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Inference for Duration Models using Estimating Functions
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Abstract

A class of martingale estimating functions provides a more convenient framework for
studying inference for nonlinear time series models relative to other widely used methods
such as maximum likelihood estimation. For example, the estimating function approach
does not assume any particular distribution for the innovation. Liang et al. (2011) have
recently shown that quadratic estimating functions are more informative than linear esti-
mating functions for Random Coefficient Autoregresive (RCA) models. Duration models
are commonly used to model the behaviour of irregularly time-spaced financial data. The
method is used to study the inference for the parameters of a new class of multiplicative
Random Coefficient Autoregressive Conditional Duration (RCACD) models.
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1. Introduction

Godambe (1985) proposed the estimating function approach to study inference for
discrete time stochastic processes. Thavaneswaran and Abraham (1988) showed
that estimating functions provide a desirable framework for inference in nonlin-
ear time series models. Bera et al. (2006) provide a survey of the theory of es-
timating functions and illustrate applications to various time series models such
as the Random Coefficient Autoregressive (RCA). Recently, Ghahramani and Tha-
vaneswaran (2012) use combined estimating functions to obtain optimal nonlinear
recursive estimation for RCA models.

The RCA model proposed by Nicholls and Quinn (1982) has been widely used
in the financial literature. Nicholls and Quinn (1982) discuss maximum likeli-
hood and conditional least squares estimation methods for the RCA model. Tha-
vaneswaran and Abraham (1988) and Chandra and Taniguchi (2001) discuss pa-
rameter estimation using estimating functions. Liang et al. (2011) show that, for
the RCA model, the optimal combined martingale estimating function is more in-
formative than the component estimating functions.

Duration models, first introduced by Engle and Russell (1998), are commonly
used to model the behavior of irregularly time-spaced financial data. Such data
has become increasingly important as real-time, high frequency, transaction and
quote data are now readily available. Estimation of the standard Autoregressive
Conditional Duration (ACD) model is usually performed via maximum likelihood.
However, inference for duration models using the estimating function approach
has been little explored.
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In this paper we first propose a new class of Multiplicative Random Coeffi-
cient Autoregressive Conditional Duration (RCACD) model and then we derive
a general expression for the optimal estimating function, the quadratic estimating
function for model parameters, and the corresponding information matrix for the
new model. The information gain associated with the proposed method is briefly
discussed.

2. Estimating Function Approach

2.1 The basics

Let {y:},t = 1,...,n be a realization of a discrete-time stochastic process with its
distribution depending on a vector parameter 6, .%/ be the o-field generated by
{yt}, and hy = hy(y1, ...,y @) be specified ¢g-dimensional vectors that are martin-
gales. For the class .# of zero mean and square integrable p-dimensional martin-
gale estimating functions of the form .# = {g,(0) : g,(0) = >_;" ; a;_1h;}, where
a;—1 are p x ¢ matrices depending onyy, . .., y:—1, the optimal EF which maximizes
the information matrix
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is givenby g’ (0 Zat 1thy = Z(E[agt T 1}) (E[hshy |77 ]) 'hy,

and the corresponding optimal information reduces to E[g} (0)g (0)'|.#Y_,].

2.2 Parameter estimation for a general model

For the discrete-time stochastic process {y;} with conditional moments
u(0) =E [l 7}, ],

02(0) = Var <yt\ft 1)
1(6) =E |(n — (6))*| 7, | .and

nt(e):E[( 1e(0))* |.F (t 1)}

define martingale differences: {m;(0) = y; — 11+(0)} and {M;(0) = m?(0) — o7(0)}
with quadratic variations (m); = E[m?|.%/ |] = o7, (M) = E[M}|.Z} || = k¢ — o,
and quadratic covariation (m, M), = E[m;M;|.#/ ;] = . Then, the optimal esti-
mating functions g}, () and g},(6) based on m; and M, respectively, are:
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and the corresponding information is:
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The optimal combined estimating function and its corresponding information
are:

n

gh(0) = (aj_ymy + b} M)
t=1

. (m M2\ O 1 90} (m, M),
where a; | = (1— m>t<M>t) (_(%Mm)t + 50 <m>t<M>t) and

i = (i) (et o )
I (0) = zn: <1 - <<mM>?t>l (aut Ope 1 dol 0o} 1

m) (M) 96 00’ (m); = 960 06" (M),

(9w 0ot | 007 D {m, M),
96 00" " 06 96" ) (m) (M) )"

3. Multiplicative Random Coefficient Autoregressive Conditional Duration
(RCACD) Model

In this section we introduce a new class of Multiplicative Random Coefficient ACD
(1, 1) models of the form

xy = (b + Yy)ey, 1)

Yy = w + a1x-1 + P11, 2)
where w > 0, a1 > 0, 81 > 0, and a1 + 81 < 1. We assume that ¢,’s are iid non-
negative random variables with mean .., variance a?, skewness 7., and excess
kurtosis x.. Further assume that b;’s are iid non-negative random variables with
mean uy, variance af, skewness ~;, and excess kurtosis «;. Also, ¢ and b; are mutu-
ally independent. In order to estimate the parameter vector 6 = (1, ag, w, a1, b)),
we use the estimating function approach. For this model, the conditional moments
can be calculated as

pre = pre(pp + ),
o = o2(p + ) + op (12 + 02),
e = Ve (o + ) + (307 7e + 6pc0502) (1 + W) + (1 + 3peo? + 1),
ko = Re(p + )" + 605 (202 + 2peve + ko) (pp + )
+ Ay (3o + Bpeye + k) (b + e) + K(pd + dpeye + 6puZo? + ke).
Let m; = x; — j1 and M; = m? — o be the sequences of martingale differences such
that
(mye = 02 (p + 1)* + o3 (1 + 02)
(M); = (ke — 02) (o + P0)* + 207 (2p202 + 6=z + 3k — 02) (1 + 1)
+ Ay (3p2of + Bpeye + ki) (1 + o) + K(pe + Apeye + 6po? + ke)
— oy (2 + 20l + o?),
(m, M)y = (o + 00)° + (3057 + 60702) (1 + r) + (12 + 3pc0? +72).

1116



Theorem 1. For the model (1) - (2), in the class of all quadratic estimating functions of
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theform gc = {gc(e) : gC(B) = Z?:l (at,lmt + btflMt)}/

(a) the optimal estimating function is given by g&(0) = >0 (aj_ymy + bj_ M),

where

1

* —
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and
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(c) the information matrix of the optimal quadratic estimating function for 0 is given by

n

t=1

1
2 (m)e(M) — (m, M)

(Ma<mv M), — 202 (1 + 1/%)) ¢t—1)/ ;

(b) the quadratic estimating function for each component of @ is given by
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n
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1117

Ty, Im,ag T Tpyar Lpypy
Luoz Aozop Tozo Io2ar Lo2s
I (60) = Ly Iagw Low Iway Lup
‘[Nbal Iafal Loy Layon Ia1ﬁ1
Iubﬁl Iafﬁl Iwﬁl Ialﬁl Iﬁlﬁ1
Z (1 _ (m, M)} >_1 < 2 + 4o (pup + ¥r)? . Apieo? (g + e) (m, M)y
(m)e (M) (m)¢ (M) (m)e(M)y

).



Business and Economic Statistics Section —JSM 2012
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Proof. Since

and
00
the proof follows Theorem 2.1 in Liang et al. (2011).

= (202(pup + Vo), p2 + 02,202 (1 + ¥e), 202 (1 + Vi) e—1, 202 (p + Vi) —1)

3.1 Information gain

For an RCA model with GARCH errors, Thavaneswaran et al. (2012) have shown
that the martingale optimal estimating functions are more informative than the

1118



Business and Economic Statistics Section —JSM 2012

conditional least squares. For our new model, following Liang et al. (2011) and
using two orthogonal martingale differences m; and ¥, = M; — oyyymy, where
(U); = ((m)¢ (M) — (m, M)?)/{m),, it can be shown that Ig: (0) = Ig; (0) + Ig: (0)
and therefore Iy (6) > I (6) and Iy (0) > Iy (6).

4. Conclusions

A general framework using the estimating function approach is developed for a
new class of random coefficient autoregressive conditional duration models. The
model may be appropriate for irregularly spaced time series commonly used in
financial applications. We derive the quadratic estimating functions for model
parameters and the corresponding information matrix. We show that when the
information about the higher order conditional moments of the observed process
becomes available, the combined optimal quadratic estimating function is more in-
formative than the component estimating functions. Our proposed model can be
extended to a more general form to account for seasonality and such model and es-
timation framework can be of interest for various financial applications including
option pricing (e.g. Frank et al. 2011).
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