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Abstract

In this paper, we generalize the Epsilon Skew Normal (ESN) Tobit regression
model, proposed by Mashtare Jr. and Huston (2011), to the Epsilon Skew Exponen-
tial Power (ESEP) Tobit regression, which was proposed by Elsalloukh (2004). Tobit
model assumes the normality of residuals term. Elsalloukh et al.(2005) proposed the
Epsilon Skew Exponential Power (ESEP) family of distributions which includes the
ESN distribution and many others distributions as special cases. This flexible family
of distributions can accommodate both heavy tails and skewness behaviors. Therefore,
ESEP can be considered as a ”robust model” to cope with the deviation from normal-
ity. We propose the use of the Epsilon Skew Exponential Power family of distribution
as an alternative model to make inference on estimating the interested parameters of
the Tobit regression model. In the process, we develop the basic properties of the
ESEP Tobit model, such as the structural equation, the expected value of the censored
variable, and the loglikelihood functions based on the piecewise nature of the ESEP
density.

KEY WORDS: Epsilon Skew Exponential Power (ESEP) family, Tobit regression,
maximum likelihood estimation.

1. Introduction

Tobit model was first studied by Tobin (1958) who discussed the estimation of the
parameters of the truncated normal regression model which represents the relationship
of durable goods expenditure to age and liquid asset in a random sample of households.
Holden (2004) tested the normality assumption in the Tobit model. Xianbo (2007) consid-
ered the semiparametric and nonparametric estimation of Tobit models such as the truncated
and censored regression models. Jeong and Jeong (2010) proposed a new test on normality
in the censored regression (Tobit) model. Arabmazar and Schmidt (1982) explained that
the maximum likelihood estimation of the Tobit parameters becomes inconsistent when the
normality assumptions of the error random variable are untenable. Amemiya (1973) proved
the consistency and the asymptotic normality of the maximum likelihood estimators of the
Tobit parameters when the dependent variable is normal but truncated to the left of zero.
Han and Kronmal (2004) considered the Box-Cox transformation to address the problem
of departure from normality assumptions in the Tobit model. Amemiya and Boskin (1974)
considered the estimation of the censored regression model when the errors are distributed
according to log-normal. Mashtar Jr. and Huston (2011) considered the estimation of a
censored regression (Tobit) model when the errors are distributed as Epsilon-Skew Normal
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distribution with application in the biostatistics field. Hence, instead of using the robust
approach or the Cox-Box transformations to estimates the Tobit regression parameter when
the assumptions of normality are untenable, we adopt an alternative approach based on
using the ESEP distribution to develop a Tobit model as a robust model.

2. The Epsilon Skew Exponential Power (ESEP) distribution

Elsalloukh (2004 and 2005) introduced the Epsilon-Skew Exponential Power (ESEP)
distribution that can accommodate heavy-tailed (Leptokurtic) and skewed data. The ESEP
density is denoted by ESEP(θ, σ, α, ε) and defined by

f(y) =
α

2σ
√

2Γ( 1
α)

exp[−( y−θ√
2σ(1−ε))α]; y≥ θ

exp[−( θ−y√
2σ(1+ε)

)α]; y < θ,
(1)

where −1 < ε < 1 is the skewness parameter, θ ∈ < is the location parameter, σ > 0 is
the scale parameter, and α ∈ < is the shape parameter. Moreover, the density function (1)
is known as the Epsilon Skew Exponential Power of order α.

The probability density and the cumulative distribution functions of the standard form
of ESEP(0, 1, α, ε) are, respectively

f0(y) =
α

2
√

2Γ( 1
α)

exp[−( y√
2(1−ε))α]; y ≥ 0

exp[−( −y√
2(1+ε)

)α]; y < 0,
(2)

and

F0(y) =

1− (1−ε)
2Γ( 1

α
)
Γ( 1

α , g(y)); y ≥ 0

(1+ε)

2Γ( 1
α

)
Γ( 1

α , h(y)); y < 0,
(3)

where
Γ(α, x) =

∫ ∞
x

tα−1exp(−t)dt, α, x > 0, (4)

is the incomplete gamma function,

g(y) = (
y√

2(1− ε)
)α, (5)

and
h(y) = (

−y√
2(1 + ε)

)α, (6)

The mean of the ESEP is defined as

E(Y ) = θ −
4εσΓ( 2

α)
√

2Γ( 1
α)
.

The general form of the density function (1) is 1
σf0( |y−θ|σ ), f0 is as defined by (2), the

general form of the c.d.f. is F0( |y−θ|σ ), and F0 is defined by (3).
By varying the value of the shape and the skewness parameters, the ESEP fits data with

heavy-tailed, light-tailed, and skewed, that is, the ESEP reduces the effect of the outliers
and increases the robustness of the data analysis; therefore the ESEP is a ”robust family”.
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3. Tobit Regression Model

In this section, we look at the setup of Tobit (censored) regression model and the pa-
rameters estimation of Tobit regression. The left censored measurment function, Maddala
(1983) and Long (1997), is defined by

yi =

{
y∗; y∗ > c

c; y∗ ≤ c,
(7)

where yi are the censored variables, y∗ is the latent variable, and c is the censoring point.
Let the dependent variable y∗ be

y∗ = θ + ui. (8)

By substituting (8) in (7), where θ is the mean of y∗ and ui ∼ N(0, σ2), the Tobit model
measurment function (7) becomes

yi =

{
y∗; if y∗ = θ + ui > 0

0; if y∗ = θ + ui ≤ 0.
(9)

The expected value of Tobit model, Long (1997), is defined by

E(y) = E[E(y/η)] = P (uncensored)E(y/η = 1) + P (censored)E(y/η = 0)

= θΦ(
θ

σ
) + σφ(

θ

σ
),

where E[E(y/η)] is the law of iterated expectation of a bivariate random variables, y and
η, and

η =

{
1; y > 0

0; y = 0
(10)

The maximum likelihood estimation of the Tobit model can be defined by the following
general likelihood function of the censored regression, Maddala (1983),

f(y1, ..., yn) =

n∏
i=1

[F (y∗)]di [F (c)]1−di .

Traditionally, in Tobit model, θ is parameterized as x′iβ, thus, we can define the Likeli-
hood function as

L =
n∏
i=1

[
1

σ
φ(
yi − x′iβ

σ
)]di [1− Φ(

x′iβ

σ
)]1−di ,

where d is an indicator defined as

d =

{
1; yi > 0

0; yi = 0.

Amemiya (1973) considered the estimation of the parameters of the regression model βi
and σ2, when the response variable is normal and left truncated.
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3.1 The Epsilon-Skew Exponential Power Tobit Regression Model

Let y1, y2, ..., yn denote a left censored as defined in (7) with c = 0. Moreover, suppose
y∗ ∼ ESEP (θ, σ, α, ε) and y∗ as defined in (8) with ui ∼ ESEP (θ, σ, α, ε). Thus, the
ESEP Tobit model is

yi =

{
y∗; y∗ = θ + ui > 0

0; y∗ = θ + ui ≤ 0,
(11)

where y is the observed value of the dependent variable, and θ is the mode of y∗.

proposition 1. The expected value of a left censored variable Y with latent ESEP variable
y∗ is

E(Y ) =


θ[1− F0(−θσ )] + σ√

2Γ( 1
α

)
[(1 + ε)2Γ( 2

α , g(−θ)

) + (1− ε)2Γ( 1
α)]; θ > 0

θ[1− F0(−θσ )] + (1−ε)2σ√
2Γ( 1

α
)
Γ( 2

α , h(−θ)); θ ≤ 0,

(12)

where g(−θ), h(−θ), and Γ(·, ·) are as defined in (4),(5), and (6), respectively.

Proof.

E(y) = E[E(y/η)]

= P (uncensored)E(y/η = 1) + P (censored)E(y/η = 0),

where E[E(y/η)] is the law of iterated expectation of a bivariate random variables, y and η
as defined in (10). Then

P (uncensored) = p(y∗ > 0)

= p(ui > −θ)

= 1− F0(
−θ
σ

),

(13)

where F (·) is the general form of the cdf of the ESEP density. Let u?i be the a random
variable with density g(·) given by:

g(λ/λ > 0) =
g(λ)

p(λ > 0)

=
1
σf0(λσ )

1− F (−θσ )
; −θ < λ <∞,

(14)

where 1
σf0(λσ ) is the general form of the ESEP distribution. See Amemiya (1973) for

details. Thus,
E(y|η = 1) = E(θ + λ)

= θ + E(λ).
(15)

Given this, we have

E(y) = 1− F0(
−θ
σ

)[θ + E(λ)]

= θ[1− F0(
−θ
σ

)] +

∫ ∞
−θ

λ

σ
f0(

λ

σ
)dλ.

(16)
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If θ > 0 the integral in (16) is∫ 0

−θ

αλ

2
√

2σΓ( 1
α)
exp[−(

−λ
2

1
2 (1 + ε)σ

)α)]dλ+

∫ ∞
0

αλ

2
√

2σΓ( 1
α)
exp[−(

λ

2
1
2 (1− ε)σ

)α)]dλ

=
σ(1 + ε)2

2Γ( 1
α)

Γ(
2

α
, g(−θ)) +

σ(1− ε)2

2Γ( 1
α)

Γ(
2

α
).

(17)
If θ < 0, the integral in (16) is∫ ∞

−θ

αλ

2
√

2σΓ( 1
α)
exp[−(

λ

2
1
2 (1− ε)σ

)α)]dλ

=
σ(1− ε)2

2Γ( 1
α)

Γ(
2

α
, g(−θ))

(18)

By substituting (17) and (18) in equation (16), the expected value of the censored variable
Y is

E(Y ) =


θ[1− F0(−θσ )] + σ√

2Γ( 1
α

)
[(1 + ε)2Γ( 2

α , g(−θ))

+(1− ε)2Γ( 2
α)]; θ > 0

θ[1− F0(−θσ )] + (1−ε)2σ√
2Γ( 1

α
)
Γ( 2

α , h(−θ)); θ ≤ 0,

(19)

where g(−θ), h(−θ), and Γ(·, ·) are as defined in (4),(5), and (6), respectively.

The first moment of some known distributions, which are special cases of ESEP Tobit
regression (θ, σ, α, ε), can be derived from (19) as follows:

Case1: ESEP(θ, σ, 2, ε)

E(Y ) =

θ[1− F0(−θσ )] + σ2(1+ε)2

σ
√

2π
e
−( −θ√

2(1+ε)σ
)2 − 4σε

σ
√

2π
; θ > 0

θ1− F0(−θσ )] + σ2(1−ε)2
σ
√

2π
e
−( −θ√

2(1−ε)σ
)2

; θ ≤ 0.

Case2: ESEP(θ, σ, 1, ε)

E(Y ) =


θ[1− F0(−θσ )] + 2σ2(1+ε)2

2σ
√

2
e
−( −θ√

2(1+ε)σ
) − 2θσ(1+ε)

2
1
2 2
√

2σ
e
−( −θ√

2(1+ε)σ
) − 4σε√

2
; θ > 0

θ[1− F0(−θσ )] + 2σ2(1−ε)2
2σ
√

2
e
−( −θ√

2(1−ε)σ
) − 2θσ(1−ε)

2
1
2 2
√

2σ
e
−( −θ√

2(1−ε)σ
) − σ(1−ε)2√

2
; θ ≤ 0.

Case3: ESEP(θ, σ, 2, 0)

E(Y ) = θΦ(
θ

σ
) +

1

σ
φ(
θ

σ
).

4. Maximum Likelihood Estimation of the Parameters of ESEP Tobit Model

The Log Likelihood (LL) function per observation of the parameters of the ESEP Tobit
model is

l(yi; θ, σ, α, ε) = dilog[
1

σ
f0(

yi − θ
σ

)] + (1− di)log[F0(
−θ
σ

)], (20)
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where d is an indicator given as

d =

{
1; yi > 0

0; yi ≤ 0.

Since the pdf of the ESEP is a piecewise function, we consider the following three cases for
the LL function

Case1: For θ ≤ 0, the Log likelihood function per observation is,

l(yi; θ, σ, ε, α) = di[log(
α

2σ
√

2Γ( 1
α)

)− (
yi − θ√

2σ(1− ε)
)α]

+ (1− di)log[1− (1− ε)
2Γ( 1

α)
Γ(

1

α
, g(y))].

(21)

Case2: For θ > 0 and yi < 0, the Log likelihood function per observation is,

l(yi; θ, σ, ε, α) = di[log(
α

2σ
√

2Γ( 1
α)

)− (
θ − yi√

2σ(1 + ε)
)α)]

+ (1− di)log[
(1 + ε)

2Γ( 1
α)

Γ(
1

α
, h(y))].

(22)

Case3: For 0 < θ ≤ yi, the Loglikelihood function per observation is,

l(yi; θ, σ, ε, α) = log[
α

2σ
√

2Γ( 1
α)

]− (
yi − θ√

2σ(1− ε)
)α, (23)

where g(y) = ( y−θ√
2(1−ε))α, h(y) = ( θ−y√

2(1+ε)
)α.

We can use the above three cases to find the maximum likelihood estimates of the
parameters for the ESEP Tobit regression model. In the traditional tobit model, the location
parameter θ is parametrized as x′iβ in the tobit regression. Thus, the likelihood function of
the ESEP Tobit regression is

l(yi; θ, σ, α, ε) =
n∏
i

[
1

σ
f0(

yi − x′iβ
σ

)]di [F0(
−x′iβ
σ

)]1−di , (24)
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