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Abstract
We wish to determine if the pair-wise correlations of time-adjacent longitudinal data are ho-

mogeneous and can be pooled into a single time-invariant value. Historically, this hypothesis
has been addressed using an asymptotic Wald test. As an alternative, we propose to evaluate
whether the correlation between two continuous biomarkers measured at several time points are
equal by examining the posterior predictive p-values within the Bayesian paradigm. We decompose
the variance/covariance matrix to standard deviation elements and correlation elements and run a
Metropolis-Hastings with Gibbs algorithm. A replicated dataset is generated conditional on each
draw of parameters, and a “test statistic” is calculated for both the original and replicated dataset, by
which the posterior predictive p-value is determined. The performance of our method is examined
via simulation studies. We demonstrate our method on a periodontal longitudinal data set.
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1. Introduction

Our method is motivated by a small longitudinal study of gingivitis, or inflammation of the
gums (Salvi et al. (2010)). Eighteen subjects were enrolled in this study and were instructed
to refrain from all oral health practices for 21 days so that the natural progression of oral
disease could occur. After 21 days, the subjects returned to usual oral health practices
for two weeks. Each patient was examined at baseline (Day 0), 21 days after enrollment
(Day 21), when progression of gingivitis had occurred, and 35 days after enrollment (Day
35), when gingivitis would be resolved. At each of these three time points, investigators
collected samples of plaque and gingival crevicular fluid (GCF) to measure levels of oral
pathogens and biomarkers. It has been suggested that the level of oral pathogens may
directly trigger an immune response and thereby promote increased levels of inflammatory
biomarkers. Our current goal is to assess the association of biomarkers and pathogens
expressed by Pearson correlations,and whether the associations changed over the course of
the study.

Historically, several published statistical methods exist for assessing homogeneity of
correlation coefficients. Examples are Olkin and Siotani (1976), Olkin and Finn (1990)
and Dunn and Clark (1969, 1971) that use asymptotic normality of sample correlation co-
efficients or Fisher’s Z-transformed sample correlation coefficients to construct asymptotic
Wald test statistics. However, since more controversies arise from Bayesian school that
the calculation of frequentist p-value involves violation of the likelihood principle, we are
motivated to explore model checking approaches within Bayesian paradigm. We thus fit
our problem into a model selection framework. There are different ways of doing Bayesian
model selection, the most commonly used one is perhaps Bayes factor. However, it is of-
ten difficult to calculate, especially for models that involve large numbers of unknowns or
improper priors. Implying the same test statistics used in Wald test, we instead chose the
idea of posterior predictive p-value via MCMC, proposed by Meng (1994) and Gelman et
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al. (1996). To perform MCMC, Sampling parameters of the model under null hypothesis
involves modeling a variance-covariance structure Σ. A direct variance/covariance decom-
position suggested by Barnard et al. (2000) that allows us to work with standard deviations
and correlation matrix separately is of most interest. Specifically, the covariance matrix can
be written as

Σ = diag(S) R diag(S)

where S is the vector of m standard deviations and R is the m × m correlation ma-
trix. Different priors can be put on S and R respectively. In our study, we choose to use
marginally uniform priors for correlations and Gamma priors for standard deviations. De-
tailed procedures of sampling from posterior distribution and obtaining posterior p-values
will be described in the following sections.

2. Method

2.1 Notation

We have n subjects who are each examined sequentially at times t1 < t2, . . . , < tm. Let
Xij and Yij , i = 1, 2, . . . , n; j = 1, 2, . . . ,m, denote the respective values of biomarker
X and pathogen Y collected from subject i at time tj . Marginally, we assume Xij ∼
N (µxj , σ

2
j ) and Yij ∼ N (µyj , τ

2
j ), where µxj and µyj are m × 1 vectors of parameters

quantifying the means of Xij and Yij , respectively. The elements of Xi are assumed to
be exchangeably correlated with each other with correlation ρx, and the elements of Yi

are exchangeably correlated with each other with correlation ρy. We also assume a com-
mon cross-correlation, ρxy between Xij and Yik, where j 6= k. The parameters we are
interested in are ρ1, ρ2, . . . , ρm, the within-time correlation of Xij and Yij defined to be
ρj = Corr(Xij , Yij), j = 1, 2, . . .m, while all other parameters are nuisance.

Explicitly, if we denote Di = {Xi1, Yi1, Xi2, Yi2, · · · , Xim, Yim}t as the (2m × 1)
longitudinal vector of pairs of biomarker and pathogen for subject i, we assume Di has a
multivariate normal distribution with mean vector µ and variance Σ in which

µ = {µx1 , µy1 , µx2 , µy2 , · · · , µxm , µym} (1)

and

Σ =



σ21 ρ1σ1τ1 ρxσ1σ2 ρxyσ1τ2 · · · ρxσ1σm ρxyσ1τm
ρ1σ1τ1 τ21 ρxyσ2τ1 ρyτ1τ2 · · · ρxyσmτ1 ρyτ1τm
ρxσ1σ2 ρxyσ2τ1 σ22 ρ2σ2τ2 · · · ρxσ2σm ρxyσ2τm
ρxyσ1τ2 ρyτ1τ2 ρ2σ2τ2 τ22 · · · ρxyσmτ2 ρyτ2τm

...
...

...
...

. . .
...

...
ρxσ1σm ρxyσmτ1 ρxσ2σm ρxyσmτ2 · · · σ2m ρmσmτm
ρxyσ1τm ρyτ1τm ρxyσ2τm ρyτ2τm · · · ρmσmτm τ2m


(2)

2.2 Prior specifications

According to the direct decomposition strategy suggested by Barnard et al.(2000), Σ in
equation (2) is decomposed into S={σ1, τ1, σ2, τ2, · · · , σm, τm} and
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R =



1 ρ1 ρx ρxy · · · ρx ρxy
ρ1 1 ρxy ρy · · · ρxy ρy
ρx ρxy 1 ρ2 · · · ρx ρxy
ρxy ρy ρ2 1 · · · ρxy ρy

...
...

...
...

. . .
...

...
ρx ρxy ρx ρxy · · · 1 ρm
ρxy ρy ρxy ρy · · · ρm 1


(3)

Since under our null hypothesis, ρ1 = · · · = ρm = ρ0, where ρ0 is not specified,
all serial correlations from ρ1 to ρm in the above expression are replaced by ρ0. We set
uninformative prior for µ: π(µ) ∝ 1; Gamma(2,2) prior for σ2j and τ2j ; and uniform(-1,1)
prior for {ρ0, ρx, ρy, ρxy}. LetA(ρ) be the range of all correlation parameters such that the
correlations are bounded between -1 and 1 and the R matrix is positive definite.

2.3 Proposed tests

We are interested in testing the hypotheses H0 : ρ1 = ρ2 = . . . = ρm versus Ha : two or
more of ρ1, ρ2, . . . , ρm are unequal. For time j, let X.j = {X1j , X2j , · · · , Xnj} and Y.j

= {Y1j , Y2j , · · · , Ynj} denote the respective vectors of all subjects’ values of biomarker X
and pathogen Y . For j 6= k, we then denote S̃XXj as the sample variance of X.j , S̃Y Yj as
the sample variance of Y.j , S̃XXjk

as the sample covariance between X.j and X.k, S̃Y Yjk

as the sample covariance betweenY.j andY.k, S̃XYj as the sample covariance betweenX.j

and Y.j , and S̃XYjk
as the sample covariance between X.j and Y.k. Let ρ̂1, ρ̂2, . . . , ρ̂m,

ρ̂x, ρ̂y and ρ̂xy be:

ρ̂j =
̂ρjσjτj√
σ̂2j

√
τ̂2j

=
S̃XYj√

S̃XXj S̃Y Yj

; j = 1, 2, . . .m (4)

ρ̂x =

∑
j 6=k ̂ρxσjσk∑
j 6=k

√
σ̂2j σ̂

2
k

=

∑
j 6=k S̃XXjk∑

j 6=k

√
S̃XXj S̃XXk

(5)

ρ̂y =

∑
j 6=k ̂ρyτjτk∑
j 6=k

√
τ̂2j τ̂

2
k

=

∑
j 6=k S̃Y Yjk∑

j 6=k

√
S̃Y Yj S̃Y Yk

(6)

ρ̂xy =

∑
j 6=k ̂ρxyσjτk∑
j 6=k

√
σ̂2j τ̂

2
k

=

∑
j 6=k S̃XYjk∑

j 6=k

√
S̃XYj S̃XYk

(7)

define θjj as

θjj =
1

n− 3
(8)

while define θjk as

θjk =
1

n− 3

1
2 ρ̂j ρ̂k(ρ̂2x + ρ̂2y) + ρ̂2xy(1 + ρ̂j ρ̂k) + ρ̂xρ̂y − ρ̂xy(ρ̂j + ρ̂k)(ρ̂x + ρ̂y)

(1− ρ̂2j )(1− ρ̂2k)
(9)

which is a function of not only ρ̂j and ρ̂k, but also ρ̂x, ρ̂y, and ρ̂xy.
Let Σ̂z be an m × m matrix with diagonal element (j, j) equal to θjj as given by

Equation (8), and off-diagonal element (j, k) equal to θjk, as given by Equation (9). Also
let L be an (m− 1)×m contrast matrix for the pairwise differences, i.e.
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L =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 1 −1


To construct a posterior predictive p-value to test the null model H0 : ρ1 = ρ2 =

. . . = ρm, the test statistic Tz(D) = (Lẑ)T (LΣ̂zL
T )−1(Lẑ) is chosen. Tz is almost iden-

tical to Wald test statistic χ2
z . As reviewed in Meng (1994) and Gelman et al. (1996), the

posterior predictive p-value that incorporates a classic test statistic is defined as pb(D) =
PA[T (Drep) ≥ T (D)|H0, D], wherePA(Drep|H0, D) =

∫
PA(Drep|H0, θ)P (θ|H0, D)dθ.

2.4 Computational details

Denote the parameters {µx1 , µy1 , µx2 , µy2 , · · · , µxm , µym , σ
−2
1 , τ−21 , · · · , σ−2m , τ−2m , ρ0, ρx, ρy, ρxy}

as φ. Given a set of posterior draws of parameters by Metropolis-Hastings(MH) Algorithm
within Gibbs sampling, φj , j = 1, · · · , J , perform the following two steps for each j:

1. Given φj , draw a simulated replicated data set, Drepj , from the sampling distribu-
tion, PA(Drep|H0, φ

j).
2. Calculate Tz(D) and Tz(Drepj).
Having obtained Tz(D) , Tz(Drepj), j = 1, · · · , J , we can make a histogram of

Tz(D
repj) with Tz(D) located on it to make a graphical assessment, and estimate pb by

the proportion of the J pairs for which Tz(Drepj) exceeds Tz(D), namely∑J
j=11[Tz(D

rep,j) > Tz(D)]/J .

3. Application of Methods

3.1 Simulation Study

We now examine the performance of the proposed tests under various settings for hypo-
thetical longitudinal datasets based upon the data from our motivating example. For each
subject i, i = 1, 2, . . . , n, biomarker X and pathogen Y are both observed at m time
points. We assume Xij ∼ N (µxj , σ

2
j ) and Yij ∼ N (µyj , τ

2
j ), in which µxj = 2.5 and

µyj = 4.0, σj = 0.3, and τj = 0.40 − 0.05(j − 1). Note that correlation is location
and scale invariant, so that our results are generalizable to other values of location and
scale. We selected autoregressive nuisance correlations: ρxjk

= 0.5|j−k|, ρyjk = 0.6|j−k|,
ρxyjk = 0.51 × 0.7|j−k| for nuisance correlation parameters. Note that these nuisance
correlations are not constant. This setting has introduced some degree of model mis-
specification. With regard to the correlation parameters of interest, {ρ1, ρ2, . . . , ρm}, a
simulation setting was defined by two quantities, ρmin ∈ {0.2, 0.5} and ∆ ∈ {0.0, 0.3}.
We set ρ1 = ρmin, ρm = ρmin + ∆, and all other correlation parameters ρ2, ρ3, . . . , ρm−1
were equally spaced between ρ1 and ρm. Thus, a value of ∆ = 0 represents the null hypoth-
esis, while ∆ > 0 represents the alternative hypothesis. For each combination of minimum
serial correlation and ∆, we simulated Di={Xi1, Yi1, · · · , Xim, Yim}, the data for each
subject i, from a multivariate normal distribution with mean µ and variance Σ, with µ
and Σ defined in Equations (1) and (2). We considered sample sizes of n ∈ {25, 50} and
number of time points m ∈ {2, 3, 4, 5}.

For each scenario, we simulated 1,000 datasets and run 2000 iterations each. Metropolis-
Hastings within Gibbs sampling was used. The steps below are followed:

1. Draw µx1 , µy1 , · · · , µxm , µym together from its multivariate normal conditional pos-
terior.
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2. Draw each of the components in S one at a time by performing an independent
MH by choosing a Gamma distribution as the proposal density for an individual variance
parameter. For example, the proposal density we use to sample σ−21 is G[n/2,

∑
i(µx1 −

Xi1)
2/2].

3. Assuming our null model: ρ1 = ρ2 = · · · = ρm = ρ0, where ρ0 is undefined, the
components of R just include {ρ0, ρx, ρy, ρxy}. While sampling ρx and ρy, for each we do
a random walk MH using a normal distribution truncated between -1 and 1.While drawing
each of ρx, ρy one at a time, we draw ρ0 and ρxy jointly from a bivariate truncated normal
proposal distribution with correlation 0.6, since a large cross-correlation were observed be-
tween ρ0 and ρxy. An extra step before updating the n’th sample with the proposal sample
is to check if the proposal sample keeps R matrix to be positive definite. If the condition
is not satisfied, the n’th sample takes the value of the n-1’th sample. The proposal vari-
ance was tuned every 25 iterations during the burn-in period for truncated normal proposal
density to get an acceptance rate of between 30% to 40%. The first 400 samples in burn-
in period were discarded. Histograms and summary statistics including mean and 95 %
credible interval were obtained based on the rest 1600 samples. Having obtained T (D) ,
T (Drepj), j = 1, · · · , J , histograms were made to graphically assess the proportion of the
J pairs for which T (Drepj) exceeds T (D). A small p-value indicates poor fit. The test
was “rejected” at size level α=0.05. The size and power of the tests in each scenario were
estimated from the rejection rates in 1,000 simulated datasets.

3.2 Evaluation of performance

Table 1 presents the empirical size, e.g. ∆ = 0, of posterior predictive test Tz and Wald Z-
test for various combinations of n,m, and ρmin. The first column under each sample size
shows the empirical size of posterior predictive test Tz based on 1,000 simulations, while
the second column is the empirical size of Wald test, obtained from 5,000 simulations based
on the asymptotic distribution of Z-transformation. Based upon a 95% confidence inter-
val around a desired size of 0.05, we would expect the number of rejections in 1,000 and
5,000 simulations for a nominal test would lie in the interval (3.65, 6.35) and (4.5, 5.6)
respectively. Therefore, the Bayesian test has nominal size, regardless of the number of
time points and the value of ρmin. As the sample size drops to n = 25, posterior predic-
tive test Tz became conservative, although the conservativeness was allowed due to Monte
Carlo error. Overall, even if some degree of model mis-specification is present, the size of
posterior predictive test Tz still remains nominal. Based on this finding, the new test can be
applied to real data that do not have perfectly constant nuisance correlations.

Regarding the empirical power of the Bayesian posterior predictive test, Table 2 shows
the simulation results comparing posterior predictive tests Tz and Wald Z-test at ∆ = 0.3.
As a general trend, power goes down as the number of time points goes up and ρmin gets
closer to 0. Both tests have similar power, but when n goes down, the power of posterior
predictive tests drops.

3.3 Motivating example

A longitudinal periodontal study conducted by Kinney et al. (2011) and Ramseier et al.
(2009) was analyzed in this section. 79 subjects completed the 12-month study, with sam-
ples of saliva-derived biomarkers (TNF-α, metalloproteinase(MMP)-8) and periodontal
plaque biofilm pathogens (P.gingivals, T.forsythia) examined at baseline (Day0), 6 months
and 12 months.

We would now like to assess whether there is a constant correlation between certain
combination of biomarker and pathogen. We first add 1 to all the measured values and take
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Table 1: Size of posterior predictive test Tz and Wald Z test with n = 50, 25, m =
{2, 3, 4, 5} at ρmin = {0.2, 0.5}. Tz=posterior predictive test using test statistic χ2

z;
χ2
z=Asymptotic Wald Test based on Fisher’s Z-transformation

n = 50 n = 25
m ρmin Tz χ2

z Tz χ2
z

2 0.2 4.7 5.4 4.4 5.3
0.5 4.8 5.1 4.7 5.2

3 0.2 5.2 5.2 4.7 5.2
0.5 5.3 5.1 4.3 5.1

4 0.2 4.9 5.0 4.0 5.0
0.5 4.2 5.1 4.0 4.8

5 0.2 4.1 5.1 5.6 5.4
0.5 4.5 5.1 4.7 5.2

Table 2: Power of posterior predictive test Tz and Wald Z test with n = 50, 25,
m = {2, 3, 5} at ρmin = {0.2, 0.5}. Tz=posterior predictive test using test statistic χ2

z;
χ2
z=Asymptotic Wald Test based on Fisher’s Z-transformation

n = 50 n = 25
m ρmin Tz χ2

z Tz χ2
z

2 0.2 50.8 50.7 27.9 28.7
0.5 88.6 90.4 61.8 61.0

3 0.2 34.4 37.0 19.9 20.0
0.5 75.5 75.3 42.7 44.4

5 0.2 33.3 32.2 15.8 16.8
0.5 68.8 66.0 33.9 34.6

Table 3: Sample serial correlations between combinations of biomarkers and pathogens,
and testing equality of serial correlations at 0, 6,12 months. Tz=posterior predictive test
using test statistic χ2

z ; χ2
z=Asymptotic Wald Test based on Fisher’s Z-transformation.

Pathogen Biomarker Sample serial correlation p-value
0 6 12 Tz χ2

z

P.gingivals TNF-α -0.17 0.07 -0.07 0.154 0.107
MMP-8 -0.01 0.28 0.04 0.08 0.059

T.forsythia TNF-α -0.19 0.07 -0.19 0.014 0.005
MMP-8 0 0.22 0.13 0.192 0.182
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a log-transformation. Shown in Table 3 is the sample serial correlations for each pair of
biomarker and pathogen after the transformation described above. To test the hypothesis
whether the correlation between a biomarker and a pathogen at each time point is equal,
both of posterior predictive test, Tz , and Wald Z-test were performed. Table 3 summarizes
the p-values. Both tests gave comparable results and most pairs have homogeneous serial
correlations. It is shown that heterogeneity exists in pairs between TNF-α and T.forsythia
(max-min difference is 0.22) and MMP-8 and P.gingivals (max-min difference is 0.29, p-
value close to 0.05).

4. Conclusions and Discussion

This report described a Bayesian approach to perform tests of equality of correlation coef-
ficients for longitudinal studies. We borrowed the classical Wald χ2

z statistic to construct
posterior predictive p-values. The empirical size and power of our proposed tests in a va-
riety of settings motivated by the data collected in our motivating study were computed.
Bayesian Test using posterior predictive p-value maintains nominal size, and the assump-
tion of equal nuisance correlations (ρx, ρy and ρxy) in Σ is generally robust to data without
constant nuisance correlation. Posterior predictive tests Tz has similar power as Wald χ2

z .
We should be aware that Bayesian and Frequentist p-value are two completely different

concepts. The Wald test Type I error was listed just for reference, but the p-value should not
be compared to the posterior predictive p-value. This report is to propose a new approach
to perform tests of equality of correlation coefficients for longitudinal studies from a very
different perspective.
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