’ problem. In any given sequencing experiment the number of unique sequences
present are likely to number in the millions, while, in the cases where a known grouping
structure exists (for example, a known transcriptome) the number of tuples is likely to
number in the tens of thousands. Conversely, because of the high costs of producing and
sequencing biological samples, the number of samples available to any single analysis is
likely to be small.
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A key requirement of analysis methods in high-throughput sequencing data is therefore
that they should exploit the ‘large p’ element of the data, that is, they should ‘borrow’ infor-
mation across tuples in order to better analyse each individual tuple. A variety of methods
have been suggested to achieve this borrowing of power, primarily in the area of differential
expression discovery between samples. These include approaches for stabilisation of over-
dispersion through shrinkage towards a common estimator [17], and a local regression of
shot noise to mean expression [1]. An empirical Bayesian approach is presented here that
borrows information by inferring a distribution on the underlying parameters of the data by
repeated sampling from within the data. This approach has the advantages that, in addition
to increased performance, it allows great flexibility in the choice of models fitted to the data.
This approach is demonstrated on the problems of differential expression detection [8] and
locus discovery [9] from high-throughput sequencing data.

2. Methods

We begin by defining the concept of equivalence between two libraries on a given tuple. If
for tuple i libraries j and k share the same parameters  on the distribution of their data then
we say that these libraries are equivalent on tuple i. We assume that biological replicates
are equivalent on all tuples by definition, and define differential expression between two
libraries at a tuple as a non-equivalence between the libraries. Based upon this definition of
equivalence, we can construct a set of models upon the data where each model represents
a set of equivalence classes where, for tuple i, the libraries j and k belong to the same
equivalence class if and only if their expression is equivalent at that tuple.

Analyses of the data then depend on an evaluation of the posterior likelihoods of each
model at each tuple. Suppose that there exists some model M for the data D; at the ith tuple.
The posterior likelihood of the model M is

P(D; | M)P(M)
P(D;)

The likelihood of the data P(D;) is easily estimated as the number of models is finite (al-

though potentially large) and so this becomes a scaling factor such that the sum of P(M | D;)

over all models M is unity. The prior likelihood of a model P(M) is estimated based on the

proportion of tuples whose data is best represented by that model (see Section 2.2). The
principle challenge is thus to estimate the likelihood of the data given the model.

P(M | Di) = (1

2.1 Likelihood of data given model

A model M defines equivalence classes Ey,---,E,,. For each equivalence class E, there
exists a joint distribution 6, on the underlying parameters of the data. Assuming indepen-
dence between the 0, then the likelihood of the data D; given the model M can be expressed
in terms of the data D4, the data from tuple i belonging to samples contained within equiv-
alence class g. Then

(0|00 =] [, B0u | 9P @

We do not know the distribution 6,. However, if we have a set ®, which samples from this

distribution, then we can approximate the likelihood of the data given the model by
1

IP’(D:-IM)%H‘@‘C P(Dig | €)) 3)
q 91 Lo,
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The set ®, can be acquired by sampling from the data. For a given model M we sample
some tuple whose behaviour approximates this model. The parameters of M for this sam-
pled tuple can be estimated from this tuple, typically through maximum or quasi-maximum
likelihood methods. By repeatedly sampling without replacement from an appropriate set
of tuples, the set ®, for each ¢ is formed.

2.2 Prior likelihoods of models

The prior probabilities of each model P(M) are required to solve Eqn. 1. If these are es-
timable from other sources, this may provide the optimum solution. However, in most cases
a reasonable estimate of prior probabilities will not be available. Hardcastle & Kelly [8]
suggested an iterative approach to estimating the proportion of tuples represented by each
model and employing these proportions as the prior. This approach did not account for the
propensity of models defined by higher numbers of equivalence groups (and hence higher
numbers of parameters) to over-fit, resulting in an over-estimation on the proportion of data
represented by such models. An alternative approach that better estimates the proportion of
tuples represented by each model is suggested here.

Given the ©,4, Eqn. 3 defines the likelihood of a tuple i for a given model M. If we
calculate this likelihood for all biologically plausible models on the ith tuple, we can use
the Bayesian information criterion (BIC) to select amongst the models. Given this selection
for a representative (and approximately independent) set of tuples, we can calculate the
observed proportion of the set selected as best represented by a given model. As before, we
use these proportions as prior likelihoods of the models. Figure 1 compares these methods
of prior estimation to the true proportion of differentially expressed tuples in the simulated
data suggests that the iterative method tends to over-estimate the proportion of differentially
expressed genes, whilst the BIC method tends to under-estimate this proportion. However,
for increasing numbers of libraries, the BIC method gives substantially better estimation of
the true proportion than the iterative methods.

2.3 Bootstrapping a weighted sampling

In general, it is not possible to know in advance a set of tuples whose behaviour is unam-
biguously defined by one model M. However, if the likelihood py that tuple & is represented
by model M is known, the approximation made in Eqn. 3 by weighting the numerical inte-
gration (following Evans & Swartz [6]) as

P M)~ [T T piP(D | 8) @
q ZPk Ck€®q

The values for p; can be estimated from Eqn. 1. Given an intial (unweighted) approxima-
tion @, it is thus possible to estimate the p; for each sampled tuple k, allowing an improved
approximation of the estimated values for P(Dy | M) and hence of P(M | D). This allows
a further improvement in the calculation of the weights used in Eqn. 4. Thus, by itera-
tively bootstrapping from a relatively poor approximation ®,, a closer approximation to a
sampling from the true 0, can be acquired.

2.4 Stratified sampling

In general, both the estimation of parameters and the solution to the numerical integration
given in Eqns 3 and 4 will require a numerical approach. When sampling from a large
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Figure 1: Comparison of methods for estimation of prior likelihood of models in an anal-
ysis of pairwise differential expression from simulated data with either 4 or 10 libraries.
The proportion of differentially expressed genes, used as the prior likelihood for a model of
differential expression is estimated either through the iterative methods described in Hard-
castle & Kelly [8] or through the BIC estimation described here.

number of tuples, it is computationally intensive to sample a large proportion of the data.
For the most part, good approximations to the underlying distributions 6, can be acquired
through a sampling of (on the order of) ten thousand tuples. However, where the underlying
distribution contains long tails in the distribution of one or more parameters, it is possible
that the sampling will fail to adequately describe the distribution in these tails.

Figure 2 shows an example of this in which one of the parameters is (up to scaling)
an estimate of the mean expression of the tuples. While the distribution estimated from a
subsampling of the data fits closely to that estimated from all data, it fails to fit in the tail
as no tuples were sampled in this region. The distribution acquired by subsampling will
provide poor estimates for the likelihood of the models for those tuples whose parameters
lie far outside the range of the samplings.

This problem can be overcome by adopting a stratified sampling approach to construct-
ing the ®,. In this instance, the tuples are split by average expression into one thousand
quantiles from which an equal number of tuples are sampled (or the total number of tuples
in each quantile, where this is lower. The sum over the sampled values used to estimate
P(D; | M) in Eqns 4 is then weighted as

P(D; [ M)~]] : Y wipP(Dig | C)) (5)

q Zpkwk C,kE@q

where, if {; is sampled from a stratum of size S and a total of s values are sampled from
this stratum, wy = 5.

3. Applications

The approach described above is highly flexible both in terms of the modelling structure,
the distributional assumptions, and the parameterisation of those distributions. The appli-
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Figure 2: Sampling from a set of high-throughput sequencing data. The true log-mean
expression (scaled by normalising factors) of the whole dataset is shown as a histogram.
The density of the sampled distribution is shown in red, whilst the (weighted) density of the
stratified sampling is shown in blue. Whilst both samplings approximate the distribution of
the true data well in the body of the distribution, the stratified sampling approximates the
true distribution in the tail much more closely.

cation of these methods to two significant aspects of high-throughput sequencing analysis
is discussed below.

The empirical Bayesian methods described above do not imply and specific distribu-
tional assumptions about the data. However, in applying these methods, some appropriate
choice of distributions based on the methods by which the data are produced must be made.
High-throughput sequencing data are acquired through processes that give rise to Poisson
distributed data if biological variation between samples is ignored. Biological variation
leads to over-dispersion relative to the Poisson distribution. Since under-dispersion will
not occur within these data, the negative binomial is commonly used [1, 8, 16] to model
the data. A sample A; has an associated ‘library scaling factor’ /;, where this is chosen to
account for the variation in sequencing depths between libraries [4, 17]. A scaling factor
for the tuple, A;, may also be used. This is usually descriptive of the length of the genomic
object described by the tuple i but might also be used to correct for GC enrichment biases
[15] or other tuple specific factors .

The count u;; observed at sample j for tuple 7 is then assumed to be distributed neg-
ative binomially, with mean y,/;A; and dispersion ¢,. Then the parameterization of this
distribution can be defined as

T(uic+0,") 1 6 A\
P(u;ii; Ny i, 0, = 4 I e B 6
(i hio L0 bg) T(0g " uic! <1+7‘ilj‘“q¢q> 0 '+ Nl ©

If we assume independence between the u;; conditional on u,, ¢, then

P(Diqquq)q) = H ]P)(Mij;}\'i,ljv(bqvﬂq) (7

JEE,

The joint distributions 8, on the parameters (u,,¢,) thus defines the likelihood of the
data (via Eqn. 2) under the models.

It is also possible to replace the tuple-specific scaling factor with one that is tuple/library specific; i.e., A; -
This can be useful, for example, in comparing gene expression between multiple species whose orthologues
have different genomic lengths.
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3.1 Differential Expression Detection

The first application to high-throughput sequencing of this empirical Bayesian approach
was in the detection of differential expression within defined tuples [8]. Patterns of ex-
pression are defined in terms of equivalence of expression between one or more samples,
allowing multiple patterns of expression to be examined within a single analysis.

In the simplest case of a model for pairwise differential expression, suppose that there
exist sets of samples from conditions A and B. In the case where two biological replicates
exist for each condition, there are four libraries, A{,A»,B,B>, where A;, A> and B, B>
are biological replicates. In most cases, it is reasonable to suppose that at least some of
the tuples may be unaffected by our experimental conditions A and B. The count data for
each sample in these tuples will then share the same underlying parameters. The model for
non-differential expression is thus defined by the equivalence class {A1,A,,B;,B>}.

However, some of the tuples may be influenced by the different experimental conditions
A and B. For such a tuple, the data from samples A; and A; will share the same set of un-
derlying parameters, the data from samples B and B, will share the same set of underlying
parameters, but, crucially, these sets of parameters will not be identical. The model for
differential expression between condition A and condition B is defined by the equivalence
classes {A;,A>} and {By,B:}.

3.1.1 Sampling ©,

If E, is an equivalence class, then the sampled set ®, might be derived by sampling some
tuple k and, from the data Dy, associated with that equivalence class and tuple, estimating
values for (ux,dr). However, suppose that the tuple sampled shows genuine differential
expression within the samples defined by E,. The estimate of dispersion is then likely to be
substantially over-estimated. Since it is not known in advance which tuples are genuinely
differentially expressed, it becomes difficult to estimate the dispersions. However, it can
be assumed by definition that there is no differential expression within sets of biological
replicates. This allows estimates of dispersion based on the replicate structure of the data.
Consider the sets {Fj,--- F;} where i, j € F, if and only if sample A jis areplicate of A;.
Given this structure for the data, the dispersion of the data for the kth tuple is estimated
by quasi-likelihood methods [14] by initially defining fi, = <{l% : j € F;}), and choosing

O such that
} =n—1 ®)

Ui -1
2 ui;log [A} — (ugj+ 0, " )log
2 P e Ry
This value for ¢y is then used to re-estimate the values fi, by maximum likelihood methods,
choosing the values for fi, that maximise the likelihoods

—1 U j
. (g + 0.1 < 1 )q)” LMty
P(Die | O fir) = / : ity ©)
(i B jle_ll, T(0c us! \ 1T+ Lhidtirdc Oc ' + 1Mt

for each r. Iterating on these estimations of ¢y and fi, until convergence defines the value
for ¢y for the kth tuple. The value uy, can then be estimated for any equivalence class E;
by fixing the dispersion parameter as ¢y and finding the value of w4, that maximises the
likelihood of the associated data D,. The set ®, = {(uxq, Ox) } is thus acquired by repeating
this process for multiple k.

Ugj + ¢,:]
Lihider + 0!
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This method of estimating the dispersion assumes that the dispersion of a tuple is con-
stant across different sets of samples. In most cases, where the number of samples is low,
this is likely to be the best approach. Where there is some expectation that the disper-
sion will be substantially different between sets of replicates, there may be advantages to
estimating the dispersions individually for each of the different sets of samples in each
model, while still considering the replicate structure within these sets. This is easily done
by restricting the data (and corresponding replicate structure) to D, when estimating the
dispersion in Eqn. 8. In general, no substantial differences between these approaches is
found in simulation studies.

3.1.2 Comparison of Methods

Comparisons of these empirical Bayesian methods for detection of differential expression
on both real and simulated datasets to alternative methods for the detection of differential
expression may be found in [8]. In general, these methods perform at least as well, and often
better than, alternative methods for the detection of differential expression. Figure 3 shows
a comparison of methods for detection of pairwise differential expression on simulated data.
Where few libraries are available, these methods (implemented in the baySeq R package)
show equal performance with the other best-performing method, edgeR [17]. Where a
greater number of libraries are available, the empirical Bayesian methods outperform all
alternative methods tested. Independent comparisons are carried out in [5] and [10] and
support the claim that the empirical Bayesian methods are amongst the best available for
detection of differential expression.

3.2 Locus Detection

The same general approach to analysis of high-throughput sequencing has also been ap-
plied to the problem of locus detection [9]. This study was motivated by the sequencing
of small RNAs (sRNAs), which arise from some longer precursor element. This precursor
cannot itself be sequenced due to its transitory nature, however, small RNAs, if stabilised
by association with an RNA induced silencing complex (RISC) [7] can be sequenced with
relative ease. Where sSRNAs derive from the same precursor, the sequenced reads align to
the genome in close proximity to each other and with non-independent abundances. How-
ever, because the affinity of the RISC to individual sRNAs is highly variable we see strong
accumulation biases of SRNAs upon the genome. In combination with the presence of back-
ground noise as a result of sequencing errors and the presence of breakdown products from
longer RNA molecules, amongst other factors, this makes the precise definition of locus
boundaries a non-trivial task.

In a full analysis of small RNA loci, methods are required for the analysis of data from
multiple experimental conditions, in which small RNAs from a particular locus may be
expressed under some conditions but not others. This is achieved in Hardcastle et al [9]
by first calculating likelihoods for each set of experimental conditions independently and
then taking an algorithmic approach to combine the loci called for each set of experimental
conditions into a single set of defined loci. Here we consider only the application of the
empirical Bayesian methods and so restrict our analysis to a consideration of data from
replicate group r.

The first requirement of such an analysis is the ability to evaluate the likelihood that
some defined region may be considered as showing locus-type expression within replicate
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Figure 3: Comparison of performance of various methods for detection of pairwise differ-
ential expression in simulations of high-throughput sequencing data, showing the number
of false discoveries identified in the first n tuples selected by each method. The logistic [2]
and log-linear [11] methods are classical methods that account for over-dispersion but do
not borrow power between tuples. The DEGseq [19], DESeq [1] and edgeR methods [17]
are methods developed for high-throughput sequencing and all make use of the ‘large p’
nature of the data to borrow power between tuples in some manner. The baySeq method is
the implementation of the empirical Bayesian methods [8] described here.
The simulations used to generate these data are described in [8]. Briefly, in each simulation
there exist ten thousand tuples of which one thousand are differentially expressed. The fold
change between differentially expressed tuples is given by the parameter . The number of
libraries in the first and second group of biological replicates is n; and n; respectively.
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group r. There are thus two models for each tuple, the first, M, modelling the data as being
expressed under background, or null-type conditions, the second, M}, as being expressed
under locus-type conditions.

3.2.1 Sampling a weighted O,

The two models of locus-type and null-type expression both define equivalence of expres-
sion between all samples within a replicate group. Simply sampling randomly selected
regions of the genome is therefore not sufficient to define the sets ®, for each model. In-
stead, we use the weighted approach defined by Eqn. 4.

An heuristic approach is used to give a first approximation to those regions of the
genome that may be defined as loci. From this, a non-overlapping set of ‘segments’ that cov-
ers the genome can be defined, with each segment identified as either a locus or a null. If the
kth segment is sampled, then the parameters ¢y and 1, can be calculated as in Eqns. 8 and 9.
For both models, ©, is formed from {z,, ¢x }. However, for the model of locus-type expres-
sion, the initial weighting py is one if the kth segment is defined as a locus by the heuristic
method, and zero otherwise. Similarly, for the model of null-type expression, the initial
weighting py is one if the kth segment is defined as a null by the heuristic method, and zero
otherwise.

The weightings on the sets @, allow an initial estimate of the likelihood that each seg-
ment is a locus through an application of Eqn. 4 (or, more usually, Eqn. 5 as the total num-
ber of segments is likely to be large). However, the initial definitions given by the heuristic
method for each segment as a locus or null may be incorrect. The bootstrapping procedure
described in Section 2.3 is thus applied to refine the weightings given these initial estimates
until the estimated likelihoods converge.

3.2.2 Likelihoods of Classification

The process defined above gives the likelihoods, for an existing set of segments, that each
segment is a locus; that is, that it is a region associated with sequenced reads. These seg-
ments are initially defined heuristically, however, given these likelihoods, the empirical
Bayesian methodology can be applied to refine the classification.

Suppose that there exists some set of candidate loci for a given replicate group. Two
models exist for these data; a model M;; in which the candidate locus exists within some
true locus, and a model My in which the candidate locus exists within a null region. For
each candidate, the likelihood of that candidate locus existing within some true locus can
be calculated, given an appropriate sampling of @..

The set @', is derived by sampling a non-overlapping set of candidate loci that lie wholly
within a segment of an existing locus map. Suppose that a sampled candidate locus /i lies
within a segment s,,. The segment s, has an estimated likelihood of being a locus (as
defined above) of p,,. For the model M, the set @/, is formed from the parameters {uy,, O }
estimated from the data Dy, (via Eqns. 8 and 9) associated with the candidate locus [/, and
weighted by p,,, the likelihood that the containing s, is a true locus. For the model My
the set @), is formed from the parameters {muy,,d;} as before, but weighted by 1 — p,,,
the likelihood that the containing s, is a true null. It is thus possible to calculate for any
given candidate locus the likelihoods of these competing models. These likelihoods are
combined (see Hardcastle et al, 2011 [9]) to define a new segmentation of the genome.
Figure 4 compares the loci defined by these methods to the initial heuristically defined loci
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Figure 4: Plots of the first twenty thousand bases on chromosome one of Arabidopsis
thaliana showing the small RNA loci discovered by heuristic methods (top) and empirical
Bayesian methods (bottom) on the basis of a pair of biological replicates. Small RNA reads
are mapped back to the genome; the number of reads at any base upon the genome is plotted
in black while the coordinates of the loci are shown as red, green and blue rectangles.
Note the over-segmentation that occurs in the heuristic methods, and the (unreplicated)
background noise visible between bases 2000 and 12000.

on a small region of the genome. There is a clear gain in performance acquired through
the empirical Bayesian methods over the initial approximation acquired through heuristic
methods.

4. Discussion

We present here a general strategy for analysis of count data from high-throughput sequenc-
ing data. In summary, this method establishes a set of models upon the genome. Each of
these models describes some distribution for the data within a given tuple, the parameters
of which are distributed according to some unknown, model specific distribution. These
distributions can be estimated empirically from the data, exploiting the ‘large p’ nature of
high-throughput sequencing, by sampling from a set of tuples which approximate the model
under consideration and estimating the parameters on the distribution of the data through
maximum or quasi-maximum likelihood methods. Given this approximate distribution on
the parameters, the likelihood of each model can be calculated.

This strategy can be applied to any parameterisable distribution for high-throughput
sequencing data, and any set of models can in theory be established. Two factors act to
complicate the extent which these methods are generalisable to any situation. The first is
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that the parameterisation of the distributions for the data must be such as to allow a good
estimation of the parameters from the data. This can be seen in the parameterisation used
for the negative binomial distribution in Eqn. 6. If rather than the dispersion ¢ we were
to use the ‘size’ parameter %, for many tuples (with dispersion close to zero) this would
result in extremely large and sparsely distributed estimates for this size parameter. Since
it is generally required that the parameters be calculated numerically, such a situation is
likely to lead to reduced precision in calculating the parameters, leading to reduced accu-
racy in likelihood estimation. A second difficulty emerges in sampling from sets of tuples
that approximate any given model being considered. This problem is reduced by weighting
the sampling (Eqns. 4 and 5) and bootstrapping from an initial weighting to acquire an im-
proved approximation. Nevertheless, this requires an initial approximation (usually derived
heuristically) in order to begin the bootstrapping process.

These factors can usually be addressed with an appropriate parameterisation and sam-
pling strategy. Where this is done, the application of the empirical Bayesian approach gives
both high performance and flexibility. In the application of these methods to discovery of
pairwise differential expression in high-throughput sequencing data, they perform as well
or better than any alternative approach. Moreover, unlike the majority of competing meth-
ods developed for high-throughput sequencing analysis, this approach has the advantage
that multiple models for diverse patterns of differential expression can be evaluated simul-
taneously (see Hardcastle & Kelly [8] for examples).

The empirical Bayesian approach has also successfully been applied to the problem of
sRNA locus detection in replicated high-throughput sequencing data. Several points of in-
terest are exemplified by this application of the methods. In SRNA locus detection, the two
competing models for count data in a tuple, that of expression from a null, or background
region of the genome, and that of expression from a locus. These two models have the same
pattern of equivalence and consequently the sampling used to generate approximations to
the distributions thus becomes of prime importance. In the first instance, a heuristic method
is used to give an initial approximation to the loci and null segments, from which a boot-
strapped estimation of likelihoods can be calculated. These likelihoods are then used to
weight the sampling of candidate loci used to define a second pair of models that address
the likelihood that a candidate locus lies within a true locus; significantly, the weightings
of the sampled loci are derived from the containing segment rather than the candidate locus
itself.

The basic methods here are applicable to any model-based analysis of high-throughput
sequencing data. The prime restriction to their use is the heavy computational requirements
of numerical estimation of parameters through maximum likelihood methods, and the nu-
merical integration used to approximate the likelihood of data given the model. However,
the methods are embarassingly parallel and hence, given sufficient computational power
there is no practical limit on their use. These methods thus form a highly flexible and
generalisable strategy for analysis of high-throughput data of all kinds. Furthermore, by
applying these methods to diverse types of high-throughput sequencing data (e.g., mRNA-
Seq, methyl-Seq, sSRNA-Seq, et cetera) it becomes simple to compare results from these
diverse data types. This allows for integrated downstream analyses of these data, which is
of great value in a systems approach to biology.
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